1
|
Zhang Y, Zhu S. The AutoStrain LV technique is a sensitive method for detecting subclinical left ventricular dysfunction in patients with obstructive sleep apnea syndrome. Medicine (Baltimore) 2025; 104:e42309. [PMID: 40324252 PMCID: PMC12055174 DOI: 10.1097/md.0000000000042309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/25/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is strongly associated with multiple cardiovascular diseases, however, early detection of subclinical myocardial damage is a challenge. We aimed to compare the sensitivity of AutoStrain LV technology versus conventional echocardiography for assessing left ventricular (LV) impairment in patients with subclinical OSAS and to identify sensitive echocardiographic indicators of LV injury. Classifying 126 qualified participants based on their apnea-hypopnea index (AHI), we formed control, mild, moderate, and severe OSAS categories. LV global longitudinal strain (LVGLS) was evaluated by AutoStrain LV technique. Conventional two-dimensional echocardiography was used to measure different factors including LV end-diastolic diameter, LV end-systolic diameter, interventricular septum diameter, LV posterior wall diameter, and LV functional shortening. LV ejection fraction was calculated by modified biplane Simpson method, and the Doppler ultrasound was used to measure the LV diastolic function indices E/A and E/E'. We calculated the correlations between these ultrasound parameters and the AHI. Although LV ejection fraction and LV functional shortening are normal, the LVGLS in the OSAS group decreased with the severity of the disease (P < .001). The values of E/A in the mild, moderate, and severe OSAS groups, as well as the values of E/E' in the mild and severe OSAS groups, showed significant differences compared to the control group, but no significant differences were found between different OSAS subgroups. The IVST and LVPWT values in the moderate and severe OSAS groups were higher than those in the control group and mild OSAS group, but there were no significant differences between the other groups. Conventional echocardiographic parameters did not change with the severity of the disease. Correlation analysis showed that LVGLS had the strongest correlation with AHI (r = -0.732, P < .001). Compared with conventional echocardiography, AutoStrain LV technology has a higher sensitivity for monitoring LV function impairment in patients with subclinical OSAS.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shangyong Zhu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Oddershede JK, Meklenborg IK, Bastholt L, Guldbrandt LM, Schmidt H, Friis RB. Cardiotoxicity in patients with metastatic melanoma treated with BRAF/MEK inhibitors: a real-world analysis of incidence, risk factors, and reversibility. Acta Oncol 2025; 64:507-515. [PMID: 40223207 PMCID: PMC12012651 DOI: 10.2340/1651-226x.2025.42567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/01/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND BRAF/MEK inhibitors (BRAFi/MEKi) improve outcome in patients with BRAF-mutated metastatic melanoma but are associated with cardiotoxicity, leading to a decline in left ventricular ejection fraction (LVEF). This study aimed to evaluate the incidence, timeline, risk factors, and reversibility of BRAFi/MEKi-induced cardiotoxicity in a real-world setting. PATIENTS/MATERIALS AND METHODS Patients with metastatic melanoma (n = 170) treated with Encorafenib/Binimetinib, Vemurafenib/Cobimetinib, or Dabrafenib/Trametinib at Aarhus and Odense University Hospital, Denmark, from 2015 to 2023 were included. Cardiac function was assessed at baseline and every 3 months during treatment with either echocardiograms or multigated acquisition scans. Cardiotoxicity was defined as a reduction of LVEF by ≥10 percentage points (pp) to an LVEF < 50% (Major cardiotoxicity) or a reduction of LVEF by ≥15 pp but remaining > 50% (Minor cardiotoxicity). RESULTS Cardiotoxicity occurred in 21% of patients, with 14% experiencing major cardiotoxicity. The mean time to LVEF decline was 187 days, with 92% of major cardiotoxicity cases occurring within the first year. Cardiotoxicity was reversible in 79% of patients following dose reduction, treatment pauses, heart failure therapy, or continued treatment with monitoring. Baseline atrial fibrillation (odds ratio 13.67, p = 0.008) was identified as a risk factor for major cardiotoxicity. INTERPRETATION BRAFi/MEKi-induced cardiotoxicity is a significant but manageable complication, often reversible with timely interventions. Routine LVEF monitoring is recommended. The majority (92%) of major cardiac events were diagnosed within the first year of treatment, which might warrant a discontinuation of routine LVEF monitoring after 1 year of BRAFi/MEKi treatment.
