1
|
Chen Q, Wu C, Zhu J, Li E, Xu Z. Therapeutic potential of indole derivatives as anti-HIV agents: A mini-review. Curr Top Med Chem 2021; 22:993-1008. [PMID: 34636313 DOI: 10.2174/1568026621666211012111901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022]
Abstract
Acquired immunodeficiency syndrome (AIDS), caused by human immunodeficiency virus (HIV), is one of the leading causes of human deaths. The advent of different anti-HIV drugs over different disease progress has made AIDS/HIV from a deadly infection to chronic and manageable disease. However, the development of multidrug-resistant viruses, together with the severe side effects of anti-HIV agents, compromised their efficacy and limited the treatment options. Indoles, the most common frameworks in the bioactive molecules, represent attractive scaffolds for the design and development of novel drugs. Indole derivatives are potential inhibitors of HIV enzymes such as reverse transcriptase, integrase and protease, and some indole-based agents like Delavirdine have already been applied in clinics or under clinical evaluations for the treatment of AIDS/HIV, revealing that indole moiety is a useful template for the development of anti-HIV agents. This review focuses on the recent advancement of indole derivatives including indole alkaloids, hybrids, and dimers with anti-HIV potential, covering articles published between 2010 and 2020. The chemical structures, structure-activity relationship and mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Qingtai Chen
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, T2N 1N4 Calgary, Alberta. Canada
| | - Jinjin Zhu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, 463000. China
| | - Zhi Xu
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian, 463000. China
| |
Collapse
|
2
|
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry. Microorganisms 2021; 9:1286. [PMID: 34204725 PMCID: PMC8231586 DOI: 10.3390/microorganisms9061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.
Collapse
Affiliation(s)
- Charles Gotuaco Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Erik Carter
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Ann Haftl
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA 19102, USA
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| | - Michele Kutzler
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, College of Engineering, Drexel University, Philadelphia, PA 19102, USA;
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| |
Collapse
|
3
|
Xu Z, Chen Q, Zhang Y, Liang C. Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia 2021; 150:104863. [PMID: 33582266 DOI: 10.1016/j.fitote.2021.104863] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS), as a result of human immunodeficiency virus (HIV) infection which leads to severe suppression of immune functions, is an enormous world-wide health threat. The anti-HIV agents are critical for the HIV/AIDS therapy, but the generation of viral mutants and the severe side effects of the anti-HIV agents pose serious hurdles in the treatment of HIV infection, and creat an urgent need to develop novel anti-HIV agents. The plant-derived compounds possess structural and mechanistic diversity, and among them, coumarin-based derivatives have the potential to inhibit different stages in the HIV replication cycle, inclusive of virus-host cell attachment, cell membrane fusion, integration, assembly besides the conventional target like inhibition of the reverse transcriptase, protease, and integrase. Moreover, (+)-calanolide A, a coumarin-based natural product, is a potential anti-HIV agent. Thus, coumarin-based derivatives are useful scaffolds for the development of anti-HIV agents. This review article describes the recent progress in the discovery, structural modification, and structure-activity relationship studies of potent anti-HIV coumarin-based derivatives including natural coumarin compounds, synthetic hybrids, dimers, and other synthetic derivatives covering articles published between 2000 and 2020.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| | - Qingtai Chen
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Yan Zhang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Changli Liang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| |
Collapse
|
4
|
Kaur R, Sharma P, Gupta GK, Ntie-Kang F, Kumar D. Structure-Activity-Relationship and Mechanistic Insights for Anti-HIV Natural Products. Molecules 2020; 25:E2070. [PMID: 32365518 PMCID: PMC7249135 DOI: 10.3390/molecules25092070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS), which chiefly originatesfroma retrovirus named Human Immunodeficiency Virus (HIV), has impacted about 70 million people worldwide. Even though several advances have been made in the field of antiretroviral combination therapy, HIV is still responsible for a considerable number of deaths in Africa. The current antiretroviral therapies have achieved success in providing instant HIV suppression but with countless undesirable adverse effects. Presently, the biodiversity of the plant kingdom is being explored by several researchers for the discovery of potent anti-HIV drugs with different mechanisms of action. The primary challenge is to afford a treatment that is free from any sort of risk of drug resistance and serious side effects. Hence, there is a strong demand to evaluate drugs derived from plants as well as their derivatives. Several plants, such as Andrographis paniculata, Dioscorea bulbifera, Aegle marmelos, Wistaria floribunda, Lindera chunii, Xanthoceras sorbifolia and others have displayed significant anti-HIV activity. Here, weattempt to summarize the main results, which focus on the structures of most potent plant-based natural products having anti-HIV activity along with their mechanisms of action and IC50 values, structure-activity-relationships and important key findings.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| | - Pooja Sharma
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Girish K. Gupta
- Department of Pharmaceutical Chemistry, Sri Sai College of Pharmacy, Badhani, Pathankot 145001, India;
| | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63 Buea, Cameroon
- Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Dinesh Kumar
- Sri Sai College of Pharmacy, Manawala, Amritsar 143001, India; (R.K.); (P.S.)
