1
|
Jadhav U, Solanki D, Kumar S, Hazra P, Alexander T, Gupta A, Ghatge S, Revankar S. Obesity and Sympathetic Overactivity in Young Individuals With Hypertension: Clinical Perspective of Indian Healthcare Providers. Cureus 2024; 16:e74115. [PMID: 39712757 PMCID: PMC11662092 DOI: 10.7759/cureus.74115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 12/24/2024] Open
Abstract
INTRODUCTION To understand the current clinical practices followed by healthcare professionals (HCPs) among populations with hypertension and obesity with sympathetic overactivity and develop strategies to improve the management of hypertension. METHODS A standard questionnaire was formulated based on high sympathetic overactivity and/or obesity in young patients with hypertension to gather information on the perception and practices of HCPs toward the management of young patients with hypertension who have high sympathetic overactivity and/or obesity. HCPs throughout India were selected. The key insights and recommendations from the panel discussion were summarized in a report that helped to develop strategies to improve the management of young hypertension patients with high sympathetic overactivity/obesity. RESULTS A total of 1170 HCPs participated in the survey and in panel discussion meetings. According to 53% of HCPs, patients with hypertension with increased sympathetic overactivity or stress are most commonly aged 41-60 years. These patients have a higher likelihood of developing stroke (60%), alcoholism (46%), and sleep apnea (41%). Moreover, these HCPs also opined that patients with hypertension and obesity are at greater risk of developing coronary artery disease and chronic kidney disease (69%) and often require multiple antihypertensive drugs (60%). For the management of hypertension in obese patients with sympathetic overactivity, a combination of telmisartan and cardio-selective beta-blockers is the preferred treatment (66%). Additionally, a combination of telmisartan and metoprolol is recommended to control sympathetic overactivity in obese patients with hypertension. CONCLUSION Sympathetic overactivity is becoming more common in young adults with hypertension, and the combination of telmisartan and cardio-selective beta-blockers is the best treatment option for these patients. This approach may help to effectively manage hypertension and reduce the risk of complications associated with sympathetic overactivity. The limitation of the study is its reliance on self-reported data from HCPs, which may introduce bias.
Collapse
Affiliation(s)
- Uday Jadhav
- Cardiology, Mahatma Gandhi Mission (MGM) New Bombay Hospital, Navi Mumbai, IND
| | | | | | | | - Thomas Alexander
- Cardiology, Kovai Medical Center and Hospital (KMCH), Coimbatore, IND
| | - Amit Gupta
- Medical Affairs, USV Private Limited, Mumbai, IND
| | | | | |
Collapse
|
2
|
Wang J, Xiao P, Ye Y, Chen X, Hu X, Yang Y, Peng Y. Characteristics of 24-h ambulatory blood pressure monitoring in elderly hypertensive males: An observational study of 85 year older patients. J Clin Hypertens (Greenwich) 2024; 26:1237-1245. [PMID: 39248252 PMCID: PMC11555539 DOI: 10.1111/jch.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Although hypertension is highly prevalent among the elderly and significantly contributes to cardiovascular disease risk, studies focusing on male elderly individuals over 85 years old are relatively scarce. This study aimed to investigate ambulatory blood pressure monitoring (ABPM) characteristics in male hypertensive patients aged over 85 years. These included demographic characteristics, antihypertensive drug use, 24-h ABPM values, diabetes, coronary heart disease, sleep disorders, smoking history, and drinking history, and the differences in ABPM between the age groups over and under 85 years old were analyzed. A total of 585 elderly hypertensive patients were included. The mean systolic blood pressure in individuals aged over 85 years was significantly greater throughout the day (131.57 ± 12.52 mmHg vs. 123.75 ± 2.74 mmHg, p < .001). In the 85 years older age group, the nighttime variability coefficient of SBP was lower at 7.84 ± 2.9 than the under 85 years age group 8.92 ± 3.13 (p < .001). The 85 years older age group age group presented a significantly greater whole-day systolic blood pressure standard deviation of ABPM (13.2 ± 3.19 vs. 12.47 ± 3.05, p = .005) compared with those under the age of 85 years. In the 85 years older age group, the proportion of individuals with the reverse dipper pattern was higher (48.15% vs. 38.31%, p = .017) than under 85 years age group. This study revealed that elderly male hypertensive patients aged over 85 years presented elevated average blood pressure levels. The research investigated ABPM characteristics. Older hypertensive individuals are more likely to have a reverse-dipper blood pressure pattern.
Collapse
Affiliation(s)
- Junwen Wang
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Pijuan Xiao
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
- Department of Geriatric MedicineGeneral Hospital of Western Theater Command of PLAChengduSichuanChina
| | - Yuyang Ye
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Xuefeng Chen
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Xinru Hu
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| | - Yuanrui Yang
- Department of Geriatric MedicineGeneral Hospital of Western Theater Command of PLAChengduSichuanChina
| | - Yong Peng
- Department of CardiologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Wang P, Mi Y, Yu H, Teng X, Jin S, Xiao L, Xue H, Tian D, Guo Q, Wu Y. Trimethylamine-N-oxide aggravated the sympathetic excitation in D-galactose induced aging rats by down-regulating P2Y12 receptor in microglia. Biomed Pharmacother 2024; 174:116549. [PMID: 38593701 DOI: 10.1016/j.biopha.2024.116549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study aimed to determine whether trimethylamine N-oxide (TMAO) was involved in sympathetic activation in aging and the underlying mechanisms. Our hypothesis is TMAO reduces P2Y12 receptor (P2Y12R) and induces microglia-mediated inflammation in the paraventricular nucleus (PVN), then leading to sympathetic activation in aging. This study involved 18 young adults and 16 old adults. Aging rats were established by injecting D-galactose (D-gal, 200 mg/kg/d) subcutaneously for 12 weeks. TMAO (120 mg/kg/d) or 1% 3, 3-dimethyl-l-butanol (DMB) was administrated via drinking water for 12 weeks to investigate their effects on neuroinflammation and sympathetic activation in aging rats. Plasma TMAO, NE and IL-1β levels were higher in old adults than in young adults. In addition, standard deviation of all normal to normal intervals (SDNN) and standard deviation of the average of normal to normal intervals (SDANN) were lower in old adults and negatively correlated with TMAO, indicating sympathetic activation in old adults, which is associated with an increase in TMAO levels. Treatment of rats with D-gal showed increased senescence-associated protein levels and microglia-mediated inflammation, as well as decreased P2Y12R protein levels in PVN. Plasma TMAO, NE and IL-1β levels were increased, accompanied by enhanced renal sympathetic nerve activity (RSNA). While TMAO treatment exacerbated the above phenomenon, DMB mitigated it. These findings suggest that TMAO contributes to sympathetic hyperactivity in aging by downregulating P2Y12R in microglia and increasing inflammation in the PVN. These results may provide promising new target for the prevention and treatment of aging and aging-related diseases.
