1
|
Feng Y, Yin L, Li Y. BDNF-mediated depressor response by direct baroreceptor activation benefits for prevention and control of hypertension in high-latitude cold region. Neuropeptides 2025; 111:102506. [PMID: 40037144 DOI: 10.1016/j.npep.2025.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Brian-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling impacts on neuronal and cardiovascular physiology; however, its role in neurocontrol of circulation via baroreflex afferent pathway is largely unknown. Gene and protein expression of BDNF/TrkB were detected in the nodose (NG) and nucleus of tractus solitary (NTS) and expression levels were higher in male compared with female rats, which is relevant well with the blood pressure (BP, males > females in average). Microinjection of BDNF into NG dose-dependently reduced BP and this reduction was more dramatic in shamed control vs. renovascular hypertension (RVH) model rats, which partially inhibited in the presence of TrkB inhibitor K252a, indicating that BDNF-TrkB tends to lower BP under physiological and hypertensive conditions due presumably to a negative feed-back control by BP or compensatory mechanism. To answer this question, expression profiles for BDNF-TrkB were tested in the tissue of NG and NTS collected from RVH model rats. Consistently, the expression of both BDNF-TrkB were significantly up-regulated in RVH model alone with the elevation of BP. Taken these data together, our observation provides direct evidence showing the fundamental role of BDNF-TrkB signaling in autonomic control of BP regulation through baroreflex afferent function, potentially dominant role of BDNF-TrkB-mediated BP reduction in vivo baroreceptor activation due to distinct cellular mechanism compared with their role in the NTS, which extends our understanding of activity-dependent or compensatory mechanism of BDNF-TrkB in response to BP change, and sheds new light of BDNF-TrkB as potential target in prevention and control of hypertension in cold-region.
Collapse
Affiliation(s)
- Yan Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Lei Yin
- Department of Pharmacy, the 3(rd) Affiliated Hospital of Harbin medical University, Harbin, China
| | - Ying Li
- Department of Pharmacy, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China.
| |
Collapse
|
2
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
3
|
Lee S, Cheong Y, Ryu Y, Kosaka H, Jung M. Vasotocin receptor gene genotypes moderate the relationship between cortical thickness and sensory processing. Transl Psychiatry 2023; 13:356. [PMID: 37990008 PMCID: PMC10663457 DOI: 10.1038/s41398-023-02657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Sensory processing is the process by which the central nervous system gathers, interprets, and regulates sensory stimuli in response to environmental cues. However, our understanding of the genetic factors and neuroanatomical correlations that influence sensory processing is limited. The vasotocin system modulates sensory input responsiveness, making it a potential candidate for further investigation. Additionally, human neuroimaging studies have demonstrated that the ability to modulate sensory stimuli is related to neuroanatomical features such as cortical thickness. Therefore, this study aimed to examine the relationship between functional polymorphisms in vasotocin receptor (VTR) genes, sensory profiles, and neuroanatomical correlations. We used structural magnetic resonance imaging (MRI) and the Adolescent/Adult Sensory Profile (AASP) questionnaire in 98 healthy adult participants to assess sensory processing and identified seven single nucleotide polymorphisms. We found that A-allele carriers of rs1042615 in VTR had higher scores for "sensory sensitivity" and "sensation avoiding". Moreover, higher scores for three AASP subscales were associated with decreased cortical thickness in various regions, including the right precentral, paracentral, and fusiform gyri, as well as bilateral inferior temporal gyri. This study sheds light on the potential role of genetic variations in the VTR in modulating sensory processing and correlation with cortical thickness which has future implications for better understanding sensory abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Seonkyoung Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yongjeon Cheong
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yeseul Ryu
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui, Japan.
- Division of Developmental Higher Brain Functions, United Graduate School of Child Development, University of Fukui, Eiheiji, Japan.
