1
|
Latorre-Muro P, Vitale T, Ravichandran M, Zhang K, Palozzi JM, Bennett CF, Lamas-Paz A, Sohn JH, Jackson TD, Jedrychowski M, Gygi SP, Kajimura S, Schmoker A, Jeon H, Eck MJ, Puigserver P. Chaperone-mediated insertion of mitochondrial import receptor TOM70 protects against diet-induced obesity. Nat Cell Biol 2025; 27:130-140. [PMID: 39753947 DOI: 10.1038/s41556-024-01555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/04/2024] [Indexed: 01/18/2025]
Abstract
Outer mitochondrial membrane (OMM) proteins communicate with the cytosol and other organelles, including the endoplasmic reticulum. This communication is important in thermogenic adipocytes to increase the energy expenditure that controls body temperature and weight. However, the regulatory mechanisms of OMM protein insertion are poorly understood. Here the stress-induced cytosolic chaperone PPID (peptidyl-prolyl isomerase D/cyclophilin 40/Cyp40) drives OMM insertion of the mitochondrial import receptor TOM70 that regulates body temperature and weight in obese mice, and respiratory/thermogenic function in brown adipocytes. PPID PPIase activity and C-terminal tetratricopeptide repeats, which show specificity towards TOM70 core and C-tail domains, facilitate OMM insertion. Our results provide an unprecedented role for endoplasmic-reticulum-stress-activated chaperones in controlling energy metabolism through a selective OMM protein insertion mechanism with implications in adaptation to cold temperatures and high-calorie diets.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Tevis Vitale
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Katherine Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jonathan M Palozzi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Arantza Lamas-Paz
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jee Hyung Sohn
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas D Jackson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Anna Schmoker
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Naito T, Tanaka R, Kuroiwa M, Fuse-Hamaoka S, Kime R, Kurosawa Y, Hamaoka T. Effect of Resistance Training on Skeletal Muscle Mass and Brown Adipose Tissue Activity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:335-340. [PMID: 39400844 DOI: 10.1007/978-3-031-67458-7_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Brown adipose tissue (BAT) may be effective in preventing obesity and type II diabetes; however, there are no established reports on exercise-induced changes in BAT. This study focused on BAT variability in women undergoing resistance training (RT) interventions twice weekly for 10 weeks in cold environments. Fifteen participants were recruited: seven were randomly assigned to an RT group and eight to a control (CT) group. To evaluate BAT density (BAT-d), total haemoglobin concentration was measured using near-infrared time-resolved spectroscopy before and after the intervention. There was no significant difference in BAT-d between the CT and RT groups after the intervention (p = 0.921). There was a positive correlation between Δskeletal muscle (SM) mass and ΔBAT-d in the RT group (r = 0.615, p = 0.142). Supraclavicular region-specific thermogenesis (SST) had a significant positive correlation with BAT-d in the RT group (r = 0.889, p = 0.007). These results suggest that RT may be involved in BAT variability, owing to the trend of increased BAT-d with increased ΔSM mass and SST, although there was no significant increase in BAT-d after the RT intervention.
Collapse
Affiliation(s)
- Tamao Naito
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Riki Tanaka
- Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Miyuki Kuroiwa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Sayuri Fuse-Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Ryotaro Kime
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Yuko Kurosawa
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan
| | - Takafumi Hamaoka
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Ortiz GU, de Freitas EC. Physical activity and batokines. Am J Physiol Endocrinol Metab 2023; 325:E610-E620. [PMID: 37819193 DOI: 10.1152/ajpendo.00160.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Brown and beige adipose tissue share similar functionality, being both tissues specialized in producing heat through nonshivering thermogenesis and also playing endocrine roles through the release of their secretion factors called batokines. This review elucidates the influence of physical exercise, and myokines released in response, on the regulation of thermogenic and secretory functions of these adipose tissues and discusses the similarity of batokines actions with physical exercise in the remodeling of adipose tissue. This adipose tissue remodeling promoted by autocrine and paracrine batokines or physical exercise seems to optimize its functionality associated with better health outcomes.