Collapse
Affiliation(s)
- Ping Wang
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Yuan Mi
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Department of Emergency, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Hao Yu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Xu Teng
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Sheng Jin
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Lin Xiao
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Hongmei Xue
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Danyang Tian
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China
| | - Qi Guo
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Experimental Center for Teaching, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| | - Yuming Wu
- Department of Physiology, Institute of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China; Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, China; Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, China.
| |
Collapse
|
4
|
Sun JY, Su Z, Yang J, Sun W, Kong X. The potential mechanisms underlying the modulating effect of perirenal adipose tissue on hypertension: Physical compression, paracrine, and neurogenic regulation. Life Sci 2024; 342:122511. [PMID: 38387699 DOI: 10.1016/j.lfs.2024.122511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Hypertension, a prevalent global cardiovascular disease, affects approximately 45.4 % of adults worldwide. Despite advances in therapy, hypertension continues to pose a significant health risk due to inadequate management. It has been established that excessive adiposity contributes majorly to hypertension, accounting for 65 to 75 % of primary cases. Fat depots can be categorised into subcutaneous and visceral adipose tissue based on anatomical and physiological characteristics. The metabolic impact and the risk of hypertension are determined more significantly by visceral fat. Perirenal adipose tissue (PRAT), a viscera enveloping the kidney, is known for its superior vascularisation and abundant innervation. Although traditionally deemed as a mechanical support tissue, recent studies have indicated its contributing potential to hypertension. Hypertensive patients tend to have increased PRAT thickness compared to those without, and there is a positive correlation between PRAT thickness and elevated systolic blood pressure. This review encapsulates the anatomical characteristics and biogenesis of PRAT. We provide an overview of the potential mechanisms where PRAT may modulate blood pressure, including physical compression, paracrine effects, and neurogenic regulation. PRAT has become a promising target for hypertension management, and continuous effort is required to further explore the underlying mechanisms.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Zhenyang Su
- Medical School of Southeast University, Nanjing 21000, China
| | - Jiaming Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Wei Sun
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xiangqing Kong
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China.
| |
Collapse
|
5
|
Effect of Lower Limb Venous Dilation on the Autonomic Cardiac Response among Healthy Young Men. Healthcare (Basel) 2023; 11:healthcare11040548. [PMID: 36833082 PMCID: PMC9957185 DOI: 10.3390/healthcare11040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/21/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Venous occlusion of the lower limbs, which simulates edema, can alter heart rate variability (HRV) by increasing feedback information from group III/IV sensory fibers. Our aim was to quantify this effect among healthy young men. The study group included 13 men (mean age, 20.4 years). Venous occlusion of the lower limbs was induced using a pressure cuff around both thighs. The effect of occlusion on autonomic cardiac response was quantified under occlusion pressures of 20, 60, and 100 mmHg. Compression was applied for 5 min. HRV was evaluated from changes in the low-frequency (LF) and high-frequency (HF) power of the electrocardiogram and the resulting LF/HF balance. Near-infrared spectroscopy of the leg was used to quantify the effects of occlusion on deoxyhemoglobin, measured as the area under the curve (HHb-AUC). The occlusion pressure of 100 mmHg induced a significant increase in the LF/HF ratio, compared to the baseline (p < 0.05). HHb-AUC was highest for the 100 mmHg occlusion pressure compared with the 20 and 60 mmHg pressures (p < 0.01). These findings indicate that venous dilation may elicit a shift towards sympathetic dominance in the autonomic balance.
Collapse
|
6
|
Sex Differences in VO 2max and the Impact on Endurance-Exercise Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19094946. [PMID: 35564339 PMCID: PMC9105160 DOI: 10.3390/ijerph19094946] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023]
Abstract
It was not until 1984 that women were permitted to compete in the Olympic marathon. Today, more women than men participate in road racing in all distances except the marathon where participation is near equal. From the period of 1985 to 2004, the women’s marathon record improved at a rate three times greater than men’s. This has led many to question whether women are capable of surpassing men despite the fact that there remains a 10–12% performance gap in all distance events. The progressive developments in sports performance research and training, beginning with A.V. Hill’s establishment of the concept of VO2max, have allowed endurance athletes to continue performance feats previously thought to be impossible. However, even today women are significantly underrepresented in sports performance research. By focusing more research on the female physiology and sex differences between men and women, we can better define how women differ from men in adapting to training and potentially use this information to improve endurance-exercise performance in women. The male advantage in endurance-exercise performance has commonly been attributed to their higher VO2max, even when expressed as mL/kg/min. It is widely known that oxygen delivery is the primary limiting factor in elite athletes when it comes to improving VO2max, but little research has explored the sex differences in oxygen delivery. Thus, the purpose of this review is to highlight what is known about the sex differences in the physiological factors contributing to VO2max, more specifically oxygen delivery, and the impacts on performance.
Collapse
|
7
|
Kobetic MD, Burchell AE, Ratcliffe LEK, Neumann S, Adams ZH, Nolan R, Nightingale AK, Paton JFR, Hart EC. Sympathetic-transduction in untreated hypertension. J Hum Hypertens 2022; 36:24-31. [PMID: 34453103 PMCID: PMC8766277 DOI: 10.1038/s41371-021-00578-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 01/31/2023]
Abstract
Transduction of muscle sympathetic nerve activity (MSNA) into vascular tone varies with age and sex. Older normotensive men have reduced sympathetic transduction so that a given level of MSNA causes less arteriole vasoconstriction. Whether sympathetic transduction is altered in hypertension (HTN) is not known. We investigated whether sympathetic transduction is impaired in untreated hypertensive men compared to normotensive controls. Eight untreated hypertensive men and 10 normotensive men (age 50 ± 15 years vs. 45 ± 12 years (mean ± SD); p = 0.19, body mass index (BMI) 24.7 ± 2.7 kg/m2 vs. 26.0 ± 4.2 kg/m2; p = 0.21) were recruited. MSNA was recorded from the peroneal nerve using microneurography; beat-to-beat blood pressure (BP; Finapres) and heart rate (ECG) were recorded simultaneously at rest for 10 min. Sympathetic-transduction was quantified using a previously described method. The relationship between MSNA burst area and subsequent diastolic BP was measured for each participant with the slope of the regression indicating sympathetic transduction. MSNA was higher in the hypertensive group compared to normotensives (73 ± 17 bursts/100 heartbeats vs. 49 ± 19 bursts/100 heart bursts; p = 0.007). Sympathetic-transduction was lower in the hypertensive versus normotensive group (0.04%/mmHg/s vs. 0.11%/mmHg/s, respectively; R = 0.622; p = 0.006). In summary, hypertensive men had lower sympathetic transduction compared to normotensive individuals suggesting that higher levels of MSNA are needed to cause the same level of vasoconstrictor tone.