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, Republic of Korea.
| |
Collapse
|
4
|
Zhang C, Lin Y, Wu Q, Yan C, Wong MW, Zeng F, Zhu P, Bowes K, Lee K, Zhang X, Song Z, Lin S, Shi Y. Arcuate NPY is involved in salt‐induced hypertension via modulation of paraventricular vasopressin and brain‐derived neurotrophic factor. J Cell Physiol 2022; 237:2574-2588. [PMID: 35312067 PMCID: PMC9544553 DOI: 10.1002/jcp.30719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt‐induced hypertension. Here, we demonstrate that wild‐type mice given 2% NaCl salt water for 8 weeks developed hypertension which was associated with marked downregulation of NPY expression in the hypothalamic Arc as demonstrated in NPY‐GFP reporter mice as well as by in situ hybridization analysis. Furthermore, salt intake activates neurons in the hypothalamic paraventricular nucleus (PVN) where mRNA expression of brain‐derived neurotrophic factor (BDNF) and vasopressin was found to be upregulated, leading to elevated serum vasopressin levels. This finding suggests an inverse correlation between the Arc NPY level and expression of vasopressin and BDNF in the PVN. Specific restoration of NPY by injecting AAV‐Cre recombinase into the Arc only of the NPY‐targeted mutant mice carrying a loxP‐flanked STOP cassette reversed effects of salt intake on vasopressin and BDNF expression, leading to a normalization of salt‐dependent blood pressure. In summary, our study uncovers an important Arc NPY‐originated neuronal circuitry that could sense and respond to peripheral electrolyte signals and thereby regulate hypertension via vasopressin and BDNF in the PVN.
Collapse
Affiliation(s)
- Chen‐Liang Zhang
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yi‐Zhang Lin
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Qi Wu
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Chenxu Yan
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Matthew Wai‐Kin Wong
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Fan Zeng
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Ping Zhu
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Kelsey Bowes
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Kailun Lee
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Xuan Zhang
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
| | - Zhi‐Yuan Song
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- The Second Affiliated Hospital Fujian Medical University Quanzhou China
| | - Yan‐Chuan Shi
- Group of Neuroendocrinology, Diabetes and Metabolism Division Garvan Institute of Medical Research Sydney New South Wales Australia
- St Vincent's Clinical School UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
5
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
6
|
Levi DI, Wyrosdic JC, Hicks AI, Andrade MA, Toney GM, Prager-Khoutorsky M, Bourque CW. High dietary salt amplifies osmoresponsiveness in vasopressin-releasing neurons. Cell Rep 2021; 34:108866. [PMID: 33730577 PMCID: PMC8049100 DOI: 10.1016/j.celrep.2021.108866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 04/13/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
High dietary salt increases arterial pressure partly through activation of magnocellular neurosecretory cells (MNCVP) that secrete the antidiuretic and vasoconstrictor hormone vasopressin (VP) into the circulation. Here, we show that the intrinsic and synaptic excitation of MNCVP caused by hypertonicity are differentially potentiated in two models of salt-dependent hypertension in rats. One model combined salty chow with a chronic subpressor dose of angiotensin II (AngII-salt), the other involved replacing drinking water with 2% NaCl (salt loading, SL). In both models, we observed a significant increase in the quantal amplitude of EPSCs on MNCVP. However, model-specific changes were also observed. AngII-salt increased the probability of glutamate release by osmoreceptor afferents and increased overall excitatory network drive. In contrast, SL specifically increased membrane stiffness and the intrinsic osmosensitivity of MNCVP. These results reveal that dietary salt increases the excitability of MNCVP through effects on the cell-autonomous and synaptic osmoresponsiveness of MNCVP.
Collapse
Affiliation(s)
- David I Levi
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Joshua C Wyrosdic
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada
| | - Amirah-Iman Hicks
- Department of Physiology, McGill University, 3644 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Centre San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Centre San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Masha Prager-Khoutorsky
- Department of Physiology, McGill University, 3644 Promenade Sir William Osler, Montreal, QC H3G1Y6, Canada.
| | - Charles W Bourque
- Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G1A4, Canada.