Collapse
Affiliation(s)
- Gabriela Ueta Ortiz
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
| | - Ellen Cristini de Freitas
- Department of Health Sciences, Ribeirao Preto Medical School, University of São Paulo-FMRP USP, São Paulo, Brazil
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, Alcantara JMA, Amaro-Gahete FJ, Martinez-Avila WD, Merchan-Ramirez E, Muñoz-Hernandez V, Osuna-Prieto FJ, Jurado-Fasoli L, Xu H, Ortiz-Alvarez L, Arias-Tellez MJ, Mendez-Gutierrez A, Labayen I, Ortega FB, Schönke M, Rensen PCN, Aguilera CM, Llamas-Elvira JM, Gil Á, Ruiz JR. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun 2022; 13:5259. [PMID: 36097264 PMCID: PMC9467993 DOI: 10.1038/s41467-022-32502-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/02/2022] [Indexed: 01/06/2023] Open
Abstract
Exercise modulates both brown adipose tissue (BAT) metabolism and white adipose tissue (WAT) browning in murine models. Whether this is true in humans, however, has remained unknown. An unblinded randomized controlled trial (ClinicalTrials.gov ID: NCT02365129) was therefore conducted to study the effects of a 24-week supervised exercise intervention, combining endurance and resistance training, on BAT volume and activity (primary outcome). The study was carried out in the Sport and Health University Research Institute and the Virgen de las Nieves University Hospital of the University of Granada (Spain). One hundred and forty-five young sedentary adults were assigned to either (i) a control group (no exercise, n = 54), (ii) a moderate intensity exercise group (MOD-EX, n = 48), or (iii) a vigorous intensity exercise group (VIG-EX n = 43) by unrestricted randomization. No relevant adverse events were recorded. 97 participants (34 men, 63 women) were included in the final analysis (Control; n = 35, MOD-EX; n = 31, and VIG-EX; n = 31). We observed no changes in BAT volume (Δ Control: −22.2 ± 52.6 ml; Δ MOD-EX: −15.5 ± 62.1 ml, Δ VIG-EX: −6.8 ± 66.4 ml; P = 0.771) or 18F-fluorodeoxyglucose uptake (SUVpeak Δ Control: −2.6 ± 3.1 ml; Δ MOD-EX: −1.2 ± 4.8, Δ VIG-EX: −2.2 ± 5.1; p = 0.476) in either the control or the exercise groups. Thus, we did not find any evidence of an exercise-induced change on BAT volume or activity in young sedentary adults. Exercise modulates brown adipose tissue (BAT) metabolism in murine models. Here the authors report that there is no evidence that 24 weeks of supervised exercise training modulates BAT volume or function in young sedentary adults in the ACTIBATE randomized controlled trial.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Guillermo Sanchez-Delgado
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Francisco M Acosta
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Juan M A Alcantara
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Amaro-Gahete
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,EFFECTS-262 Research Group, Department of Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Wendy D Martinez-Avila
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Victoria Muñoz-Hernandez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Francisco J Osuna-Prieto
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Center (CIDAF), Granada, Spain
| | - Lucas Jurado-Fasoli
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Huiwen Xu
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - María J Arias-Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Nutrition, Faculty of Medicine, University of Chile, Independence, 1027, Santiago, Chile
| | - Andrea Mendez-Gutierrez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Campus de Arrosadía, 31008, Pamplona, Spain
| | - Francisco B Ortega
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - José M Llamas-Elvira
- Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,Nuclear Medicine Service, Virgen de las Nieves University Hospital, Granada, Spain.,Nuclear Medicine Department, Biohealth Research Institute in Granada, Granada, Spain
| | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jonatan R Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria, ibs.Granada, Granada, Spain.
| |
Collapse
|
5
|
Wu M, Huang Y, Zhu Q, Zhu X, Xue L, Xiong J, Chen Y, Wu C, Guo Y, Li Y, Wu M, Wang S. Adipose tissue and ovarian aging: Potential mechanism and protective strategies. Ageing Res Rev 2022; 80:101683. [PMID: 35817297 DOI: 10.1016/j.arr.2022.101683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Ovarian aging occurs approximately 10 years prior to the natural age-associated functional decline of other organ systems. With the increase of life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Therefore, understanding the causes and molecular mechanisms of ovarian aging is very essential for the inhibition of age-related diseases and the promotion of health and longevity in women. Recently, studies have revealed an association between adipose tissue (AT) and ovarian aging. Alterations in the function and quantity of AT have profound consequences on ovarian function because AT is central for follicular development, lipid metabolism, and hormonal regulation. Moreover, the interplay between AT and the ovary is bidirectional, with ovary-derived signals directly affecting AT biology. In this review, we summarize the current knowledge of the complex molecular mechanisms controlling the crosstalk between the AT and ovarian aging, and further discuss how therapeutic targeting of the AT can delay ovarian aging.
