1
|
Wu J, Hu H, Li X. Spinal neuron-glial crosstalk and ion channel dysregulation in diabetic neuropathic pain. Front Immunol 2025; 16:1480534. [PMID: 40264787 PMCID: PMC12011621 DOI: 10.3389/fimmu.2025.1480534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is one of the most prevalent complications of diabetes, characterized by a high global prevalence and a substantial affected population with limited effective therapeutic options. Although DNP is closely associated with hyperglycemia, an increasing body of research suggests that elevated blood glucose levels are not the sole inducers of DNP. The pathogenesis of DNP is intricate, involving the release of inflammatory mediators, alterations in synaptic plasticity, demyelination of nerve fibers, and ectopic impulse generation, yet the precise mechanisms remain to be elucidated. The spinal dorsal horn coordinates dynamic interactions between peripheral and central pain pathways, wherein dorsal horn neurons, microglia, and astrocytes synergize with Schwann cell-derived signals to process nociceptive information flow. Abnormally activated neurons can alter signal transduction by modifying the local microenvironment, compromising myelin integrity, and diminishing trophic support, leading to neuronal sensitization and an amplifying effect on peripheral pain signals, which in turn triggers neuropathic pain. Ion channels play a pivotal role in signal conduction, with the modulation of sodium, potassium, and calcium channels being particularly crucial for the regulation of pain signals. In light of the rising incidence of diabetes and the current scarcity of effective DNP treatments, a thorough investigation into the interactions between neurons and glial cells, especially the mechanisms of ion channel function in DNP, is imperative for identifying potential drug targets, developing novel therapeutic strategies, and thereby enhancing the prospects for DNP management.
Collapse
Affiliation(s)
- Jie Wu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haijun Hu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
D'Souza RS, Barman R, Joseph A, Abd-Elsayed A. Evidence-Based Treatment of Painful Diabetic Neuropathy: a Systematic Review. Curr Pain Headache Rep 2022; 26:583-594. [PMID: 35716275 DOI: 10.1007/s11916-022-01061-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Painful diabetic neuropathy (PDN) manifests with pain typically in the distal lower extremities and can be challenging to treat. The authors appraised the literature for evidence on conservative, pharmacological, and neuromodulation treatment options for PDN. RECENT FINDINGS Intensive glycemic control with insulin in patients with type 1 diabetes may be associated with lower odds of distal symmetric polyneuropathy compared to patients who receive conventional insulin therapy. First-line pharmacologic therapy for PDN includes gabapentinoids (pregabalin and gabapentin) and duloxetine. Additional pharmacologic modalities that are approved by the Food and Drug Administration (FDA) but are considered second-line agents include tapentadol and 8% capsaicin patch, although studies have revealed modest treatment effects from these modalities. There is level I evidence on the use of dorsal column spinal cord stimulation (SCS) for treatment of PDN, delivering either a 10-kHz waveform or tonic waveform. In summary, this review provides an overview of treatment options for PDN. Furthermore, it provides updates on the level of evidence for SCS therapy in cases of PDN refractory to conventional medical therapy.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ross Barman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amira Joseph
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology and Perioperative Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
Hagedorn JM, Engle AM, George TK, Karri J, Abdullah N, Ovrom E, Bocanegra-Becerra JE, D'Souza RS. An overview of painful diabetic peripheral neuropathy: Diagnosis and treatment advancements. Diabetes Res Clin Pract 2022; 188:109928. [PMID: 35580704 DOI: 10.1016/j.diabres.2022.109928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus remains a public health problem, affecting 422 million people worldwide. Currently, there is no consensus around treating painful diabetic peripheral neuropathy in a step-wise manner. Among the non-pharmacological interventions, neuromodulation has become a promising alternative. Over the past decade, significant clinical trials have paved the way for prompt inclusion of high-frequency spinal cord stimulation within the painful diabetic peripheral neuropathy treatment algorithm. This article aims to provide an updated evidence-based approach for the management of painful diabetic peripheral neuropathy.