Collapse
Affiliation(s)
- Matthew D. Kobetic
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK
| | - Amy E. Burchell
- grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Laura E. K. Ratcliffe
- grid.415953.f0000 0004 0400 1537Department of Nephrology, Lister Hospital, East and North Hertfordshire NHS Trust, Hertfordshire, UK
| | - Sandra Neumann
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Zoe H. Adams
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Regina Nolan
- grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Angus K. Nightingale
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Julian F. R. Paton
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Emma C. Hart
- grid.5337.20000 0004 1936 7603School of Physiology, Pharmacology, and Neuroscience, Clinical Research and Imaging Centre, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cardionomics Research Group, Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| |
Collapse
|
8
|
O'Brien MW, Ramsay DJ, O'Neill CD, Petterson JL, Dogra S, Mekary S, Kimmerly DS. Aerobic fitness is inversely associated with neurohemodynamic transduction and blood pressure variability in older adults. GeroScience 2021; 43:2737-2748. [PMID: 34056679 DOI: 10.1007/s11357-021-00389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022] Open
Abstract
Higher aerobic fitness is independently associated with better cardiovascular health in older adults. The transduction of muscle sympathetic nerve activity (MSNA) into mean arterial pressure (MAP) responses provides important insight regarding beat-by-beat neural circulatory control. Aerobic fitness is negatively associated with peak MAP responses to spontaneous MSNA in young males. Whether this relationship exists in older adults is known. We tested the hypothesis that aerobic fitness was inversely related to sympathetic neurohemodynamic transduction and blood pressure variability (BPV) in older adults. Relative peak oxygen consumption (V̇O2peak, indirect calorimetry) was assessed in 22 older adults (13 males, 65 ± 5 years, 36.3 ± 11.5 ml/kg/min). Peroneal MSNA (microneurography) and arterial pressure (finger photoplethysmography) were recorded during ≥ 10-min of rest. BPV was assessed using the average real variability index. MAP was tracked for 12 cardiac cycles following heartbeats associated with MSNA bursts (i.e., peak ΔMAP). Peak ΔMAP responses (0.9 ± 0.6 mmHg) were negatively associated (all, P < 0.04) with resting burst frequency (30 ± 11 bursts/min; R = -0.47) and burst incidence (54 ± 22 bursts/100 heartbeats; R = -0.51), but positively associated with BPV (ρ = 0.47). V̇O2peak was inversely related to the pressor responses to spontaneous bursts (R = -0.47, P = 0.03) and BPV (ρ = -0.54, P = 0.01), positively related to burst incidence (R = 0.42, P = 0.05), but unrelated to MSNA burst frequency (P = 0.20). The V̇O2peak-BPV relationship remained after controlling for burst frequency, peak ΔMAP, age, and sex. Lower V̇O2peak was associated with augmented neurohemodynamic transduction and BPV in older adults. These negative hemodynamic outcomes highlight the importance of higher aerobic fitness with ageing for optimal cardiovascular health.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Diane J Ramsay
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Carley D O'Neill
- Exercise Physiology and Cardiovascular Health Lab, University of Ottawa Heart Institute, Ottawa, ON, Canada.,School of Kinesiology, Acadia University, Wolfville, NS, Canada
| | - Jennifer L Petterson
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Shilpa Dogra
- School of Kinesiology, Acadia University, Wolfville, NS, Canada.,Health and Human Performance Laboratory, Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Said Mekary
- School of Kinesiology, Acadia University, Wolfville, NS, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Cardiorespiratory synchronisation and systolic blood pressure correlation of peripheral arterial stiffness during endoscopic thoracic sympathectomy. Sci Rep 2021; 11:5966. [PMID: 33727620 PMCID: PMC7966741 DOI: 10.1038/s41598-021-85299-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/23/2021] [Indexed: 11/08/2022] Open
Abstract
Muscle sympathetic nerve activity (MSNA) is known as an effective measure to evaluate peripheral sympathetic activity; however, it requires invasive measurement with the microneurography method. In contrast, peripheral arterial stiffness affected by MSNA is a measure that allows non-invasive evaluation of mechanical changes of arterial elasticity. This paper aims to clarify the features of peripheral arterial stiffness to determine whether it inherits MSNA features towards non-invasive evaluation of its activity. To this end, we propose a method to estimate peripheral arterial stiffness [Formula: see text] at a high sampling rate. Power spectral analysis of the estimated [Formula: see text] was then performed on data acquired from 15 patients ([Formula: see text] years) who underwent endoscopic thoracic sympathectomy. We examined whether [Formula: see text] exhibited the features of MSNA where its frequency components synchronise with heart and respiration rates and correlates with the low-frequency component of systolic blood pressure. Regression analysis revealed that the local peak frequency in the range of heartbeat frequency highly correlate with the heart rate ([Formula: see text], [Formula: see text]) where the regression slope was approximately 1 and intercept was approximately 0. Frequency analysis then found spectral peaks of [Formula: see text] approximately 0.2 Hz that correspond to the respiratory cycle. Finally, cross power spectral analysis showed a significant magnitude squared coherence between [Formula: see text] and systolic blood pressure in the frequency band from 0.04 to 0.2 Hz. These results indicate that [Formula: see text] inherits the features observed in MSNA that require invasive measurements, and thus [Formula: see text] can be an effective non-invasive substitution for MSNA measure.
Collapse
|
10
|
O'Brien MW, Petterson JL, Kimmerly DS. An open-source program to analyze spontaneous sympathetic neurohemodynamic transduction. J Neurophysiol 2021; 125:972-976. [PMID: 33596745 DOI: 10.1152/jn.00002.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The sympathetic nervous system is important for the beat-by-beat regulation of arterial blood pressure and the control of blood flow to various organs. Microneurographic recordings of pulse-synchronous muscle sympathetic nerve activity (MSNA) are used by numerous laboratories worldwide. The transduction of hemodynamic and vascular responses elicited by spontaneous bursts of MSNA provides novel, mechanistic insight into sympathetic neural control of the circulation. Although some of these laboratories have developed in-house software programs to analyze these sympathetic transduction responses, they are not openly available and most require higher level programming skills and/or costly platforms. In the present paper, we present an open-source, Microsoft Excel-based analysis program designed to examine the pressor and/or vascular responses to spontaneous resting bursts of MSNA, including across longer, continuous MSNA burst sequences, as well as following heartbeats not associated with MSNA bursts. An Excel template with embedded formulas is provided. Detailed written and video-recorded instructions are provided to help facilitate the user and promote its implementation among the research community. Open science activities such as the dissemination of analytical programs and instructions may assist other laboratories in their pursuit to answer novel and impactful research questions regarding sympathetic neural control strategies in human health and disease.NEW & NOTEWORTHY The pressor responses to spontaneous bursts of muscle sympathetic nerve activity provide important information regarding sympathetic regulation of the circulation. Many laboratories worldwide quantify sympathetic neurohemodynamic transduction using in-house, customized software requiring high-level programming skills and/or costly computer programs. To overcome these barriers, this study presents a simple, open-source, Microsoft Excel-based analysis program along with video instructions to assist researchers without the necessary resources to quantify sympathetic neurohemodynamic transduction.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jennifer L Petterson
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, Faculty of Health, School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Hendrix J, Nijs J, Ickmans K, Godderis L, Ghosh M, Polli A. The Interplay between Oxidative Stress, Exercise, and Pain in Health and Disease: Potential Role of Autonomic Regulation and Epigenetic Mechanisms. Antioxidants (Basel) 2020; 9:E1166. [PMID: 33238564 PMCID: PMC7700330 DOI: 10.3390/antiox9111166] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress can be induced by various stimuli and altered in certain conditions, including exercise and pain. Although many studies have investigated oxidative stress in relation to either exercise or pain, the literature presents conflicting results. Therefore, this review critically discusses existing literature about this topic, aiming to provide a clear overview of known interactions between oxidative stress, exercise, and pain in healthy people as well as in people with chronic pain, and to highlight possible confounding factors to keep in mind when reflecting on these interactions. In addition, autonomic regulation and epigenetic mechanisms are proposed as potential mechanisms of action underlying the interplay between oxidative stress, exercise, and pain. This review highlights that the relation between oxidative stress, exercise, and pain is poorly understood and not straightforward, as it is dependent on the characteristics of exercise, but also on which population is investigated. To be able to compare studies on this topic, strict guidelines should be developed to limit the effect of several confounding factors. This way, the true interplay between oxidative stress, exercise, and pain, and the underlying mechanisms of action can be revealed and validated via independent studies.
Collapse
Affiliation(s)
- Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Unit of Physiotherapy, Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
- University of Gothenburg Center for Person-Centred Care (GPCC), Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Kelly Ickmans
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Lode Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- External Service for Prevention and Protection at Work (IDEWE), 3001 Heverlee, Belgium
| | - Manosij Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (J.H.); (J.N.); (K.I.)
- Centre for Environment and Health, Department of Public Health and Primary Care, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; (L.G.); (M.G.)