| |
Collapse
|
7
|
High Salt Intake Recruits Tonic Activation of NR2D Subunit-Containing Extrasynaptic NMDARs in Vasopressin Neurons. J Neurosci 2020; 41:1145-1156. [PMID: 33303677 DOI: 10.1523/jneurosci.1742-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
In addition to producing a classical excitatory postsynaptic current via activation of synaptic NMDA receptors (NMDARs), glutamate in the brain also induces a tonic NMDAR current (I NMDA) via activation of extrasynaptic NMDARs (eNMDARs). However, since Mg2+ blocks NMDARs in nondepolarized neurons, the potential contribution of eNMDARs to the overall neuronal excitatory/inhibitory (E/I) balance remains unknown. Here, we demonstrate that chronic (7 d) salt loading (SL) recruited NR2D subunit-containing NMDARs to generate an Mg2+-resistant tonic I NMDA in nondepolarized [V h (holding potential) -70 mV] vasopressin (VP; but not oxytocin) supraoptic nucleus (SON) neurons in male rodents. Conversely, in euhydrated (EU) and 3 d SL mice, Mg2+-resistant tonic I NMDA was not observed. Pharmacological and genetic intervention of NR2D subunits blocked the Mg2+-resistant tonic I NMDA in VP neurons under SL conditions, while an NR2B antagonist unveiled Mg2+-sensitive tonic I NMDA but not Mg2+-resistant tonic I NMDA In the EU group VP neurons, an Mg2+-resistant tonic I NMDA was not generated by increased ambient glutamate or treatment with coagonists (e.g., d-serine and glycine). Chronic SL significantly increased NR2D expression but not NR2B expression in the SON relative to the EU group or after 3 d under SL conditions. Finally, Mg2+-resistant tonic I NMDA selectively upregulated neuronal excitability in VP neurons under SL conditions, independent of ionotropic GABAergic input. Our results indicate that the activation of NR2D-containing NMDARs constitutes a novel mechanism that generates an Mg2+-resistant tonic I NMDA in nondepolarized VP neurons, thus causing an E/I balance shift in VP neurons to compensate for the hormonal demands imposed by a chronic osmotic challenge.SIGNIFICANCE STATEMENT The hypothalamic supraoptic nucleus (SON) consists of two different types of magnocellular neurosecretory cells (MNCs) that synthesize and release the following two peptide hormones: vasopressin (VP), which is necessary for regulation of fluid homeostasis; and oxytocin (OT), which plays a major role in lactation and parturition. NMDA receptors (NMDARs) play important roles in shaping neuronal firing patterns and hormone release from the SON MNCs in response to various physiological challenges. Our results show that prolonged (7 d) salt loading generated a Mg2+-resistant tonic NMDA current mediated by NR2D subunit-containing receptors, which efficiently activated nondepolarized VP (but not OT) neurons. Our findings support the hypothesis that NR2D subunit-containing NMDARs play an important adaptive role in adult brain in response to a sustained osmotic challenge.
Collapse
|
8
|
Prior exposure to placental ischemia causes increased salt sensitivity of blood pressure via vasopressin production and secretion in postpartum rats. J Hypertens 2020; 37:1657-1667. [PMID: 30950978 DOI: 10.1097/hjh.0000000000002091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Women with a history of preeclampsia exhibit increased salt sensitivity of blood pressure at postpartum, which might be responsible for their increased risk of future cardiovascular diseases. However, it is unclear whether preeclampsia can cause increased salt sensitivity at postpartum. Vasopressin may play a role in the pathogenesis of preeclampsia and salt-sensitive hypertension. Therefore, the aim of this study was to determine whether the exposure to preeclampsia, as elicited by placental ischemia, causes increased salt sensitivity at postpartum, and if so, whether vasopressin is involved in its process. METHODS AND RESULTS We used a reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. Pregnant Sprague-Dawley rats were categorized into the following two groups: RUPP-operated and sham-operated (SHAM) control groups. A 1-week-long high-salt diet was initiated at 3 weeks postpartum. The high-salt diet-induced increase in mean arterial pressure was significantly greater in the RUPP group than in the SHAM group. In addition, the plasma levels of copeptin, a substitute for plasma vasopressin, increased and serum osmolality decreased in the RUPP group. Double immunostaining revealed that the expression of c-Fos, a marker of neural activity, in vasopressin-producing neurons and presympathetic neurons in the hypothalamic paraventricular nucleus was significantly elevated in the RUPP group. The oral administration of conivaptan, the dual V1a/V2 vasopressin receptor antagonist, during high-salt diet abolished the enhanced increase in mean arterial pressure in RUPP rats. CONCLUSION Prior exposure to placental ischemia causes increased salt sensitivity of blood pressure at postpartum probably due to enhanced vasopressin production and secretion.