Collapse
Affiliation(s)
| | - Alyson M Engle
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jay Karri
- Johns Hopkins University, Baltimore, MD, USA
| | - Newaj Abdullah
- Division of Pain Medicine, Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Erik Ovrom
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | | | - Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Omar N, Ismail CAN, Long I. Tannins in the Treatment of Diabetic Neuropathic Pain: Research Progress and Future Challenges. Front Pharmacol 2022; 12:805854. [PMID: 35082680 PMCID: PMC8784866 DOI: 10.3389/fphar.2021.805854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes mellitus and its consequences continue to put a significant demand on medical resources across the world. Diabetic neuropathic pain (DNP) is a frequent diabetes mellitus chronic microvascular outcome. Allodynia, hyperalgesia, and aberrant or lack of nerve fibre sensation are all symptoms of DNP. These clinical characteristics will lead to worse quality of life, sleep disruption, depression, and increased mortality. Although the availability of numerous medications that alleviate the symptoms of DNP, the lack of long-term efficacy and unfavourable side effects highlight the urgent need for novel treatment strategies. This review paper systematically analysed the preclinical research on the treatment of DNP using plant phytochemicals that contain only tannins. A total of 10 original articles involved in in-vivo and in-vitro experiments addressing the promising benefits of phytochemical tannins on DNP were examined between 2008 and 2021. The information given implies that these phytochemicals may have relevant pharmacological effects on DNP symptoms through their antihyperalgesic, anti-inflammatory, and antioxidant properties; however, because of the limited sample size and limitations of the studies conducted so far, we were unable to make definitive conclusions. Before tannins may be employed as therapeutic agents for DNP, more study is needed to establish the specific molecular mechanism for all of these activities along the pain pathway and examine the side effects of tannins in the treatment of DNP.
Collapse
Affiliation(s)
- Norsuhana Omar
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Idris Long
- Biomedical Science programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
5
|
IL-35 promotes microglial M2 polarization in a rat model of diabetic neuropathic pain. Arch Biochem Biophys 2020; 685:108330. [DOI: 10.1016/j.abb.2020.108330] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/19/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
|
6
|
Singh P, Bansal S, Kuhad A, Kumar A, Chopra K. Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels. Food Funct 2020; 11:4548-4560. [DOI: 10.1039/c9fo00881k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a serious debilitating epidemic affecting all social strata, imposing huge health, social and economic burdens.
Collapse
Affiliation(s)
- Pratishtha Singh
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Seema Bansal
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| | - Kanwaljit Chopra
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
7
|
Identification, chemical synthesis and heterologous expression of an antinociceptive peptide from the veined tree frog Trachycephalus typhonius. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Discovery of selective, orally bioavailable, N -linked arylsulfonamide Na v 1.7 inhibitors with pain efficacy in mice. Bioorg Med Chem Lett 2017; 27:2087-2093. [DOI: 10.1016/j.bmcl.2017.03.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
|
9
|
Zapata-Sudo G, da Costa Nunes IK, Araujo JSC, da Silva JS, Trachez MM, da Silva TF, da Costa FP, Sudo RT, Barreiro EJ, Lima LM. Synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazones designed as anti-diabetic agents. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2869-2879. [PMID: 27672310 PMCID: PMC5024769 DOI: 10.2147/dddt.s108327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neuropathy is a serious complication of diabetes that has a significant socioeconomic impact, since it frequently demands high levels of health care consumption and compromises labor productivity. Recently, LASSBio-1471 (3) was demonstrated to improve oral glucose tolerance, reduce blood glucose levels, and display an anti-neuropathy effect in a murine streptozotocin-induced diabetes model. In the present work, we describe the design, synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazone derivatives (referred to herein as compounds 4–9), which were designed by molecular modification based on the structure of the prototype LASSBio-1471 (3). Among the compounds tested, better plasma stability was observed with 4, 5, and 9 in comparison to compounds 6, 7, and 8. LASSBio-1773 (7), promoted not only hypoglycemic activity but also the reduction of thermal hyperalgesia and mechanical allodynia in a murine model of streptozotocin-induced diabetic neuropathic pain.