Collapse
Affiliation(s)
- Meng Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Chuqing Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yican Guo
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Yinuo Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| | - Shixuan Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Christoffersen BØ, Sanchez‐Delgado G, John LM, Ryan DH, Raun K, Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring) 2022; 30:841-857. [PMID: 35333444 PMCID: PMC9310705 DOI: 10.1002/oby.23374] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
New appetite-regulating antiobesity treatments such as semaglutide and agents under investigation such as tirzepatide show promise in achieving weight loss of 15% or more. Energy expenditure, fat oxidation, and lean mass preservation are important determinants of weight loss and weight-loss maintenance beyond appetite regulation. This review discusses prior failures in clinical development of weight-loss drugs targeting energy expenditure and explores novel strategies for targeting energy expenditure: mitochondrial proton leak, uncoupling, dynamics, and biogenesis; futile calcium and substrate cycling; leptin for weight maintenance; increased sympathetic nervous system activity; and browning of white fat. Relevant targets for preserving lean mass are also reviewed: growth hormone, activin type II receptor inhibition, and urocortin 2 and 3. We endorse moderate modulation of energy expenditure and preservation of lean mass in combination with efficient appetite reduction as a means of obtaining a significant, safe, and long-lasting weight loss. Furthermore, we suggest that the regulatory guidelines should be revisited to focus more on the quality of weight loss and its maintenance rather than the absolute weight loss. Commitment to this research focus both from a scientific and from a regulatory point of view could signal the beginning of the next era in obesity therapies.
Collapse
Affiliation(s)
| | | | - Linu Mary John
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Donna H. Ryan
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| | - Kirsten Raun
- Global Obesity and Liver Disease ResearchGlobal Drug DiscoveryNovo Nordisk A/SMåløvDenmark
| | - Eric Ravussin
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLouisianaUSA
| |
Collapse
|
7
|
Mendez-Gutierrez A, Aguilera CM, Osuna-Prieto FJ, Martinez-Tellez B, Prados MCR, Acosta FM, Llamas-Elvira JM, Ruiz JR, Sanchez-Delgado G. Exercise-induced changes on exerkines that might influence brown adipose tissue metabolism in young sedentary adults. Eur J Sport Sci 2022; 23:625-636. [PMID: 35152857 DOI: 10.1080/17461391.2022.2040597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In rodents, exercise alters the plasma concentration of exerkines that regulate white adipose tissue (WAT) browning or brown adipose tissue (BAT) metabolism. This study aims to analyse the acute and chronic effect of exercise on the circulating concentrations of 16 of these exerkines in humans. Ten young sedentary adults (6 female) performed a maximum walking effort test and a resistance exercise session. The plasma concentration of 16 exerkines was assessed before, and 3, 30, 60, and 120 minutes after exercise. Those exerkines modified by exercise were additionally measured in another 28 subjects (22 women). We also measured the plasma concentrations of the exerkines before and after a 24-week exercise program (endurance + resistance; 3-groups: control, moderate-intensity and vigorous-intensity) in 110 subjects (75 women). Endurance exercise acutely increased the plasma concentration of lactate, norepinephrine, brain-derived neurotrophic factor, interleukin 6, and follistatin-like protein 1 (3 minutes after exercise), and musclin and fibroblast growth factor 21 (30 and 60 minutes after exercise), decreasing the plasma concentration of leptin (30 minutes after exercise). Adiponectin, atrial natriuretic peptide (ANP), β-aminoisobutyric acid, meteorin-like, follistatin, pro-ANP, irisin and myostatin were not modified or not detectable. The resistance exercise session increased the plasma concentration of lactate 3 minutes after exercise. Chronic exercise did not alter the plasma concentration of these exerkines. In sedentary young adults, acute endurance exercise releases to the bloodstream exerkines that regulate BAT metabolism and WAT browning. In contrast, neither a low-volume resistance exercise session nor a 24-week training program modified plasma levels of these molecules.Trial registration: ClinicalTrials.gov identifier: NCT02365129..