Collapse
Affiliation(s)
| | - Ida K Meklenborg
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Henrik Schmidt
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Rasmus B Friis
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
3
|
Long M, Alnoury M, Udupa JK, Tong Y, Wu C, Poole N, Mannikeri S, Ky B, Feigenberg SJ, Zou JW, O'Reilly S, Torigian DA. Prediction of Radiation Therapy Induced Cardiovascular Toxicity from Pretreatment CT Images in Patients with Thoracic Malignancy via an Optimal Biomarker Approach. Acad Radiol 2025; 32:1895-1905. [PMID: 39870564 PMCID: PMC11981848 DOI: 10.1016/j.acra.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
RATIONALE AND OBJECTIVES Cardiovascular toxicity is a well-known complication of thoracic radiation therapy (RT), leading to increased morbidity and mortality, but existing techniques to predict cardiovascular toxicity have limitations. Predictive biomarkers of cardiovascular toxicity may help to maximize patient outcomes. METHODS The machine learning optimal biomarker (OBM) method was employed to predict development of cardiotoxicity (based on serial echocardiographic measurements of left ventricular ejection fraction and longitudinal strain) from computed tomography (CT) images in patients with thoracic malignancy undergoing RT. Manual segmentations of 10 cardiovascular objects of interest were performed on pre-treatment non-contrast-enhanced CT simulation images in 125 patients with thoracic malignancy (41 who developed cardiotoxicity and 84 who did not after RT). 1078 features describing morphology, image intensity, and texture for each of these objects were extracted and the top 5 features among them that were most uncorrelated and showed the best ability to discriminate between cardiotoxicity/ no cardiotoxicity were determined. The best combination among all possible combinations among these 5 features that yielded the highest accuracy of prediction on a training data set was selected, an SVM classifier was then trained on this combination, and tested for prediction accuracy on an independent data set. Prediction accuracy was quantified for the optimal features derived from each object. RESULTS The best feature combination based on 5 CT-based features derived from the left ventricle had the highest testing prediction accuracy of 0.88 among all objects. Prediction accuracies over all objects ranged from 0.76-0.88. Heart, Left Atrium, Aortic Arch, Thoracic Aorta, and Descending Thoracic Aorta showed the next best accuracy of 0.84. Most optimal features were texture properties based on the co-occurrence matrix. CONCLUSION It is feasible to predict future cardiotoxicity following RT with high accuracy in individual patients with thoracic malignancy from available pre-treatment CT images via machine learning techniques.
Collapse
Affiliation(s)
- Mujun Long
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, PR China (M.L.); Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Mostafa Alnoury
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Jayaram K Udupa
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Yubing Tong
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Caiyun Wu
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Nicholas Poole
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Sutirth Mannikeri
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.)
| | - Bonnie Ky
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA 19104 (B.K.)
| | - Steven J Feigenberg
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (S.J.F., J.W.Z., S.O.)
| | - Jennifer W Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (S.J.F., J.W.Z., S.O.)
| | - Shannon O'Reilly
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104 (S.J.F., J.W.Z., S.O.)
| | - Drew A Torigian
- Medical Image Processing Group, 602 Goddard building, 3710 Hamilton Walk, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 (M.L., M.A., J.K.U., Y.T., C.W., N.P., S.M., D.A.T.).
| |
Collapse
|
4
|
Kappel RH, Precht H, Christensen TQ, Hess S, Kusk MW. Software Discrepancies in Radionuclide-Derived Left Ventricular Ejection Fraction. J Nucl Med Technol 2025; 53:36-43. [PMID: 39814461 DOI: 10.2967/jnmt.124.268665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gated equilibrium radionuclide angiography (ERNA), or multigated acquisition scanning, is a well-established technique to monitor left ventricular ejection fraction (LVEF) in patients treated with potentially cardiotoxic chemotherapy. To determine the results of a true change in LVEF, low inter- and intrareader variability is important. The aim of this study was to investigate inter- and intrareader variability in LVEF measurements using 2 different commercially available software packages with cardiac MR (CMR) as a reference standard. Methods: In 46 ERNA scans, LVEF was measured by 2 experienced nuclear medicine technologists, using the 2 software packages Xeleris and Corridor4DM. All patients had CMR performed within 1.5 h from ERNA. CMR-derived LVEF was measured by a cardiologist using cvi42 software. Eight patients were reanalyzed to investigate intrareader variability. Bland-Altman analysis was used to assess agreement between readers and software. Repeated-measures ANOVA was used to assess interactions between readers and software. Differences in mean LVEF were compared using a t test. The Lin concordance correlation coefficient (CCC) was used to test LVEF agreement between software packages and readers and the reference CMR results. Results: Corridor4DM had a significantly higher mean LVEF than did Xeleris. No significant interreader difference was observed within the same software. ANOVA found that readers did not influence LVEFs. The CCC between software packages was similar for both readers, at 0.409 for reader 1 and 0.418 for reader 2. Both software packages showed a significant LVEF bias compared with CMR (4% for Xeleris vs. 11% for Corridor4DM). For both readers, the CCC for correlation with MRI was higher for Xeleris (0.438/0.572) than for Corridor4DM (0.257/0.244). Conclusion: A high degree of variability was found between the 2 different software packages for the calculation of LVEF. No significant difference in LVEF was found between readers using the same software. Corridor4DM gave higher LVEF estimates than did Xeleris. Our findings suggest that different software programs for assessing LVEF in ERNA examinations are not interchangeable. The utmost caution is recommended if switching between different types of software.