- Research Foundation—Flanders (FWO), 1050 Brussels, Belgium
| |
Collapse
|
12
|
O'Brien MW, Ramsay D, Johnston W, Kimmerly DS. Aerobic fitness and sympathetic responses to spontaneous muscle sympathetic nerve activity in young males. Clin Auton Res 2020; 31:253-261. [PMID: 33034876 DOI: 10.1007/s10286-020-00734-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Lower aerobic fitness increases the risk of developing hypertension. Muscle sympathetic nerve activity (MSNA) is important for the beat-by-beat regulation of blood pressure. Whether the cardiovascular consequences of lower aerobic fitness are due to augmented transduction of MSNA into vascular responses is unclear. We tested the hypothesis that aerobic fitness is inversely related to peak increases in total peripheral resistance (TPR) and mean arterial pressure (MAP) in response to spontaneous MSNA bursts in young males. METHODS Relative peak oxygen consumption (VO2peak, indirect calorimetry) was assessed in 18 young males (23 ± 3 years; 41 ± 8 ml/kg/min). MSNA (microneurography), cardiac intervals (electrocardiogram) and arterial pressure (finger photoplethysmography) were recorded continuously during supine rest. Stroke volume and cardiac output (CO) were estimated via the ModelFlow method. TPR was calculated as MAP/CO. Changes in TPR and MAP were tracked for 12 cardiac cycles following heartbeats associated with or without spontaneous bursts of MSNA. RESULTS Overall, aerobic fitness was inversely correlated to the peak ΔTPR (0.8 ± 0.7 mmHg/l/min; R = - 0.61, P = 0.007) and ΔMAP (2.3 ± 0.8 mmHg; R = - 0.69, P < 0.001), but not with the peak ΔCO (0.2 ± 0.1 l/min; P = 0.50), MSNA burst frequency (14 ± 5 bursts/min; P = 0.43) or MSNA relative burst amplitude (65 ± 12%; P = 0.13). Heartbeats without an associated burst of MSNA did not increase TPR, MAP or CO. CONCLUSION Although unrelated to traditional MSNA characteristics, aerobic fitness was inversely associated with spontaneous sympathetic neurovascular transduction in young males. This may be a potential mechanism by which aerobic fitness modulates the regulation of arterial blood pressure through the sympathetic nervous system.
Collapse
Affiliation(s)
- Myles W O'Brien
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Diane Ramsay
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - William Johnston
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada
| | - Derek S Kimmerly
- Autonomic Cardiovascular Control and Exercise Laboratory, Division of Kinesiology, School of Health and Human Performance, Faculty of Health, Dalhousie University, 6230 South Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
13
|
Dong Y, Cui Y, Zhang H, Liu Z, Wang J. Orthostatic change in systolic blood pressure associated with cold pressor reflection and heart rate variability in the elderly. Clin Exp Hypertens 2020; 42:409-419. [PMID: 31589076 DOI: 10.1080/10641963.2019.1676773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Impaired orthostatic blood pressure (BP) response is a frequent finding in the elderly. The goal of the study was to investigate the association of variability of supine-to-orthostatic BP with cold pressor reflection and heart rate variability in the elderly.Methods: From June 2010 to September 2013, 287 elderly aged ≥ 60 years were enrolled in Jinan area, China. The elderly were classified into lower (n = 96), intermediate (n = 95), and higher (n = 96) tertile groups according to the tertile of the percentage change of supine-to-orthostatic systolic BP.Results: There were significant increasing trends in systolic BP response to the CPT at 0 and 60 sec; the plasma levels of epinephrine, norepinephrine, and angiotensin II; and decreasing trends in DNN, SDNN index, and SDANN from the lower to the higher tertile group, and differences between any two groups were significant (P < .05). The percentage change of supine-to-orthostatic systolic BP was positively correlated with systolic BP response to CPT at 0 and 60 sec, VLF, epinephrine, norepinephrine, and angiotensin II (P < .001) and negatively correlated with SDNN, SDNN index, SDANN, rMSSD, pNN50, LF, and ratio of LF/HF (P < .001). The BP response to CPT, parameters of HRV, and the plasma levels of norepinephrine and angiotensin II were independently associated with the percentage change of supine-to-orthostatic systolic BP after adjustment for confounders.Conclusion: Aggressive variability of supine-to-orthostatic systolic BP might be significantly associated with the imbalance of sympathetic and parasympathetic activity, especially high sensitivity sympathetic response in the elderly.Abbreviations: BP: blood pressure; BMI: body mass index; CPT: cold pressor test; HRV: heart rate variability; SDNN: standard deviation of all normal-to-normal R-R intervals; SDNN index: mean of the standard deviations of all 5-min normal-to-normal R-R intervals of the entire recording; SDANN: standard deviation of the averages of normal-to-normal R-R intervals during all 5-min periods of the entire recording; rMSSD: square root of the mean squared differences between successive normal R-R intervals; pNN50: number of adjacent normal R-R intervals differing by more than 50 ms; VLF: very low frequency; LF: low frequency; HF: high frequency; TCHO: total cholesterol; HDL-c: high-density lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol; FPG: fasting plasma glucose; SD: standard deviation.
Collapse
Affiliation(s)
- Yuanli Dong
- Department of Community, Lanshan District People Hospital, Linyi, Shandong, China
| | - Yi Cui
- Department of Radiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Hua Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhendong Liu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Juan Wang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Yanovich R, Ketko I, Charkoudian N. Sex Differences in Human Thermoregulation: Relevance for 2020 and Beyond. Physiology (Bethesda) 2020; 35:177-184. [PMID: 32293229 DOI: 10.1152/physiol.00035.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The participation of women in physically strenuous athletic and occupational tasks has increased substantially in the past decade. Female sex steroids have influences on thermoregulatory processes that could impact physical performance in the heat. Here, we summarize and evaluate the current literature regarding sex differences in thermoregulation and provide recommendations for heat-illness risk-mitigation strategies.
Collapse
Affiliation(s)
- R Yanovich
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
- Department of Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
- The Academic College at Wingate, Wingate Institute, Netanya, Israel
| | - I Ketko
- The Institute of Military Physiology, Israel Defense Forces, Medical Corps, Tel-Hashomer, Israel
- Heller Institute of Medical Research, Sheba Medical Center, Tel-Hashomer, Israel
| | - N Charkoudian
- U.S. Army Research Institute of Environmental Medicine, Natick, Massachussetts
| |
Collapse
|
15
|
Fu Q, Ogoh S. Sex differences in baroreflex function in health and disease. J Physiol Sci 2019; 69:851-859. [PMID: 31721084 PMCID: PMC10717578 DOI: 10.1007/s12576-019-00727-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023]
Abstract
This brief review summarizes the current knowledge on sex differences in baroreflex function, with a major focus on studies in humans. It has been demonstrated that healthy women have blunted cardiovagal baroreflx sensitivity during a rapid (i.e., within seconds) hypertensive stimulus, but baroreflex sensitivity is similar between the sexes during a hypotensive stimulus. Normal aging decreases cardiovagal baroreflex sensitivity and the rate of decline is similar in men and women. Cardiovagal baroreflex sensitivity is reduced in pathological conditions such as hypertension and type II diabetes, and the reduction is greater in female patients than male patients. There is no clear sex difference in sympathetic baroreflex sensitivity among young individuals, however, with women of more advanced age, sympathetic baroreflex sensitivity decreases, which appears to be associated with greater arterial stiffness compared with similarly aged men. The blunted sympathetic baroreflex sensitivity in older women may predispose them to an increased prevalence of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Qi Fu
- Women's Heart Health Laboratory, Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Suite 435, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Tokyo, Japan
| |
Collapse
|
16
|
Kovtun OP, Tsyvian PB. Pre-eclampsia in a mother and programming of the child’s cardiovascular health. ROSSIYSKIY VESTNIK PERINATOLOGII I PEDIATRII (RUSSIAN BULLETIN OF PERINATOLOGY AND PEDIATRICS) 2019. [DOI: 10.21508/1027-4065-2019-64-4-19-25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The authors present a review of the literature devoted to the problem of programming the formation of the cardiovascular system structure and function in children born from mothers with preeclampsia. These children are at high risk of developing cardiovascular diseases. Pre-eclampsia is caused by the endothelium dysfunction, deregulation of the immune and inflammatory factors during pregnancy. Experimental studies identify these factors as key epigenetic factors programming the condition of the cardiovascular system of the offspring. The modern concept of intrauterine programming, describing this phenomenon, focuses on three main areas of research: experimental models simulating the intrauterine environment with preeclampsia; research of the pathological phenotype formation under the influence of these factors; epigenetic studies of the influence of preeclampsia on the cardiovascular system functioning. The article discusses the perspectives of epigenetic programming prevention.