Collapse
|
9
|
Unique Organization of Actin Cytoskeleton in Magnocellular Vasopressin Neurons in Normal Conditions and in Response to Salt-Loading. eNeuro 2020; 7:ENEURO.0351-19.2020. [PMID: 32209611 PMCID: PMC7189486 DOI: 10.1523/eneuro.0351-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/04/2022] Open
Abstract
Magnocellular neurosecretory cells (MNCs) are intrinsically osmosensitive and can be activated by increases in blood osmolality, triggering the release of antidiuretic hormone vasopressin (VP) to promote water retention. Hence, the activity of magnocellular VP neurons is one of the key elements contributing to the regulation of body fluid homeostasis in healthy organisms. Chronic exposure to high dietary salt leads to excessive activation of VP neurons, thereby elevating levels of circulating VP, which can cause increases in blood pressure contributing to salt-dependent hypertension. However, the molecular basis underlying high-salt diet-induced hyperactivation of magnocellular VP neurons remains not fully understood. Previous studies suggest that magnocellular neurosecretory neurons contain a subcortical layer of actin filaments and pharmacological stabilization of this actin network potentiates osmotically-induced activation of magnocellular neurons. Using super-resolution imaging in situ, we investigated the organization of the actin cytoskeleton in rat MNCs under normal physiological conditions and after a chronic increase in blood osmolality following 7 d of salt-loading (SL). We found that, in addition to the subcortical layer of actin filaments, magnocellular VP neurons are endowed with a unique network of cytoplasmic actin filaments throughout their somata. Moreover, we revealed that the density of both subcortical and cytoplasmic actin networks in magnocellular VP neurons is dramatically increased following SL. These results suggest that increased osmo-responsiveness of VP neurons following chronic exposure to high dietary salt may be mediated by the modulation of unique actin networks in magnocellular VP neurons, possibly contributing to elevated blood pressure in this condition.
Collapse
|
10
|
Hicks AI, Barad Z, Sobrero A, Lean G, Jacob-Tomas S, Yang J, Choe KY, Prager-Khoutorsky M. Effects of salt loading on the organisation of microtubules in rat magnocellular vasopressin neurones. J Neuroendocrinol 2020; 32:e12817. [PMID: 31778225 DOI: 10.1111/jne.12817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
Magnocellular vasopressin (VP) neurones are activated by increases in blood osmolality, leading to the secretion of VP into the circulation to promote water retention in the kidney, thus constituting a key mechanism for the regulation of body fluid homeostasis. However, chronic high salt intake can lead to excessive activation of VP neurones and increased circulating levels of VP, contributing to an elevation in blood pressure. Multiple extrinsic factors, such as synaptic inputs and glial cells, modulate the activity of VP neurones. Moreover, magnocellular neurones are intrinsically osmosensitive, and are activated by hypertonicity in the absence of neighbouring cells or synaptic contacts. Hypertonicity triggers cell shrinking, leading to the activation of VP neurones. This cell-autonomous activation is mediated by a scaffold of dense somatic microtubules, uniquely present in VP magnocellular neurones. Treating isolated magnocellular neurones with drugs modulating microtubule stability modifies the sensitivity of neuronal activation in response to acute hypertonic stimuli. However, whether the microtubule network is altered in conditions associated with enhanced neuronal activation and increased VP release, such as chronic high salt intake, remains unknown. We examined the organisation of microtubules in VP neurones of the supraoptic and paraventricular hypothalamic nuclei (SON and PVN, respectively) of rats subjected to salt-loading (drinking 2% NaCl for 7 days). Using super-resolution imaging, we found that the density of microtubules in magnocellular VP neurones from the SON and PVN was significantly increased, whereas the density and organisation of microtubules remain unchanged in other hypothalamic neurones, as well as in neurones from other brain areas (e.g., hippocampus, cortex). We propose that the increase in microtubule density in magnocellular VP neurones in salt-loading promotes their enhanced activation, possibly contributing to elevated blood pressure in this condition.