Collapse
Affiliation(s)
- Rune H Kappel
- Faculty of Health Science, University of Southern Denmark, Odense, Denmark;
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Radiography Education, UCL University College, Odense, Denmark
- Department of Nuclear Medicine, Lillebaelt Hospital-University Hospital of Southern Denmark, Vejle, Denmark
| | - Helle Precht
- Radiography Education, UCL University College, Odense, Denmark
- Department of Radiology, Lillebaelt Hospital-University Hospital of Southern Denmark, Kolding, Denmark
- Health Sciences Research Centre, UCL University College, Odense, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Discipline of Medical Imaging and Radiation Therapy, Cork University College, Cork, Ireland
| | - Thomas Q Christensen
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Engineering, Region of Southern Denmark, Esbjerg, Denmark
| | - Søren Hess
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; and
| | - Martin W Kusk
- Department of Radiology and Nuclear Medicine, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Radiography and Diagnostic Imaging, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Bloom MW, Vo JB, Rodgers JE, Ferrari AM, Nohria A, Deswal A, Cheng RK, Kittleson MM, Upshaw JN, Palaskas N, Blaes A, Brown SA, Ky B, Lenihan D, Maurer MS, Fadol A, Skurka K, Cambareri C, Chauhan C, Barac A. Cardio-Oncology and Heart Failure: a Scientific Statement From the Heart Failure Society of America. J Card Fail 2025; 31:415-455. [PMID: 39419165 DOI: 10.1016/j.cardfail.2024.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Heart failure and cancer remain 2 of the leading causes of morbidity and mortality, and the 2 disease entities are linked in a complex manner. Patients with cancer are at increased risk of cardiovascular complications related to the cancer therapies. The presence of cardiomyopathy or heart failure in a patient with new cancer diagnosis portends a high risk for adverse oncology and cardiovascular outcomes. With the rapid growth of cancer therapies, many of which interfere with cardiovascular homeostasis, heart failure practitioners need to be familiar with prevention, risk stratification, diagnosis, and management strategies in cardio-oncology. This Heart Failure Society of America statement addresses the complexities of heart failure care among patients with active cancer diagnoses and cancer survivors. Risk stratification, monitoring and management of cardiotoxicity are presented across stages A through D heart failure, with focused discussion on heart failure with preserved ejection fraction and special populations, such as survivors of childhood and young-adulthood cancers. We provide an overview of the shared risk factors between cancer and heart failure, highlighting heart failure as a form of cardiotoxicity associated with many different cancer therapeutics. Finally, we discuss disparities in the care of patients with cancer and cardiac disease and present a framework for a multidisciplinary-team approach and critical collaboration among heart failure, oncology, palliative care, pharmacy, and nursing teams in the management of these complex patients.
Collapse
Affiliation(s)
| | - Jacqueline B Vo
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | - Jo E Rodgers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC
| | - Alana M Ferrari
- Division of Hematology/ Oncology, University of Virginia Health, Charlottesville, VA
| | - Anju Nohria
- Cardio-Oncology Program, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, WA
| | - Michelle M Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Nicolas Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne Blaes
- Division of Hematology/Oncology/Transplantation, University of Minnesota, Minneapolis, MN
| | - Sherry-Ann Brown
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; Research Collaborator, Mayo Clinic, Rochester, MN
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lenihan
- Saint Francis Healthcare, Cape Girardeau, MO and the International Cardio-Oncology Society, Tampa, FL
| | - Mathew S Maurer
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | | | | | - Christine Cambareri
- Clinical Oncology Pharmacist, Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
| | | | - Ana Barac
- Department of Cardiology, Inova Schar Heart and Vascular, Inova Schar Cancer, Falls Church, VA
| |
Collapse
|
6
|
Nolin-Lapalme A, Avram R. Invited Commentary: Beyond the Waveform: Artificial Intelligence-Enhanced Electrocardiogram for Left Ventricular Ejection Fraction Prediction. Can J Cardiol 2025; 41:291-293. [PMID: 39631501 DOI: 10.1016/j.cjca.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Alexis Nolin-Lapalme
- Montreal Heart Institute, Montréal, Québec, Canada; Mila-Québec Artificial Intelligence Institute, Montréal, Québec, Canada; Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; HeartWise.ai, Montreal Heart Institute, Montréal, Québec, Canada.