Collapse
Affiliation(s)
| | - P. B. Tsyvian
- Ural State Medical University;
Mother and Child Care Research Institute
| |
Collapse
|
17
|
Polli A, Van Oosterwijck J, Nijs J, Marusic U, De Wandele I, Paul L, Meeus M, Moorkens G, Lambrecht L, Ickmans K. Relationship Between Exercise-induced Oxidative Stress Changes and Parasympathetic Activity in Chronic Fatigue Syndrome: An Observational Study in Patients and Healthy Subjects. Clin Ther 2019; 41:641-655. [PMID: 30665828 DOI: 10.1016/j.clinthera.2018.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidative stress has been proposed as a contributor to pain in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). During incremental exercise in patients with ME/CFS, oxidative stress enhances sooner and antioxidant response is delayed. We explored whether oxidative stress is associated with pain symptoms or pain changes following exercise, and the possible relationships between oxidative stress and parasympathetic vagal nerve activity in patients with ME/CFS versus healthy, inactive controls. METHODS The present study reports secondary outcomes from a previous work. Data from 36 participants were studied (women with ME/CFS and healthy controls). Subjects performed a submaximal exercise test with continuous cardiorespiratory monitoring. Levels of thiobarbituric acid-reactive substances (TBARSs) were used as a measure of oxidative stress, and heart rate variability was used to assess vagal activity. Before and after the exercise, subjects were asked to rate their pain using a visual analogic scale. FINDINGS Significant between-group differences in pain at both baseline and following exercise were found (both, P < 0.007). In healthy controls, pain was significantly improved following exercise (P = 0.002). No change in oxidative stress level after exercise was found. Significant correlation between TBARS levels and pain was found at baseline (r = 0.540; P = 0.021) and after exercise (r = 0.524; P = 0.024) in patients only. No significant correlation between TBARS and heart rate variability at baseline or following exercise was found in either group. However, a significant correlation was found between exercise-induced changes in HRV and TBARS in healthy controls (r = -0.720; P = 0.001). IMPLICATIONS Oxidative stress showed an association with pain symptoms in people with ME/CFS, but no exercise-induced changes in oxidative stress were found. In addition, the change in parasympathetic activity following exercise partially accounted for the change in oxidative stress in healthy controls. More research is required to further explore this link.
Collapse
Affiliation(s)
- Andrea Polli
- Pain in Motion International Research Group, Belgium(12); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium.
| | - Jessica Van Oosterwijck
- Pain in Motion International Research Group, Belgium(12); Research Foundation-Flanders (FWO), Brussels, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Jo Nijs
- Pain in Motion International Research Group, Belgium(12); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia; Department of Health Sciences, Alma Mater Europaea-ECM, Maribor, Slovenia
| | - Inge De Wandele
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lorna Paul
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Mira Meeus
- Pain in Motion International Research Group, Belgium(12); Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Greta Moorkens
- Department of Internal Medicine, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Luc Lambrecht
- Private Practice for Internal Medicine, Ghent, Belgium
| | - Kelly Ickmans
- Pain in Motion International Research Group, Belgium(12); Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
| |
Collapse
|
18
|
Abstract
INTRODUCTION Hypertension is caused by increased cardiac output and/or increased peripheral resistance. Areas covered: The various mechanisms affecting cardiac output/peripheral resistance involved in the development of essential hypertension are covered. These include genetics; sympathetic nervous system overactivity; renal mechanisms: excess sodium intake and pressure natriuresis; vascular mechanisms: endothelial cell dysfunction and the nitric oxide pathway; hormonal mechanisms: the renin-angiotensin-aldosterone system (RAAS); obesity, obstructive sleep apnea (OSA); insulin resistance and metabolic syndrome; uric acid; vitamin D; gender differences; racial, ethnic, and environmental factors; increased left ventricular ejection force and hypertension and its association with increased basal sympathetic activity - cortical connections. Expert commentary: Maximum association of hypertension is found with sympathetic overactivity which is directly or indirectly involved in different mechanisms of hypertension including RAAS, OSA, obesity, etc.. It is not overt sympathetic activity but disturbed basal sympathetic tone. Basal sympathetic tone arises from hypothalamus; possibly affected by cortical influences. Therefore, hypertension is not merely a disease of circulatory system alone. Its pathogenesis involves alteration in ANS (autonomic nervous system) and likely in cortical-hypothalamic connections. Assessment of ANS and cortical-hypothalamic connections may be required for better understanding of hypertension.
Collapse
Affiliation(s)
- Tarun Saxena
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Azeema Ozefa Ali
- a Department of Internal Medicine , Mittal Hospital and Research Centre , Ajmer , India
| | - Manjari Saxena
- b Department Yoga and Physical education , Mittal Hospital and Research Centre , Ajmer , India
| |
Collapse
|
19
|
Cascio WE. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: Insights for public health translation. Biochim Biophys Acta Gen Subj 2016; 1860:2869-79. [PMID: 27451957 DOI: 10.1016/j.bbagen.2016.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regulatory environmental protections to actions that can be taken by individuals, public health officials, healthcare professionals, city and regional planners, local and state governmental officials and all those who possess the capacity to improve cardiovascular health within the population. The foundation of the framework rests on the contribution of traditional cardiovascular risk factors acting alone and in concert with long-term exposures to air pollutants to create a conditional susceptibility for clinical vascular events, such as myocardial ischemia and infarction; stroke and lethal ventricular arrhythmias. The conceptual framework focuses on the fact that short-term exposures to ambient air particulate matter (PM) are associated with vascular thrombosis (acute coronary syndrome, stroke, deep venous thrombosis, and pulmonary embolism) and electrical dysfunction (ventricular arrhythmia); and that individuals having prevalent heart disease are at greatest risk. Moreover, exposure is concomitant with changes in autonomic nervous system balance, systemic inflammation, and prothrombotic/anti-thrombotic and profibrinolytic-antifibrinolytic balance. Thus, a comprehensive solution to the problem of premature mortality triggered by air pollutant exposure will require compliance with regulations to control ambient air particle pollution levels, minimize exposures to air pollutants, as well as a concerted effort to decrease the number of people at-risk for serious clinical cardiovascular events triggered by air pollutant exposure by improving the overall state of cardiovascular health in the population. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Wayne E Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Lian H, Zhuo SQ, Tian XT, Liu FC. Increased plasma lactate level is associated with subclinical cardiovascular damage in patient with non-dipping hypertension. Clin Exp Hypertens 2016; 38:541-4. [PMID: 27399330 DOI: 10.3109/10641963.2016.1174247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate the difference of plasma lactate level between dipping and non-dipping hypertension, and to investigate the effects of lactate on subclinical cardiovascular damages in dipping and non-dipping hypertension. METHODS According to 24 h ambulatory blood pressure monitoring, 236 patients with dipping and 152 with non-dipping hypertension were included. Clinical characteristics were collected and compared between dipping and non-dipping groups. Left ventricle hypertrophy (LVH) and N-terminal pro-B type natriuretic peptide (NT-proBNP) level were used to evaluate subclinical cardiovascular damage. Multivariate regression analysis was performed to evaluate the relationship between lactate and LVH and NT-proBNP elevation. RESULTS Compared to dipping hypertension, plasma levels of lactate and NT-proBNP in non-dipping hypertension group were significantly higher. Moreover, the value of left ventricle mass index to height (LVMI/height) was also significantly higher in non-dipping group, and the percentage of patient with LVH was also higher in non-dipping group (36.8% vs. 28.9%, P < 0.05). Multivariate regression analysis revealed that in non-dipping group, after fully adjustment, the associations between lactate with LVH and NT-proBNP remained significant, with odds ratio (OR) of 1.18 (95% confidence interval [CI] of 1.13-1.24) in LVH and OR of 1.16 in NT-proBNP (95% CI of 1.10-1.23), respectively. Nonetheless, the associations between lactate with LVH and NT-proBNP elevation in dipping group were diminished to statistical nonsignificance. CONCLUSION Plasma lactate level in non-dipping hypertension is significantly higher than dipping hypertension, and this difference may be the potential mechanism non-dipping hypertension contributes to greater targeted organ damage.
