1
|
Buxton ILO, Asif H, Barnett SD. β3 Receptor Signaling in Pregnant Human Myometrium Suggests a Role for β3 Agonists as Tocolytics. Biomolecules 2023; 13:1005. [PMID: 37371585 DOI: 10.3390/biom13061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm labor leading to preterm birth is the leading cause of infant morbidity and mortality. At the present time, nothing can reliably halt labor once it begins. The knowledge that agonists of the β2 adrenergic receptor relax airway smooth muscle and are effective in the treatment of asthma led to the notion that β2 mimetics would prevent preterm birth by relaxing uterine smooth muscle. The activation of cAMP-dependent protein kinase by β2 receptors is unable to provide meaningful tocolysis. The failure of β2 agonists such as ritodrine and terbutaline to prevent preterm birth suggests that the regulation of uterine smooth muscle is disparate from that of airway. Other smooth muscle quiescent-mediating molecules, such as nitric oxide, relax vascular smooth muscle in a cGMP-protein kinase G-dependent manner; however, nitric oxide activation of protein kinase G fails to explain the relaxation of the myometrium to nitric oxide. Moreover, nitric oxide-mediated relaxation is blunted in preterm labor, and thus, for this reason and because of the fall in maternal blood pressure, nitric oxide cannot be employed as a tocolytic. The β3 adrenergic receptor-mediated relaxation of the human myometrium is claimed to be cAMP-dependent protein kinase-dependent. This is scientifically displeasing given the failure of β2 agonists as tocolytics and suggests a non-canonical signaling role for β3AR in myometrium. The addition of the β3 agonist mirabegron to pregnant human myometrial strips in the tissue bath relaxes oxytocin-induced contractions. Mirabegron stimulates nitric oxide production in myometrial microvascular endothelial cells, and the relaxation of uterine tissue in vitro is partially blocked by the addition of the endothelial nitric oxide synthase blocker Nω-Nitro-L-arginine. Recent data suggest that both endothelial and smooth muscle cells respond to β3 stimulation and contribute to relaxation through disparate signaling pathways. The repurposing of approved medications such as mirabegron (Mybetriq™) tested in human myometrium as uterine tocolytics can advance the prevention of preterm birth.
Collapse
Affiliation(s)
- Iain L O Buxton
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Hazik Asif
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Scott D Barnett
- Myometrial Function Group, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
2
|
A new look at the role of nitric oxide in preeclampsia: protein S-nitrosylation. Pregnancy Hypertens 2022; 29:14-20. [DOI: 10.1016/j.preghy.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/19/2022]
|
3
|
Gyselaers W. Hemodynamic pathways of gestational hypertension and preeclampsia. Am J Obstet Gynecol 2022; 226:S988-S1005. [PMID: 35177225 DOI: 10.1016/j.ajog.2021.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022]
Abstract
Gestational hypertension and preeclampsia are the 2 main types of hypertensive disorders in pregnancy. Noninvasive maternal cardiovascular function assessment, which helps obtain information from all the components of circulation, has shown that venous hemodynamic dysfunction is a feature of preeclampsia but not of gestational hypertension. Venous congestion is a known cause of organ dysfunction, but its potential role in the pathophysiology of preeclampsia is currently poorly investigated. Body water volume expansion occurs in both gestational hypertension and preeclampsia, and this is associated with the common feature of new-onset hypertension after 20 weeks of gestation. Blood pressure, by definition, is the product of intravascular volume load and vascular resistance (Ohm's law). Fundamentally, hypertension may present as a spectrum of cardiovascular states varying between 2 extremes: one with a predominance of raised cardiac output and the other with a predominance of increased total peripheral resistance. In clinical practice, however, this bipolar nature of hypertension is rarely considered, despite the important implications for screening, prevention, management, and monitoring of disease. This review summarizes the evidence of type-specific hemodynamic profiles in the latent and clinical stages of hypertensive disorders in pregnancy. Gestational volume expansion superimposed on an early gestational closed circulatory circuit in a pressure- or volume-overloaded condition predisposes a patient to the gradual deterioration of overall circulatory function, finally presenting as gestational hypertension or preeclampsia-the latter when venous dysfunction is involved. The eventual phenotype of hypertensive disorder is already predictable from early gestation onward, on the condition of including information from all the major components of circulation into the maternal cardiovascular assessment: the heart, central and peripheral arteries, conductive and capacitance veins, and body water content. The relevance of this approach, outlined in this review, openly invites for more in-depth research into the fundamental hemodynamics of gestational hypertensive disorders, not only from the perspective of the physiologist or the scientist, but also in assistance of clinicians toward understanding and managing effectively these severe complications of pregnancy.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics, Ziekenhuis Oost-Limburg, Genk, Belgium; and Faculty of Medicine and Life Sciences, Department Physiology, Hasselt University, Belgium.