| | - Robert Avram
- Montreal Heart Institute, Montréal, Québec, Canada; Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada; HeartWise.ai, Montreal Heart Institute, Montréal, Québec, Canada
| |
Collapse
|
7
|
Oikonomou EK, Sangha V, Dhingra LS, Aminorroaya A, Coppi A, Krumholz HM, Baldassarre LA, Khera R. Artificial Intelligence-Enhanced Risk Stratification of Cancer Therapeutics-Related Cardiac Dysfunction Using Electrocardiographic Images. Circ Cardiovasc Qual Outcomes 2025; 18:e011504. [PMID: 39221857 PMCID: PMC11745701 DOI: 10.1161/circoutcomes.124.011504] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. We aimed to examine an application of artificial intelligence (AI) to ECG images as a surrogate for imaging risk biomarkers and its association with early CTRCD. METHODS Across a US-based health system (2013-2023), we identified 1550 patients (aged, 60 [interquartile range, 51-69] years, 1223 [78.9%] women) without cardiomyopathy who received anthracyclines or trastuzumab for breast cancer or non-Hodgkin lymphoma and had ECG performed ≤12 months before treatment. We deployed a validated AI model of left ventricular systolic dysfunction to baseline ECG images and defined low-, intermediate-, and high-risk groups based on AI-ECG left ventricular systolic dysfunction probabilities of <0.01, 0.01 to 0.1, and ≥0.1 (positive screen), respectively. We explored the association with early CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction <50%), or left ventricular ejection fraction <40%, up to 12 months after treatment. In a mechanistic analysis, we assessed the association between global longitudinal strain and AI-ECG left ventricular systolic dysfunction probabilities in studies performed within 15 days of each other. RESULTS Among 1550 patients without known cardiomyopathy (median follow-up, 14.1 [interquartile range, 13.4-17.1] months), 83 (5.4%), 562 (36.3%), and 905 (58.4%) were classified as high, intermediate, and low risk, respectively, by baseline AI-ECG. A high-risk versus low-risk AI-ECG screen (≥0.1 versus <0.01) was associated with a 3.4-fold and 13.5-fold higher incidence of CTRCD (adjusted hazard ratio, 3.35 [95% CI, 2.25-4.99]) and left ventricular ejection fraction <40% (adjusted hazard ratio, 13.52 [95% CI, 5.06-36.10]), respectively. Post hoc analyses supported longitudinal increases in AI-ECG probabilities within 6 to 12 months of a CTRCD event. Among 1428 temporally linked echocardiograms and ECGs, AI-ECG left ventricular systolic dysfunction probabilities were associated with worse global longitudinal strain (global longitudinal strain, -19% [interquartile range, -21% to -17%] for probabilities <0.1, to -15% [interquartile range, -15% to -9%] for ≥0.5 [P<0.001]). CONCLUSIONS AI applied to baseline ECG images can stratify the risk of early CTRCD associated with anthracycline or trastuzumab exposure in the setting of breast cancer and non-Hodgkin lymphoma therapy.
Collapse
Affiliation(s)
- Evangelos K. Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
| | - Veer Sangha
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
- Department of Engineering Science, University of Oxford, United Kingdom (V.S.)
| | - Lovedeep S. Dhingra
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT (A.C., H.M.K., R.K.)
| | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT (A.C., H.M.K., R.K.)
| | - Lauren A. Baldassarre
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine (E.K.O., V.S., L.S.D., A.A., H.M.K., L.A.B., R.K.), Yale School of Medicine, New Haven, CT
- Section of Biomedical Informatics and Data Science (R.K.), Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT (A.C., H.M.K., R.K.)
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT (R.K.)
| |
Collapse
|
8
|
Scalia IG, Gheyath B, Tamarappoo BK, Moudgil R, Otton J, Pereyra M, Narayanasamy H, Larsen C, Herrmann J, Arsanjani R, Ayoub C. Chemotherapy Related Cardiotoxicity Evaluation-A Contemporary Review with a Focus on Cardiac Imaging. J Clin Med 2024; 13:3714. [PMID: 38999280 PMCID: PMC11242267 DOI: 10.3390/jcm13133714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The long-term survivorship of patients diagnosed with cancer has improved due to accelerated detection and rapidly evolving cancer treatment strategies. As such, the evaluation and management of cancer therapy related complications has become increasingly important, including cardiovascular complications. These have been captured under the umbrella term "cardiotoxicity" and include left ventricular dysfunction and heart failure, acute coronary syndromes, valvular abnormalities, pericardial disease, arrhythmia, myocarditis, and vascular complications. These complications add to the burden of cardiovascular disease (CVD) or are risk factors patients with cancer treatment are presenting with. Of note, both pre- and newly developing CVD is of prognostic significance, not only from a cardiovascular perspective but also overall, potentially impacting the level of cancer therapy that is possible. Currently, there are varying recommendations and practices regarding CVD risk assessment and mitigating strategies throughout the cancer continuum. This article provides an overview on this topic, in particular, the role of cardiac imaging in the care of the patient with cancer. Furthermore, it summarizes the current evidence on the spectrum, prevention, and management of chemotherapy-related adverse cardiac effects.