Collapse
Affiliation(s)
- Huan Lian
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , Guangdong , China
| | - Sheng-Qing Zhuo
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , Guangdong , China
| | - Xiang-Ting Tian
- a Department of Cardiology , Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences , Guangzhou , Guangdong , China
| | - Fu-Cheng Liu
- b Department of Cardiology, Huaqiao Hospital , Jinan University , Guangzhou , Guangdong , China
| |
Collapse
|
21
|
Burton AR, Fazalbhoy A, Macefield VG. Sympathetic Responses to Noxious Stimulation of Muscle and Skin. Front Neurol 2016; 7:109. [PMID: 27445972 PMCID: PMC4927631 DOI: 10.3389/fneur.2016.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological – reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation.
Collapse
Affiliation(s)
| | - Azharuddin Fazalbhoy
- School of Health and Biomedical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|
22
|
Saxena T, Patidar S, Saxena M. Assessment of left ventricular ejection force and sympathetic skin response in normotensive and hypertensive subjects: A double-blind observational comparative case-control study. Indian Heart J 2016; 68:685-692. [PMID: 27773408 PMCID: PMC5079136 DOI: 10.1016/j.ihj.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/18/2015] [Accepted: 12/03/2015] [Indexed: 01/20/2023] Open
Abstract
Background Pathophysiology of essential hypertension remains obscure. Correlation among ventricular ejection force, sympathetic activity, and hypertension is less clearly narrated in hypertensive subjects. Aims and objectives To assess correlation among ventricular ejection force, sympathetic activity, and hypertension in hypertensive subjects, and to be compared with normotensive subjects. Methods This is a case–control study to assess left ventricular ejection force (LVEF) and sympathetic skin response, in normotensive (group 1; control), and hypertensive subjects (group 2; cases). 100 cases were selected. Subjects having stages 1 and 2 hypertension were categorized in groups 2A and 2B, respectively. LVEF was calculated by using echocardiography observing aortic acceleration time (AT) and peak systolic velocity. Comparison among groups was done by using one-way ANOVA. Results Both groups were comparable. In group 2, 60 cases had stage 1 hypertension and 40 had stage 2 hypertension. Significantly short AT and significantly high LVEF were found in hypertension (groups 2A and 2B) (p < 0.0001). Sympathetic activity was high in group 2A (p < 0.0001). Stroke volume (SV) was high in group 2B (p < 0.0001). Conclusion Stage 1 hypertension is a stage of increased sympathetic activity, leading to increased LVEF and hypertension (resetting of baroreceptors); stage 2 hypertension is a stage of normal sympathetic activity, increased LVEF, increased SV, and hypertension (possibly a stage of shift of renal equilibrium curve/renal output curve and blood pressure to a newer level).
Collapse
Affiliation(s)
- Tarun Saxena
- Senior Consultant, Department of Internal Medicine, Mittal Hospital and Research Centre, Ajmer, India.
| | - Sanjay Patidar
- Honorary Consultant, Mittal Hospital and Research Centre, Ajmer, India
| | - Manjari Saxena
- Department of Yoga and Physical Education, Mittal Hospital and Research Centre, Ajmer, India
| |
Collapse
|
23
|
Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clin Sci (Lond) 2015; 130:9-18. [DOI: 10.1042/cs20150654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.
Collapse
|
24
|
Padmanabhan TNC, Dani S, Chopra VK, Guha S, Vasnawala H, Ammar R. Prevalence of sympathetic overactivity in hypertensive patients - a pan India, non-interventional, cross sectional study. Indian Heart J 2014; 66:686-90. [PMID: 25634406 DOI: 10.1016/j.ihj.2014.10.421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/09/2014] [Indexed: 12/27/2022] Open
Affiliation(s)
- T N C Padmanabhan
- Department of Cardiology, Krishna Institute of Medical Science, Secunderabad, India
| | - Sameer Dani
- Department of Cardiology, Life Care Science, Ahmedabad, India
| | - V K Chopra
- Department of Cardiology, Medanta - The Medicity, Sector 38, Gurgaon, India
| | - Santanu Guha
- Department of Cardiology, Calcutta Medical College, Kolkata, India
| | - Hardik Vasnawala
- Department of Medical Affairs, AstraZeneca Pharma India Ltd., Bangalore, India.
| | - Raza Ammar
- Department of Medical Affairs, AstraZeneca Pharma India Ltd., Bangalore, India
| |
Collapse
|
25
|
Harhun MI, Povstyan OV, Albert AP, Nichols CM. ATP-evoked sustained vasoconstrictions mediated by heteromeric P2X1/4 receptors in cerebral arteries. Stroke 2014; 45:2444-50. [PMID: 25070962 DOI: 10.1161/strokeaha.114.005544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Current knowledge states that vasoconstrictor responses to ATP are mediated by rapidly desensitizing ligand-gated P2X1 receptors in vascular smooth muscle cells (VSMCs). However, ATP is implicated in contributing to pathological conditions involving sustained vasoconstrictor response such as cerebral vasospasm. The purpose of this study is to test the hypothesis that the stimulation of VSMC P2XR receptors (P2XRs) contributes to ATP-evoked sustained vasoconstrictions in rat middle cerebral arteries (RMCAs). METHODS Reverse transcription- polymerase chain reaction, Western blot, and immunocytochemistry were used to analyze expression of mRNA and proteins in RMCAs VSMCs. Ionic currents and calcium responses were investigated using patch-clamp and confocal imaging techniques, respectively. Functional responses were confirmed using wire myography. RESULTS Expression of mRNA and protein for P2X1R and P2X4R subunits was identified in RMCA VSMCs. Confocal imaging in fluo-3-loaded VSMCs showed that ATP and a selective P2XR agonist, αβmeATP, evoked similar dose-dependent increases in [Ca(2+)]i. Patch-clamp experiments identified 2 components of P2XR-mediated currents: consisting of a fast desensitizing phase mediated by homomeric P2X1Rs and a slowly desensitizing phase involving heteromeric P2X1/4Rs. Isometric tension measurements showed that ≈80%:20% of initial ATP-evoked vasoconstriction in RMCA is mediated by homomeric P2X1Rs and heteromeric P2X1/4Rs, respectively. The sustained slowly desensitizing and rapidly recovering from desensitization responses are mediated by heteromeric P2X1/4Rs. CONCLUSIONS This study reveals for the first time that apart from rapidly desensitizing homomeric P2X1Rs, heteromeric P2X1/4Rs contribute to the sustained component of the purinergic-mediated vasoconstriction in RMCA. Our study, therefore, identifies possible novel targets for therapeutical intervention in cerebral circulation.