| |
Collapse
|
4
|
Xue M, Shi Y, Pang A, Men L, Hu Y, Zhou P, Long G, Tian X, Wang R, Zhao Y, Liao X, Shen Y, Cui Y. Corin plays a protective role via upregulating MAPK and downregulating eNOS in diabetic nephropathy endothelial dysfunction. FASEB J 2019; 34:95-106. [PMID: 31914697 DOI: 10.1096/fj.201900531rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients, but its pathogenesis is unclear. We aimed to study the role of the pro-ANP convertase Corin in the pathogenesis of DN. Corin and ANP expression in DN rat kidneys and high-glucose-treated HK-2 cells was analyzed by real-time PCR, western blotting, and immunohistochemical staining. The effect of Corin-siRNA or ANP-siRNA HK-2 cells on EA.hy926 cell migration was determined by scratch-wound healing assay. The expression of mitogen-activated protein kinase (MAPK) and endothelial NO synthase (eNOS) in EA.hy926 cells treated with conditioned medium from Corin-siRNA- or ANP-siRNA-transfected HK-2 cells was determined by western blotting. We found a significant reduction in Corin and ANP expression in DN rat kidneys. These results were recapitulated in HK-2 cells treated with high glucose. EA.hy926 cells treated with conditioned medium from Corin-deficient HK-2 cells had inhibited migration, increased MAPK activity, and decreased eNOS activity. Similar effects were observed with ANP-siRNA transfection. Finally, adding ANP to the Corin-deficient HK-2 conditioned medium rescued the above defects, indicating that Corin mediates its effects through ANP. In conclusion, Corin plays a renoprotective role through pro-ANP processing, and defects in Corin cause endothelial dysfunction through MAPK and eNOS signaling in DN.
Collapse
Affiliation(s)
- Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yue Shi
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Men
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Xin Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Rong Wang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Liao
- Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Guerby P, Swiader A, Augé N, Parant O, Vayssière C, Uchida K, Salvayre R, Negre-Salvayre A. High glutathionylation of placental endothelial nitric oxide synthase in preeclampsia. Redox Biol 2019; 22:101126. [PMID: 30738311 PMCID: PMC6370867 DOI: 10.1016/j.redox.2019.101126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Decreased nitric oxide (NO) bioavailability plays a critical role in the pathophysiology of preeclampsia (PE). Recent evidence indicates that S-glutathionylation may occur on the endothelial nitric oxide synthase (eNOS), leading to eNOS uncoupling, characterized by a decreased NO production and an increased generation of superoxide anion (O2•-). We hypothesized that eNOS glutathionylation may occur in PE placentas and participate in eNOS dysfunction. The glutathionylation of eNOS was investigated in thirteen PE-affected patients and in nine normal pregnancies. Immunofluorescence, confocal microscopy and western-blot experiments carried out on eNOS immunoprecipitates, revealed a high level of eNOS glutathionylation in PE placentas, mostly reversed by dithiotreitol (DTT), thus indicative of S-glutathionylation. In order to investigate whether eNOS glutathionylation may alter trophoblast migration, an important event occurring during early placentation, cultured HTR-8/SVneo human trophoblasts (HTR8) were exposed either to low pO2 (O2 1%) or to pO2 changes (O2 1-20%), in order to generate oxidative stress. Trophoblasts exposed to low pO2, did not undergo oxidative stress nor eNOS S-glutathionylation, and were able to generate NO and migrate in a wound closure model. In contrast, trophoblasts submitted to low/high pO2 changes, exhibited oxidative stress and a (DTT reversible) S-glutathionylation of eNOS, associated with reduced NO production and migration. The autonomous production of NO seemed necessary for the migratory potential of HTR8, as suggested by the inhibitory effect of eNOS silencing by small interfering RNAs, and the eNOS inhibitor L-NAME, in low pO2 conditions. Finally, the addition of the NO donor, NOC-18 (5 µM), restored in part the migration of HTR8, thereby emphasizing the role of NO in trophoblast homeostasis. In conclusion, the high level of eNOS S-glutathionylation in PE placentas provides new insights in the mechanism of eNOS dysfunction in this disease.
Collapse
Affiliation(s)
- Paul Guerby
- Inserm U-1048, Université de Toulouse, France; Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | | | | | - Olivier Parant
- Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Christophe Vayssière
- Pôle de gynécologie obstétrique, Hôpital Paule-de-Viguier, CHU de Toulouse, France
| | - Koji Uchida
- Laboratory of Food Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
6
|
Abstract
Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.
Collapse
|