Collapse
Affiliation(s)
- Isabel G. Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Bashaer Gheyath
- Department of Imaging, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Balaji K. Tamarappoo
- Division of Cardiology, Banner University Medical Center, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Rohit Moudgil
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James Otton
- Clinical School, St. Vincent’s Hospital, UNSW, Sydney, NSW 2010, Australia
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Hema Narayanasamy
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Carolyn Larsen
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ 85054, USA; (I.G.S.)
| |
Collapse
|
9
|
Nolan MT, Pathan F, Nott L, Black A, Pointon O, Marwick TH. Comparison of Echocardiography and Multi-Planar Gated Acquisition Scans for Predicting Cancer-Treatment-Related Cardiovascular Dysfunction. Heart Lung Circ 2024; 33:693-703. [PMID: 38692983 DOI: 10.1016/j.hlc.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Current guidelines recommend using sequential cardiac imaging to monitor for cancer treatment-related cardiac dysfunction (CTRCD) in patients undergoing potentially cardiotoxic chemotherapy. Multiple different imaging cardiac modalities are available and there are few prospective head-to-head comparative studies to help guide treatment. OBJECTIVES To perform an exploratory prospective cohort study of "real-world" CTRCD comparing multigated acquisition nuclear ventriculography (MUGA) at the referring cancer specialist's discretion with a novel echocardiographic strategy at an Australian tertiary hospital. METHOD Patients were recruited from haematology and oncology outpatient clinics if they were scheduled for treatment with anthracyclines and/or trastuzumab. Patients underwent simultaneous MUGA-based cardiac imaging (conventional strategy) at a frequency according to evidenced-based guidelines in addition to researcher-conducted echocardiographic imaging. The echocardiographic imaging was performed in all patients at time points recommended by international society guidelines. Outcomes included adherence to guideline recommendations, concordance between MUGA and echocardiographic left ventricular ejection fraction (LVEF) measurements, and detection of cardiac dysfunction (defined as >5% LVEF decrement from baseline by three-dimensional [3D]-LVEF). A secondary end point was accuracy of global longitudinal strain in predicting cardiac dysfunction. RESULTS In total, 35 patients were recruited, including 15 with breast cancer, 19 with haematological malignancy, and one with gastric cancer. MUGA and echocardiographic LVEF measurements correlated poorly with limits of agreement of 30% between 3D-LVEF and MUGA-LVEF and 37% for 3D-LVEF and MUGA-LVEF. Only one case (2.9%) of CTRCD was diagnosed by MUGA, compared with 12 (34.2%) cases by echocardiography. Four (4) patients had >10% decrement in 3D-LVEF that was not detected by MUGA. Global longitudinal strain at 2 months displayed significant ability to predict CTRCD (area under the curve, 0.75, 95% confidence interval, 0.55-0.94). CONCLUSIONS The MUGA correlates poorly with echocardiographic assessment with substantial discrepancy between MUGA and echocardiography in CTRCD diagnosis. Echocardiographic and MUGA imaging strategies should not be considered equivalent for imaging cancer patients, and a single imaging modality should ideally be used per patient to prevent misdiagnosis by inter-modality variation These findings should be considered hypothesis-generating and require confirmation with larger studies.
Collapse
Affiliation(s)
- Mark T Nolan
- Baker Heart and Diabetes Institute, Melbourne, Vic, Australia.
| | - Faraz Pathan
- Department of Medicine, The University of Sydney Nepean Clinical School, Kingswood, NSW, Australia
| | - Louise Nott
- Department of Medical Oncology, Royal Hobart Hospital, Hobart, Tas, Australia
| | - Allison Black
- Department of Medical Oncology, Royal Hobart Hospital, Hobart, Tas, Australia
| | - Owen Pointon
- Department of Nuclear Medicine, Royal Hobart Hospital, Hobart, Tas, Australia
| | - Thomas H Marwick
- Department of Cardiovascular Imaging, Baker Heart and Diabetes Institute, Melbourne, Vic, Australia
| |
Collapse
|
10
|
Mandala E, Lafara K, Kokkinovasilis D, Kalafatis I, Koukoulitsa V, Katodritou E, Lafaras C. Applied Cardio-Oncology in Hematological Malignancies: A Narrative Review. Life (Basel) 2024; 14:524. [PMID: 38672794 PMCID: PMC11050930 DOI: 10.3390/life14040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Applied cardio-oncology in hematological malignancies refers to the integration of cardiovascular care and management for patients with blood cancer, particularly leukemia, lymphoma, and multiple myeloma. Hematological cancer therapy-related cardiotoxicity deals with the most common cardiovascular complications of conventional chemotherapy, targeted therapy, immunotherapy, chimeric antigen receptor T (CAR-T) cell and tumor-infiltrating lymphocyte therapies, bispecific antibodies, and hematopoietic stem cell transplantation. This narrative review focuses on hematological cancer-therapy-related cardiotoxicity's definition, risk stratification, multimodality imaging, and use of cardiac biomarkers to detect clinical and/or subclinical myocardial dysfunction and electrical instability. Moreover, the most common cardiotoxic profiles of the main drugs and/or therapeutic interventions in patients with hematological malignancies are described thoroughly.