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, 28029, Spain
| | - Concepción M Aguilera
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Madrid, 28029, Spain
| | - Francisco J Osuna-Prieto
- Department of Analytical Chemistry, University of Granada; Technology Centre for Functional Food Research and Development (CIDAF), Granada, 18100, Spain.,PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Department of Medicine, Leiden University Medical Center, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicina, Leiden, 2333 ZA, Netherlands
| | - M Cruz Rico Prados
- Department of Biochemistry and Molecular Biology II, "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Biomedical Research Centre (CIBM), University of Granada, Granada, 18016, Spain.,RETIC SAMID. RETIC-SALUD Materno infantil y del desarrollo, Spain
| | - Francisco M Acosta
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Turku PET Centre, University of Turku. Turku PET Centre, Turku University Hospital, Turku, 20520, Finland
| | - Jose M Llamas-Elvira
- Biohealth Research Institute in Granada (ibs. GRANADA), Granada, 18012, Spain.,Nuclear Medicine Service, "Virgen de las Nieves" University Hospital, Granada, 18014, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Crta. Alfacar s/n, Granada, 18071 Spain.,Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| |
Collapse
|
8
|
Pan R, Chen Y. Management of Oxidative Stress: Crosstalk Between Brown/Beige Adipose Tissues and Skeletal Muscles. Front Physiol 2021; 12:712372. [PMID: 34603076 PMCID: PMC8481590 DOI: 10.3389/fphys.2021.712372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Exercise plays an important role in the physiology, often depending on its intensity, duration, and frequency. It increases the production of reactive oxygen species (ROS). Meanwhile, it also increases antioxidant enzymes involved in the oxidative damage defense. Prolonged, acute, or strenuous exercise often leads to an increased radical production and a subsequent oxidative stress in the skeletal muscles, while chronic regular or moderate exercise results in a decrease in oxidative stress. Notably, under pathological state, such as obesity, aging, etc., ROS levels could be elevated in humans, which could be attenuated by proper exercise. Significantly, exercise stimulates the development of beige adipose tissue and potentially influence the function of brown adipose tissue (BAT), which is known to be conducive to a metabolic balance through non-shivering thermogenesis (NST) and may protect from oxidative stress. Exercise-related balance of the ROS levels is associated with a healthy metabolism in humans. In this review, we summarize the integrated effects of exercise on oxidative metabolism, and especially focus on the role of brown and beige adipose tissues in this process, providing more evidence and knowledge for a better management of exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, China
| |
Collapse
|
9
|
Kato H, Ario T, Kishida T, Tadano M, Osawa S, Maeda Y, Takakura H, Izawa T. Homeobox A5 and C10 genes modulate adaptation of brown adipose tissue during exercise training in juvenile rats. Exp Physiol 2021; 106:463-474. [PMID: 33369800 DOI: 10.1113/ep089114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of this study? Exercise can stimulate brown adipose tissue (BAT) with subsequent increase in uncoupling protein 1 expression and mitochondrial biogenesis. In that case, do BAT-specific Hox genes modify BAT functioning and cause uncoupling protein expression changes due to exercise? What is the main finding and its importance? Exercise enhanced brown adipocyte markers, with significant upregulation of HoxA5 and downregulation of HoxC10 mRNA expression in rat BAT. HoxA5 and HoxC10 are thus likely to play distinct roles in exercise-induced changes in BAT markers during the early postnatal period. These findings provide new insight into the mechanisms underlying exercise-induced changes in BAT function. ABSTRACT Brown adipose tissue (BAT) recruitment is involved in increased energy expenditure associated with cold exposure and exercise training. We explored whether exercise training induced changes in expression levels of brown adipocyte-selective factors and Homeobox (Hox) genes during the post-weaning growth period of male Wistar rats. Relative to total body weight, BAT weights alone were lower in exercise-trained (EX) rats compared to sedentary control (SED) rats. mRNA expression of HoxA5 was higher and that of HoxC10 was lower in EX rats than in SED rats, accompanied by both higher citrate synthase activity and protein expression levels for uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) α, and PPARγ-coactivator (PGC)-1α. HoxA5 knockdown with siRNA reduced the expression of PR-domain containing 16 (Prdm16), cell death-inducing DNA fragmentation factor-α-like effector A (Cidea) gene, type 2 deiodinase mRNA, and PRDM16 protein. Comparatively, HoxC10 knockdown with siRNA enhanced mRNA expression of Prdm16, Pparα and Pgc1α and protein expression of UCP1, PPARα and PGC1α in brown adipocytes. The stimulation of brown adipocytes with isoproterenol, a β-adrenoceptor agonist, caused a phenomenon similar to the effect of exercise training on the genes tested: upregulation of HoxA5 mRNA, downregulation of HoxC10 mRNA, and increased protein expression for UCP1 and PGC1α. Collectively, HoxA5 and HoxC10 may have unique functions that contribute to modulating the expression of BAT-selective markers in BAT of juvenile rats during exercise training. The study findings regarding activation and recruitment of BAT during exercise training have implications for anti-obesity management.
Collapse
Affiliation(s)
- Hisashi Kato
- Faculty, Doshisha University, Kyotanabe, Kyoto, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Takuto Ario
- Faculty, Doshisha University, Kyotanabe, Kyoto, Japan
| | | | - Manami Tadano
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | | | - Tetsuya Izawa
- Faculty, Doshisha University, Kyotanabe, Kyoto, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|