Collapse
Affiliation(s)
- Gisele Zapata-Sudo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabelle Karine da Costa Nunes
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josenildo Segundo Chaves Araujo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline Soares da Silva
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Margarete Manhães Trachez
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Anesthesiology, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Tiago Fernandes da Silva
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil
| | - Filipe P da Costa
- Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Takashi Sudo
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliezer J Barreiro
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lídia Moreira Lima
- National Institute of Science and Technology on Drugs and Medicines, Federal University of Rio de Janeiro, Laboratory of Evaluation and Synthesis of Bioactive Compounds, Center of Health Sciences, Rio de Janeiro, Brazil; Program of Research in Drug Development, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Yang M, Qian C, Liu Y. Suboptimal Treatment of Diabetic Peripheral Neuropathic Pain in the United States. PAIN MEDICINE 2015; 16:2075-83. [DOI: 10.1111/pme.12845] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 05/15/2015] [Accepted: 05/29/2015] [Indexed: 01/16/2023]
|
11
|
Schreiber AK, Nones CFM, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6:432-444. [PMID: 25897354 PMCID: PMC4398900 DOI: 10.4239/wjd.v6.i3.432] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/26/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is a common complication of both type 1 and type 2 diabetes, which affects over 90% of the diabetic patients. Although pain is one of the main symptoms of diabetic neuropathy, its pathophysiological mechanisms are not yet fully known. It is widely accepted that the toxic effects of hyperglycemia play an important role in the development of this complication, but several other hypotheses have been postulated. The management of diabetic neuropathic pain consists basically in excluding other causes of painful peripheral neuropathy, improving glycemic control as a prophylactic therapy and using medications to alleviate pain. First line drugs for pain relief include anticonvulsants, such as pregabalin and gabapentin and antidepressants, especially those that act to inhibit the reuptake of serotonin and noradrenaline. In addition, there is experimental and clinical evidence that opioids can be helpful in pain control, mainly if associated with first line drugs. Other agents, including for topical application, such as capsaicin cream and lidocaine patches, have also been proposed to be useful as adjuvants in the control of diabetic neuropathic pain, but the clinical evidence is insufficient to support their use. In conclusion, a better understanding of the mechanisms underlying diabetic neuropathic pain will contribute to the search of new therapies, but also to the improvement of the guidelines to optimize pain control with the drugs currently available.
Collapse
|
12
|
Ziegler D, Fonseca V. From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J Diabetes Complications 2015; 29:146-56. [PMID: 25239450 DOI: 10.1016/j.jdiacomp.2014.08.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/09/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023]
Abstract
Painful diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus, affecting, by some estimates, up to one quarter of diabetic patients. Since 2010, no fewer than 5 major international treatment guidelines for painful DPN have been issued, and there are meaningful differences among them. Duloxetine, pregabalin, gabapentin, and tricyclic antidepressants are the mainstays of treatment, but the choice of which class or agent to use in any given patient should be informed by patient characteristics. This review seeks to describe the differences among the recently issued guidelines, to assess the evidence on which they are based, and to offer insight into the most appropriate treatment choices based on patient characteristics.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany; Department of Endocrinology and Diabetology, University Hospital, Düsseldorf, Germany.
| | - Vivian Fonseca
- Section of Endocrinology, Tulane University Medical Center, New Orleans LA, USA
| |
Collapse
|
13
|
Tosh DK, Paoletta S, Chen Z, Moss SM, Gao ZG, Salvemini D, Jacobson KA. Extended N(6) substitution of rigid C2-arylethynyl nucleosides for exploring the role of extracellular loops in ligand recognition at the A3 adenosine receptor. Bioorg Med Chem Lett 2014; 24:3302-6. [PMID: 24969016 DOI: 10.1016/j.bmcl.2014.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
2-Arylethynyl-(N)-methanocarba adenosine 5'-methyluronamides containing rigid N(6)-(trans-2-phenylcyclopropyl) and 2-phenylethynyl groups were synthesized as agonists for probing structural features of the A3 adenosine receptor (AR). Radioligand binding confirmed A3AR selectivity and N(6)-1S,2R stereoselectivity for one diastereomeric pair. The environment of receptor-bound, conformationally constrained N(6) groups was explored by docking to an A3AR homology model, indicating specific hydrophobic interactions with the second extracellular loop able to modulate the affinity profile. 2-Pyridylethynyl derivative 18 was administered orally in mice to reduce chronic neuropathic pain in the chronic constriction injury model.
Collapse
Affiliation(s)
- Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Steven M Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| |
Collapse
|