Collapse
Affiliation(s)
| | - Zsuzsanna Barad
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Alberto Sobrero
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Graham Lean
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Jieyi Yang
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
11
|
Gonzalez AA, Salinas-Parra N, Cifuentes-Araneda F, Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. VITAMINS AND HORMONES 2019; 113:217-238. [PMID: 32138949 DOI: 10.1016/bs.vh.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vasopressin, also named antidiuretic hormone (ADH), arginine vasopressin (AVP) is the main hormone responsible for water maintenance in the body through the antidiuretic actions in the kidney. The posterior pituitary into the blood releases vasopressin formed in the hypothalamus. Hypothalamic osmotic neurons are responsible to initiate the cascade for AVP actions. The effects of AVP peptide includes activation of V2 receptors which stimulate the formation of cyclic AMP (cAMP) and phosphorylation of water channels aquaporin 2 (AQP2) in the collecting duct. AVP also has vasoconstrictor effects through V1a receptors in the vasculature, while V1b is found in the nervous system. V1a and b receptors increases intracellular Ca2+ while activation of V2 receptors of signaling pathways are related to cAMP-dependent phosphorylation in kidney collecting ducts acting in coordination to stimulate water and electrolyte homeostasis. AVP potentiate formation of intratubular angiotensin II (Ang II) through V2 receptors-dependent distal tubular renin formation, contributing to Na+ reabsorption. On the same way, Ang II receptors are able to potentiate the effects of V2-dependent stimulation of AQP2 abundance in the plasma membrane. The role of AVP in hypertension and renal disease has been demonstrated in pathological states with the involvement of V2 receptors in the progression of kidney damage in diabetes and also on the stimulation of intracellular pathways linked to the development of polycystic kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolas Salinas-Parra
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
12
|
Kurtz TW, DiCarlo SE, Pravenec M, Ježek F, Šilar J, Kofránek J, Morris RC. Testing Computer Models Predicting Human Responses to a High-Salt Diet. Hypertension 2019; 72:1407-1416. [PMID: 30571226 DOI: 10.1161/hypertensionaha.118.11552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, mathematical models of human integrative physiology, derived from Guyton's classic 1972 model of the circulation, have been used to investigate potential mechanistic abnormalities mediating salt sensitivity and salt-induced hypertension. We performed validation testing of 2 of the most evolved derivatives of Guyton's 1972 model, Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4, to determine whether the models accurately predict sodium balance and hemodynamic responses of normal subjects to increases in salt intake within the real-life range of salt intake in humans. Neither model, nor the 1972 Guyton model, accurately predicts the usual changes in sodium balance, cardiac output, and systemic vascular resistance that normally occur in response to clinically realistic increases in salt intake. Furthermore, although both contemporary models are extensions of the 1972 Guyton model, testing revealed major inconsistencies between model predictions with respect to sodium balance and hemodynamic responses of normal subjects to short-term and long-term salt loading. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models regarding the usual regulation of sodium balance, cardiac output, and vascular resistance in response to increased salt intake in normal salt-resistant humans. Accurate understanding of the normal responses to salt loading is a prerequisite for accurately establishing abnormal responses to salt loading. Accordingly, the present results raise concerns about the interpretation of studies of salt sensitivity with the various Guyton models. These findings indicate a need for continuing development of alternative models that incorporate mechanistic concepts of blood pressure regulation fundamentally different from those in the 1972 Guyton model and its contemporary derivatives.
Collapse
Affiliation(s)
- Theodore W Kurtz
- From the Department of Laboratory Medicine (T.W.K.), School of Medicine, University of California, San Francisco
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing (S.E.D.)
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague (M.P.)