Collapse
Affiliation(s)
- Evdokia Mandala
- Division of Hematology, Forth Department of Medicine, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.M.); (K.L.); (D.K.)
| | - Kyranna Lafara
- Division of Hematology, Forth Department of Medicine, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.M.); (K.L.); (D.K.)
| | - Dimitrios Kokkinovasilis
- Division of Hematology, Forth Department of Medicine, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (E.M.); (K.L.); (D.K.)
| | - Ioannis Kalafatis
- Cardiology-Oncology Unit, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece; (I.K.); (V.K.)
| | - Vasiliki Koukoulitsa
- Cardiology-Oncology Unit, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece; (I.K.); (V.K.)
| | - Eirini Katodritou
- Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece;
| | - Christos Lafaras
- Cardiology-Oncology Unit, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece; (I.K.); (V.K.)
| |
Collapse
|
11
|
Oikonomou EK, Sangha V, Dhingra LS, Aminorroaya A, Coppi A, Krumholz HM, Baldassarre LA, Khera R. Artificial intelligence-enhanced risk stratification of cancer therapeutics-related cardiac dysfunction using electrocardiographic images. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.12.24304047. [PMID: 38562897 PMCID: PMC10984033 DOI: 10.1101/2024.03.12.24304047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Risk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability. Objectives To examine an artificial intelligence (AI)-enhanced electrocardiographic (AI-ECG) surrogate for imaging risk biomarkers, and its association with CTRCD. Methods Across a five-hospital U.S.-based health system (2013-2023), we identified patients with breast cancer or non-Hodgkin lymphoma (NHL) who received anthracyclines (AC) and/or trastuzumab (TZM), and a control cohort receiving immune checkpoint inhibitors (ICI). We deployed a validated AI model of left ventricular systolic dysfunction (LVSD) to ECG images (≥0.1, positive screen) and explored its association with i) global longitudinal strain (GLS) measured within 15 days (n=7,271 pairs); ii) future CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction [LVEF]<50%), and LVEF<40%. In the ICI cohort we correlated baseline AI-ECG-LVSD predictions with downstream myocarditis. Results Higher AI-ECG LVSD predictions were associated with worse GLS (-18% [IQR:-20 to -17%] for predictions<0.1, to -12% [IQR:-15 to -9%] for ≥0.5 (p<0.001)). In 1,308 patients receiving AC/TZM (age 59 [IQR:49-67] years, 999 [76.4%] women, 80 [IQR:42-115] follow-up months) a positive baseline AI-ECG LVSD screen was associated with ~2-fold and ~4.8-fold increase in the incidence of the composite CTRCD endpoint (adj.HR 2.22 [95%CI:1.63-3.02]), and LVEF<40% (adj.HR 4.76 [95%CI:2.62-8.66]), respectively. Among 2,056 patients receiving ICI (age 65 [IQR:57-73] years, 913 [44.4%] women, follow-up 63 [IQR:28-99] months) AI-ECG predictions were not associated with ICI myocarditis (adj.HR 1.36 [95%CI:0.47-3.93]). Conclusion AI applied to baseline ECG images can stratify the risk of CTRCD associated with anthracycline or trastuzumab exposure.
Collapse
Affiliation(s)
- Evangelos K. Oikonomou
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Veer Sangha
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Lovedeep S. Dhingra
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Arya Aminorroaya
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Harlan M. Krumholz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
| | - Lauren A. Baldassarre
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - Rohan Khera
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT
- Section of Health Informatics, Department of Biostatistics, Yale School of Public Health, New Haven, CT
| |
Collapse
|
12
|
Suero-Abreu GA, Lim P, Raza A, Tysarowski M, Mehta K, Kortbawi M, Feldman S, Waller AH. Effect of variable left ventricular ejection fraction assessed by equilibrium radionuclide angiocardiography using different software packages on the diagnosis of cardiotoxicity in patients with cancer. J Nucl Cardiol 2024; 31:101782. [PMID: 38216410 DOI: 10.1016/j.nuclcard.2023.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
BACKGROUND The equilibrium radionuclide angiocardiography (ERNA) scan is an established imaging modality for assessing left ventricular ejection fraction (LVEF) in oncology patients. This study aimed to explore the interchangeability of two commercially available software packages (MIM and JS) for LVEF measurement for a cancer-therapy-related cardiac dysfunction (CTRCD) diagnosis. METHODS This is a single-center retrospective study among 322 patients who underwent ERNA scans. A total of 582 scans were re-processed using MIM and JS for cross-sectional and longitudinal LVEF measurements. RESULTS The median LVEF for MIM and JS were 56% and 66%, respectively (P < 0.001). LVEF processed by JS was 9.91% higher than by MIM. In 87 patients with longitudinal ERNA scans, serial studies processed by MIM were classified as having CTRCD in a higher proportion than serial studies processed by JS (26.4% vs 11.4%, P = 0.020). There were no significant differences in intra- or inter-observer LVEF measurement variability (R = 0.99, P < 0.001). CONCLUSIONS Software packages for processing ERNA studies are not interchangeable; thus, reports of ERNA studies should include details on the post-processing software. Serial ERNA studies should be processed on the same software when feasible to avoid discrepancies in the diagnosis and management of CTRCD.