Collapse
Affiliation(s)
- Maksym I Harhun
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.).
| | - Oleksandr V Povstyan
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| | - Anthony P Albert
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| | - Claire M Nichols
- From the Division of Biomedical Sciences, St George's, University of London, London, United Kingdom (M.I.H., O.V.P., A.P.A., C.M.N.); and Laboratory of Molecular Pharmacology and Biophysics of Cell Signalling, Bogomoletz Institute of Physiology, Kyiv, Ukraine (O.V.P.)
| |
Collapse
|
26
|
Abstract
Hypertension is a complex and multifaceted disease, and there are well established sex differences in many aspects of blood pressure (BP) control. The intent of this review is to highlight recent work examining sex differences in the molecular mechanisms of BP control in hypertension to assess whether the "one-size-fits-all" approach to BP control is appropriate with regard to sex.
Collapse
|
27
|
Effects of moderate-intensity aerobic cycling and swim exercise on post-exertional blood pressure in healthy young untrained and triathlon-trained men and women. Clin Sci (Lond) 2013; 125:543-53. [PMID: 23763298 DOI: 10.1042/cs20120508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aerobic exercises such as running, walking and cycling are known to elicit a PEH (post-exercise hypotensive) response in both trained and UT (untrained) subjects. However, it is not known whether swim exercise produces a similar effect in normotensive individuals. The complex acute physiological responses to water immersion suggest swimming may affect BP (blood pressure) differently than other forms of aerobic exercises. We tested the hypothesis that an acute bout of swimming would fail to elicit a PEH BP response compared with an equivalent bout of stationary cycling, regardless of training state. We studied 11 UT and ten triathlon-trained young healthy normotensive [SBP/DBP (systolic BP/diastolic BP) <120/80 mmHg)] men and women (age 23±1 years) who underwent 30 min of intensity-matched cycling and swimming sessions to assess changes in BP during a 75-min seated recovery. CO (cardiac output), SV (stroke volume), TPR (total peripheral resistance), HR (heart rate), HRV (HR variability) and core and skin temperature were also assessed. In UT subjects, PEH was similar between cycling (-3.1±1 mmHg) and swimming (-5.8±1 mmHg), with the greater magnitude of PEH following swimming, reflecting a significant fall in SV between modalities (P<0.05). Trained individuals did not exhibit a PEH response following swimming (0.3±1 mmHg), yet had a significant fall in SBP at 50 min post-cycling exercise (-3.7±1 mmHg) (P<0.05). The absence of PEH after swimming in the trained group may reflect a higher cardiac sympathetic outflow [as indicated by the LF (low-frequency) spectral component of HRV) (25 and 50 min) (P<0.05)] and a slower return of vagal tone, consistent with a significant increase in HR between modalities at all time points (P<0.05). These results suggest that training may limit the potential for an effective post-exertional hypotensive response to aerobic swimming.
Collapse
|
28
|
Soto-Pantoja DR, Stein EV, Rogers NM, Sharifi-Sanjani M, Isenberg JS, Roberts DD. Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 2013; 17:89-103. [PMID: 23101472 PMCID: PMC3564224 DOI: 10.1517/14728222.2013.733699] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION CD47 is a ubiquitously expressed cell surface receptor that serves as a counter-receptor for SIRPα in recognition of self by the innate immune system. Independently, CD47 also functions as an important signaling receptor for regulating cell responses to stress. AREAS COVERED We review the expression, molecular interactions, and pathophysiological functions of CD47 in the cardiovascular and immune systems. CD47 was first identified as a potential tumor marker, and we examine recent evidence that its dysregulation contributes to cancer progression and evasion of anti-tumor immunity. We further discuss therapeutic strategies for enhancing or inhibiting CD47 signaling and applications of such agents in preclinical models of ischemia and ischemia/reperfusion injuries, organ transplantation, pulmonary hypertension, radioprotection, and cancer. EXPERT OPINION Ongoing studies are revealing a central role of CD47 for conveying signals from the extracellular microenvironment that limit cell and tissue survival upon exposure to various types of stress. Based on this key function, therapeutics targeting CD47 or its ligands thrombospondin-1 and SIRPα could have broad applications spanning reconstructive surgery, engineering of tissues and biocompatible surfaces, vascular diseases, diabetes, organ transplantation, radiation injuries, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
- David R. Soto-Pantoja
- Cancer Research Training Award Fellow, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500
| | - Erica V. Stein
- Predoctoral Cancer Research Training Award Fellow, Laboratoryof Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500 and Microbiology and Immunology Program of the Institute for Biomedical Sciences, Departments of Microbiology, Immunology and Tropical Medicine, George Washington University, 2300 Eye St., N.W., Ross Hall, Washington, D.C. 20037
| | - Natasha M. Rogers
- Visiting Research Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Maryam Sharifi-Sanjani
- Post-doctoral Fellow, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1200, 200 Lothrop Street, Pittsburgh, PA 15261
| | - Jeffrey S. Isenberg
- Associate Professor of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Room E1258, 200 Lothrop Street, Pittsburgh, PA 15261
| | - David D. Roberts
- Chief, Biochemical Pathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2A33, Bethesda, MD 20892-1500
| |
Collapse
|
29
|
Roysommuti S, Wyss JM. Perinatal taurine exposure affects adult arterial pressure control. Amino Acids 2012; 46:57-72. [PMID: 23070226 DOI: 10.1007/s00726-012-1417-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 10/04/2012] [Indexed: 12/13/2022]
Abstract
Taurine is an abundant, free amino acid found in mammalian cells that contributes to many physiologic functions from that of a simple cell osmolyte to a programmer of adult health and disease. Taurine's contribution extends from conception throughout life, but its most critical exposure period is during perinatal life. In adults, taurine supplementation prevents or alleviates cardiovascular disease and related complications. In contrast, low taurine consumption coincides with increased risk of cardiovascular disease, obesity and type II diabetes. This review focuses on the effects that altered perinatal taurine exposure has on long-term mechanisms that control adult arterial blood pressure and could thereby contribute to arterial hypertension through its ability to program these cardiovascular regulatory mechanisms very early in life. The modifications of these mechanisms can last a lifetime and transfer to the next generation, suggesting that epigenetic mechanisms underlie the changes. The ability of perinatal taurine exposure to influence arterial pressure control mechanisms and hypertension in adult life appears to involve the regulation of growth and development, the central and autonomic nervous system, the renin-angiotensin system, glucose-insulin interaction and changes to heart, blood vessels and kidney function.