| | - Filip Ježek
- Department of Cybernetics, Czech Technical University in Prague (F.J.).,Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jan Šilar
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jiří Kofránek
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - R Curtis Morris
- Department of Medicine (R.C.M.), School of Medicine, University of California, San Francisco
| |
Collapse
|
13
|
Long non-coding RNA and mRNA analysis of Ang II-induced neuronal dysfunction. Mol Biol Rep 2019; 46:3233-3246. [PMID: 30945068 DOI: 10.1007/s11033-019-04783-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/22/2019] [Indexed: 02/03/2023]
Abstract
The sustained activation of Angiotensin II (Ang II) induces the remodelling of neurovascular units, inflammation and oxidative stress reactions in the brain. Long non-coding RNAs (lncRNAs) play a crucial regulatory role in the pathogenesis of hypertensive neuronal damage. The present study aimed to substantially extend the list of potential candidate genes involved in Ang II-related neuronal damage. This study assessed apoptosis and energy metabolism with Annexin V/PI staining and a Seahorse assay after Ang II exposure in SH-SY5Y cells. The expression of mRNA and lncRNA was investigated by transcriptome sequencing. The integrated analysis of mRNA and lncRNAs and the molecular mechanism of Ang II on neuronal injury was analysed by bioinformatics. Ang II increased the apoptosis rate and reduced the energy metabolism of SH-SY5Y cells. The data showed that 702 mRNAs and 821 lncRNAs were differentially expressed in response to Ang II exposure (244 mRNAs and 432 lncRNAs were upregulated, 458 mRNAs and 389 lncRNAs were downregulated) (fold change ≥ 1.5, P < 0.05). GO and KEGG analyses showed that both DE mRNA and DE lncRNA were enriched in the metabolism, differentiation, apoptosis and repair of nerve cells. This is the first report of the lncRNA-mRNA integrated profile of SH-SY5Y cells induced by Ang II. The novel targets revealed that the metabolism of the vitamin B group, the synthesis of unsaturated fatty acids and glycosphingolipids are involved in the Ang II-related cognitive impairment. Sphingolipid metabolism, the Hedgehog signalling pathway and vasopressin-regulated water reabsorption play important roles in nerve damage.
Collapse
|
14
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
15
|
Ben-Ari Y. Oxytocin and Vasopressin, and the GABA Developmental Shift During Labor and Birth: Friends or Foes? Front Cell Neurosci 2018; 12:254. [PMID: 30186114 PMCID: PMC6110879 DOI: 10.3389/fncel.2018.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Oxytocin (OT) and vasopressin (AVP) are usually associated with sociability and reduced stress for the former and antidiuretic agent associated with severe stress and pathological conditions for the latter. Both OT and AVP play major roles during labor and birth. Recent contradictory studies suggest that they might exert different roles on the GABA excitatory/inhibitory developmental shift. We reported (Tyzio et al., 2006) that at birth, OT exerts a neuro-protective action mediated by an abrupt reduction of intracellular chloride levels ([Cl-]i) that are high in utero, reinforcing GABAergic inhibition and modulating the generation of the first synchronized patterns of cortical networks. This reduction of [Cl-]i levels is abolished in rodent models of Fragile X Syndrome and Autism Spectrum Disorders, and its restoration attenuates the severity of the pathological sequels, stressing the importance of the shift at birth (Tyzio et al., 2014). In contrast, Kaila and co-workers (Spoljaric et al., 2017) reported excitatory GABA actions before and after birth that are modulated by AVP but not by OT, challenging both the developmental shift and the roles of OT. Here, I analyze the differences between these studies and suggest that the ratio AVP/OT like that of excitatory/inhibitory GABA depend on stress and pathological conditions.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Neurochlore and Ben-Ari Institute of Neuroarcheology (IBEN), Marseille, France
| |
Collapse
|
16
|
The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens 2018; 27:83-92. [DOI: 10.1097/mnh.0000000000000394] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Gizowski C, Trudel E, Bourque CW. Central and peripheral roles of vasopressin in the circadian defense of body hydration. Best Pract Res Clin Endocrinol Metab 2017; 31:535-546. [PMID: 29224666 DOI: 10.1016/j.beem.2017.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vasopressin is a neuropeptide synthesized by specific subsets of neurons within the eye and brain. Studies in rats and mice have shown that vasopressin produced by magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis is released into the blood circulation where it serves as an antidiuretic hormone to promote water reabsorption from the kidney. Moreover vasopressin is a neurotransmitter and neuromodulator that contributes to time-keeping within the master circadian clock (i.e. the suprachiasmatic nucleus, SCN) and is also used as an output signal by SCN neurons to direct centrally mediated circadian rhythms. In this chapter, we review recent cellular and network level studies in rodents that have provided insight into how circadian rhythms in vasopressin mediate changes in water intake behavior and renal water conservation that protect the body against dehydration during sleep.
Collapse
Affiliation(s)
- Claire Gizowski
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| | - Eric Trudel
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| | - Charles W Bourque
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, QC, H3G1A4, Canada.
| |
Collapse
|