Collapse
Affiliation(s)
| | - Phillip Lim
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Anoshia Raza
- Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Khyati Mehta
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Michael Kortbawi
- Department of Nuclear Medicine, University Hospital, Newark, NJ, USA
| | - Stephanie Feldman
- Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alfonso H Waller
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA; Division of Cardiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Nuclear Medicine, University Hospital, Newark, NJ, USA.
| |
Collapse
|
13
|
Pergola V, Cameli M, Mattesi G, Mushtaq S, D’Andrea A, Guaricci AI, Pastore MC, Amato F, Dellino CM, Motta R, Perazzolo Marra M, Dellegrottaglie S, Pedrinelli R, Iliceto S, Nodari S, Perrone Filardi P, Pontone G, on behalf of the Cluster Imaging of Italian Society of Cardiology (SIC). Multimodality Imaging in Advanced Heart Failure for Diagnosis, Management and Follow-Up: A Comprehensive Review. J Clin Med 2023; 12:7641. [PMID: 38137711 PMCID: PMC10743799 DOI: 10.3390/jcm12247641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced heart failure (AHF) presents a complex landscape with challenges spanning diagnosis, management, and patient outcomes. In response, the integration of multimodality imaging techniques has emerged as a pivotal approach. This comprehensive review delves into the profound significance of these imaging strategies within AHF scenarios. Multimodality imaging, encompassing echocardiography, cardiac magnetic resonance imaging (CMR), nuclear imaging and cardiac computed tomography (CCT), stands as a cornerstone in the care of patients with both short- and long-term mechanical support devices. These techniques facilitate precise device selection, placement, and vigilant monitoring, ensuring patient safety and optimal device functionality. In the context of orthotopic cardiac transplant (OTC), the role of multimodality imaging remains indispensable. Echocardiography offers invaluable insights into allograft function and potential complications. Advanced methods, like speckle tracking echocardiography (STE), empower the detection of acute cell rejection. Nuclear imaging, CMR and CCT further enhance diagnostic precision, especially concerning allograft rejection and cardiac allograft vasculopathy. This comprehensive imaging approach goes beyond diagnosis, shaping treatment strategies and risk assessment. By harmonizing diverse imaging modalities, clinicians gain a panoramic understanding of each patient's unique condition, facilitating well-informed decisions. The aim is to highlight the novelty and unique aspects of recently published papers in the field. Thus, this review underscores the irreplaceable role of multimodality imaging in elevating patient outcomes, refining treatment precision, and propelling advancements in the evolving landscape of advanced heart failure management.
Collapse
Affiliation(s)
- Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy;
| | - Maria Concetta Pastore
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Filippo Amato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Carlo Maria Dellino
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | - Raffaella Motta
- Unit of Radiology, Department of Medicine, Medical School, University of Padua, 35122 Padua, Italy;
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56126 Pisa, Italy;
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Institute of Cardiology, University of Brescia, 25123 Brescia, Italy;
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
- Department of Biomedical, Surgical and Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
14
|
Valzania C, Paccagnella A, Spadotto A, Ruotolo I, Bonfiglioli R, Fallani F, Fanti S, Galié N. Early detection of cancer therapy cardiotoxicity by radionuclide angiography: An update. J Nucl Cardiol 2023; 30:2104-2111. [PMID: 36855007 DOI: 10.1007/s12350-023-03202-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/06/2022] [Indexed: 03/02/2023]
Abstract
Cancer therapy-induced cardiotoxicity is an emerging clinical and healthcare issue. Myocardial dysfunction and heart failure are mostly responsible for increased cardiovascular mortality in cancer disease survivors. Several imaging surveillance techniques have been proposed for early diagnosis of cancer therapy-induced cardiac dysfunction. Our aim was to provide an update of radionuclide angiography applications in this field. Radionuclide angiography is widely used to assess left ventricular ejection fraction (LVEF) throughout cancer treatment, especially in patients with limited acoustic window. Additional prognostic data may be provided by phase analysis and diastolic function evaluation. Low LVEF and high approximate entropy at baseline seem to be predictors for cancer therapy-induced cardiac dysfunction. A decrease in peak filling rate and/or an increase in time to peak filling rate may be observed in patients undergoing anthracycline and/or trastuzumab administration. Diastolic function impairment may precede or not LVEF decrease. In conclusion, recent studies have provided novel insights into the possible role of radionuclide angiography in the early detection of cancer therapy cardiotoxicity. While interpreting the results of a radionuclide angiography examination, an integrated approach combining the evaluation of LVEF, LV diastolic function, and phase analysis may be useful to improve risk stratification of cancer patients treated with cardiotoxic agents.