Collapse
Affiliation(s)
- Sanya Roysommuti
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | |
Collapse
|
30
|
Casey DP, Padilla J, Joyner MJ. α-adrenergic vasoconstriction contributes to the age-related increase in conduit artery retrograde and oscillatory shear. Hypertension 2012; 60:1016-22. [PMID: 22949528 DOI: 10.1161/hypertensionaha.112.200618] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aging is associated with increased retrograde and oscillatory shear in peripheral conduit arteries of humans. Although the mechanisms responsible for these age-related changes are not completely understood, augmented downstream α-adrenergic tone likely plays a significant role in this phenomenon. Therefore, in protocol 1, brachial artery diameter and blood velocity were measured via Doppler ultrasound during (1) rest (control), (2) endogenous norepinephrine release via intra-arterial infusions of tyramine, and (3) α-adrenergic blockade via infusions of phentolamine in young healthy humans (n=12). Tyramine increased brachial artery retrograde (-4.0±1.4 to -9.5±1.4 s(-1)) and oscillatory shear (0.05±0.02 to 0.18±0.05 arbitrary units), whereas phentolamine abolished retrograde and oscillatory shear (P<0.05). Additionally, in protocol 2, we examined brachial artery shear patterns in young (n=12; 29±2 years) and older (n=13; 69±2 years) healthy adults during (1) rest (control), (2) sympathetic activation via lower body negative pressure, and (3) infusion of phentolamine. At rest, older adults exhibited greater brachial artery retrograde and oscillatory shear (-9.9±2.7 s(-1) and 0.11±0.03 arbitrary units, respectively) compared with younger adults (-3.1±1.0 s(-1) and 0.05±0.02 arbitrary units, respectively; P<0.05 for both). Lower body negative pressure increased retrograde and oscillatory shear in young (P<0.05), but not older adults (P=0.85-0.97), such that differences between young and older were eliminated (P>0.05). During infusion of phentolamine, retrograde and oscillatory shear were abolished in young adults (P<0.05) and markedly reduced, yet still persistent, in older adults (P<0.01). Our data indicate that α-adrenergic vasoconstriction is a major contributor to age-related discrepancies in conduit artery shear-rate patterns at rest.
Collapse
Affiliation(s)
- Darren P Casey
- Department of Anesthesiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
31
|
Cardiovascular side-effects of antipsychotic drugs: The role of the autonomic nervous system. Pharmacol Ther 2012; 135:113-22. [DOI: 10.1016/j.pharmthera.2012.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 04/08/2012] [Indexed: 01/27/2023]
|
32
|
Barnes JN, Matzek LJ, Charkoudian N, Joyner MJ, Curry TB, Hart EC. Association of cardiac baroreflex sensitivity with blood pressure transients: influence of sex and menopausal status. Front Physiol 2012; 3:187. [PMID: 22701103 PMCID: PMC3369369 DOI: 10.3389/fphys.2012.00187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
The magnitude of decrease in blood pressure (BP) during a vasoactive drug bolus may be associated with the calculated baroreflex sensitivity (BRS). The purpose of the present study was to evaluate whether sympathetic and/or cardiac BRS relates to the extent of change in BP and whether this was altered by sex hormones. Fifty-one young women (27 ± 1 years), 14 older women (58 ± 1 years), and 36 young men (27 ± 1 years) were studied. Heart rate, BP, and muscle sympathetic nerve activity (MSNA) were monitored. Sympathetic BRS was analyzed using the slope of the MSNA-diastolic blood pressure (DBP) relationship and cardiac BRS was analyzed using the R–R interval-systolic blood pressure (SBP) relationship. Young women and men had similar mean arterial pressures (MAP, 91 ± 1 vs. 90 ± 1 mmHg), cardiac BRS (19 ± 1 vs. 21 ± 2 ms/mmHg), and sympathetic BRS (−6 ± 1 vs. −7 ± 1 AU/beat/mmHg), respectively. Older women had higher MAP (104 ± 4 mmHg, p < 0.05) and lower cardiac BRS (7 ± 1 ms/mmHg, p < 0.05), but similar sympathetic BRS (−8 ± 1 AU/beat/mmHg). There was no association between BP transients with either cardiac or sympathetic BRS in young women. In the older women, the drop in SBP, DBP, and MAP were associated with cardiac BRS (r = 0.60, r = 0.59, and r = 0.70, respectively; p < 0.05), but not sympathetic BRS. The decrease in SBP was positively related to cardiac BRS in young men (r = 0.41; p < 0.05). However, there was no relationship between the decrease in BP and sympathetic BRS. This indicates that older women and young men with low cardiac BRS have larger transients in BP during nitroprusside. This suggests a more prominent role for cardiac (as opposed to sympathetic) BRS in responding to acute BP changes in young men and older women. The fact that these relationships do not exist in young women suggest that the female sex hormones influence baroreflex responses.
Collapse
Affiliation(s)
- Jill N Barnes
- Human Integrative Physiology Laboratory, Department of Anesthesiology, Mayo Clinic, Rochester MN, USA
| | | | | | | | | | | |
Collapse
|
33
|
Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond) 2012; 123:53-72. [PMID: 22455350 PMCID: PMC3315178 DOI: 10.1042/cs20110627] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pre-eclampsia is increasingly recognized as more than an isolated disease of pregnancy. Women who have had a pregnancy complicated by pre-eclampsia have a 4-fold increased risk of later cardiovascular disease. Intriguingly, the offspring of affected pregnancies also have an increased risk of higher blood pressure and almost double the risk of stroke in later life. Experimental approaches to identify the key features of pre-eclampsia responsible for this programming of offspring cardiovascular health, or the key biological pathways modified in the offspring, have the potential to highlight novel targets for early primary prevention strategies. As pre-eclampsia occurs in 2–5% of all pregnancies, the findings are relevant to the current healthcare of up to 3 million people in the U.K. and 15 million people in the U.S.A. In the present paper, we review the current literature that concerns potential mechanisms for adverse cardiovascular programming in offspring exposed to pre-eclampsia, considering two major areas of investigation: first, experimental models that mimic features of the in utero environment characteristic of pre-eclampsia, and secondly, how, in humans, offspring cardiovascular phenotype is altered after exposure to pre-eclampsia. We compare and contrast the findings from these two bodies of work to develop insights into the likely key pathways of relevance. The present review and analysis highlights the pivotal role of long-term changes in vascular function and identifies areas of growing interest, specifically, response to hypoxia, immune modification, epigenetics and the anti-angiogenic in utero milieu.
Collapse
|
34
|
Vianna LC, Hart EC, Fairfax ST, Charkoudian N, Joyner MJ, Fadel PJ. Influence of age and sex on the pressor response following a spontaneous burst of muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol 2012; 302:H2419-27. [PMID: 22427525 DOI: 10.1152/ajpheart.01105.2011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic nervous system is critical for the beat-to-beat regulation of arterial blood pressure (BP). Although studies have examined age- and sex-related effects on BP control, findings are inconsistent and limited data are available in postmenopausal women. In addition, the majority of studies have focused on time-averaged responses without consideration for potential beat-to-beat alterations. Thus we examined whether the ability of muscle sympathetic nerve activity (MSNA) to modulate BP on a beat-to-beat basis is affected by age or sex. BP and MSNA were measured during supine rest in 40 young (20 men) and 40 older (20 men) healthy subjects. Beat-to-beat fluctuations in mean arterial pressure (MAP) were characterized for 15 cardiac cycles after each MSNA burst using signal averaging. The rise in MAP following an MSNA burst was similar between young men and women (+2.64 ± 0.3 vs. +2.57 ± 0.3 mmHg, respectively). However, the magnitude of the increase in MAP after an MSNA burst was reduced in older compared with young subjects (P < 0.05). Moreover, the attenuation of the pressor response was greater in older women (+1.20 ± 0.1 mmHg) compared with older men (+1.72 ± 0.2 mmHg; P < 0.05). Interestingly, in all groups, MAP consistently decreased after cardiac cycles without MSNA bursts (nonbursts) with the magnitude of fall greatest in older men. In summary, healthy aging is associated with an attenuated beat-to-beat increase in BP after a spontaneous MSNA burst, and this attenuation is more pronounced in postmenopausal women. Furthermore, our nonburst findings highlight the importance of sympathetic vasoconstrictor activity to maintain beat-to-beat BP, particularly in older men.
Collapse
Affiliation(s)
- Lauro C Vianna
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|