Collapse
Affiliation(s)
- Cinzia Valzania
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy.
| | - Andrea Paccagnella
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
- Nuclear Medicine Unit, AUSL Romagna, Cesena, Italy
| | - Alberto Spadotto
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Irene Ruotolo
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| | - Rachele Bonfiglioli
- Department of Nuclear Medicine, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Francesco Fallani
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Stefano Fanti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
- Department of Nuclear Medicine, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
| | - Nazzareno Galié
- Department of Cardiology, IRCCS - Azienda Ospedaliero-Universitaria di Bologna - Policlinico di S. Orsola, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Mikail N, Chequer R, Imperiale A, Meisel A, Bengs S, Portmann A, Gimelli A, Buechel RR, Gebhard C, Rossi A. Tales from the future-nuclear cardio-oncology, from prediction to diagnosis and monitoring. Eur Heart J Cardiovasc Imaging 2023; 24:1129-1145. [PMID: 37467476 PMCID: PMC10501471 DOI: 10.1093/ehjci/jead168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer and cardiovascular diseases (CVD) often share common risk factors, and patients with CVD who develop cancer are at high risk of experiencing major adverse cardiovascular events. Additionally, cancer treatment can induce short- and long-term adverse cardiovascular events. Given the improvement in oncological patients' prognosis, the burden in this vulnerable population is slowly shifting towards increased cardiovascular mortality. Consequently, the field of cardio-oncology is steadily expanding, prompting the need for new markers to stratify and monitor the cardiovascular risk in oncological patients before, during, and after the completion of treatment. Advanced non-invasive cardiac imaging has raised great interest in the early detection of CVD and cardiotoxicity in oncological patients. Nuclear medicine has long been a pivotal exam to robustly assess and monitor the cardiac function of patients undergoing potentially cardiotoxic chemotherapies. In addition, recent radiotracers have shown great interest in the early detection of cancer-treatment-related cardiotoxicity. In this review, we summarize the current and emerging nuclear cardiology tools that can help identify cardiotoxicity and assess the cardiovascular risk in patients undergoing cancer treatments and discuss the specific role of nuclear cardiology alongside other non-invasive imaging techniques.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Renata Chequer
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP, University Diderot, 75018 Paris, France
| | - Alessio Imperiale
- Nuclear Medicine, Institut de Cancérologie de Strasbourg Europe (ICANS), University Hospitals of Strasbourg, 67093 Strasbourg, France
- Molecular Imaging-DRHIM, IPHC, UMR 7178, CNRS/Unistra, 67093 Strasbourg, France
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Kantonsspital Glarus, Burgstrasse 99, 8750 Glarus, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Alessia Gimelli
- Imaging Department, Fondazione CNR/Regione Toscana Gabriele Monasterio, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Hospital Inselspital Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| |
Collapse
|
16
|
Pieters H, van Staden JA, du Plessis FCP, du Raan H. Validation of a Monte Carlo simulated cardiac phantom for planar and SPECT studies. Phys Med 2023; 111:102617. [PMID: 37290226 DOI: 10.1016/j.ejmp.2023.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
PURPOSE This work aimed to validate Monte Carlo (MC) simulated cardiac phantoms for the evaluation of planar- and SPECT-gated-blood-pool (GBP-P and GBP-S) studies. METHODS A comparison of gamma camera system performance criteria measurements (energy resolution, spatial resolution, sensitivity) with MC simulations was conducted. Furthermore, the accuracy of measured and simulated volumes of two stereolithography-printed cardiac phantoms (based on 4D-XCAT phantoms) was assessed. Finally, the simulated GBP-P and GBP-S XCAT studies were validated by comparing calculated left ventricular ejection fraction (LVEF) and ventricle volume values with known parameters. RESULTS The simulated performance criteria compared well with measured values (energy resolution difference: 0.1 ± 0.10%; spatial resolution (full width at half maximum) difference ≤ 0.5 ± 0.8 mm and system sensitivity difference ≤ 6.2 ± 0.62cps/MBq). The measured and simulated cardiac phantoms were in good agreement; the left anterior oblique views compared well. This is supported by line profiles through these phantoms and on average, simulated counts were 5.8% lower than measured counts. The LVEF values calculated from the GBP-P and GBP-S simulated data differ from known values (2.8 ± 0.64% and 0.8 ± 0.52%). The differences between the known XCAT LV volumes and simulated GBP-S calculated volumes were -1.2 ± 1.91 ml and -1.5 ± 0.96 ml for the end-diastolic and end-systolic volumes. CONCLUSION The MC-simulated cardiac phantom has been validated successfully. Stereolithography-printing allows researchers to create clinically realistic organ phantoms and is a valuable tool for validating MC simulations and clinical software. By conducting GBP simulation studies with various XCAT models, the user will be able to generate GBP-P and GBP-S databases for future software evaluation.
Collapse
Affiliation(s)
- Hané Pieters
- Department of Medical Physics, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa.
| | - Johannes A van Staden
- Department of Medical Physics, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa.
| | - Frederik C P du Plessis
- Department of Medical Physics, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa.
| | - Hanlie du Raan
- Department of Medical Physics, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa.
| |
Collapse
|