| |
Collapse
|
5
|
Ang CG, Hossain MA, Rajpara M, Bach H, Acharya K, Dick A, Rashad AA, Kutzler M, Abrams CF, Chaiken I. Metastable HIV-1 Surface Protein Env Sensitizes Cell Membranes to Transformation and Poration by Dual-Acting Virucidal Entry Inhibitors. Biochemistry 2020; 59:818-828. [PMID: 31942789 PMCID: PMC7362902 DOI: 10.1021/acs.biochem.9b01008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dual-acting virucidal entry inhibitors (DAVEIs) have previously been shown to cause irreversible inactivation of HIV-1 Env-presenting pseudovirus by lytic membrane transformation. This study examined whether this transformation could be generalized to include membranes of Env-presenting cells. Flow cytometry was used to analyze HEK293T cells transiently transfected with increasing amounts of DNA encoding JRFL Env, loaded with calcein dye, and treated with serial dilutions of microvirin (Q831K/M83R)-DAVEI. Comparing calcein retention against intact Env expression (via Ab 35O22) on individual cells revealed effects proportional to Env expression. "Low-Env" cells experienced transient poration and calcein leakage, while "high-Env" cells were killed. The cell-killing effect was confirmed with an independent mitochondrial activity-based cell viability assay, showing dose-dependent cytotoxicity in response to DAVEI treatment. Transfection with increasing quantities of Env DNA showed further shifts toward "High-Env" expression and cytotoxicity, further reinforcing the Env dependence of the observed effect. Controls with unlinked DAVEI components showed no effect on calcein leakage or cell viability, confirming a requirement for covalently linked DAVEI compounds to achieve Env transformation. These data demonstrate that the metastability of Env is an intrinsic property of the transmembrane protein complex and can be perturbed to cause membrane disruption in both virus and cell contexts.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Marg Rajpara
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Harry Bach
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
- School of Biomedical Engineering, Science, and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Kriti Acharya
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Michele Kutzler
- Department of Microbiology and Immunology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, College of Engineering , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine , Drexel University , Philadelphia , Pennsylvania 19102 , United States
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) was identified as the major renal manifestation of HIV infection early in the HIV epidemic. However, HIV infection now is associated with a different spectrum of renal lesions leading to chronic kidney disease. This review examines the changes in kidney injury occurring in the current HIV era and the factors involved in this transformation of disease expression. RECENT FINDINGS The incidence of HIVAN and opportunistic infections in HIV-infected individuals has declined in concert with the use of effective combination antiretroviral agents. Chronic kidney disease has become more prevalent as patients infected with HIV are living longer and developing non-HIV-associated diseases such as hypertension and diabetes. Additionally, noncollapsing focal and segmental glomerulosclerosis, co-infection with hepatitis C, HIV-associated immune complex kidney disease, HIV-related accelerated aging, and antiretroviral therapies contribute to progressive loss of renal function. SUMMARY HIV infection is now associated with a variety of renal lesions causing chronic kidney disease, not all of which are virally induced. It is important to determine the cause of renal functional decline in an HIV-infected patient, as this will impact patient management and prognosis.
Collapse
|
7
|
Costa G, Rocca R, Corona A, Grandi N, Moraca F, Romeo I, Talarico C, Gagliardi MG, Ambrosio FA, Ortuso F, Alcaro S, Distinto S, Maccioni E, Tramontano E, Artese A. Novel natural non-nucleoside inhibitors of HIV-1 reverse transcriptase identified by shape- and structure-based virtual screening techniques. Eur J Med Chem 2018; 161:1-10. [PMID: 30342421 DOI: 10.1016/j.ejmech.2018.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
In this work we report a parallel application of both docking- and shape-based virtual screening (VS) methods, followed by Molecular Dynamics simulations (MDs), for discovering new compounds able to inhibit the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) RNA-dependent DNA polymerase activity. Specifically, we screened more than 143000 natural compounds commercially available in the ZINC database against the best five RT crystallographic models, taking into account the five approved NNRTIs as query compounds. As a result, 20 hit molecules were selected and tested on biochemical assays for the inhibition of the RNA dependent DNA polymerase RT function and, among them, an indoline pyrrolidine (hit1), an indonyl piperazine (hit2) and an indolyl indolinone (hit3) derivatives were identified as novel non-nucleoside RT inhibitors in the low micromolar range.
Collapse
Affiliation(s)
- Giosuè Costa
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Angela Corona
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Nicole Grandi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Department of Chemical Sciences, University of Napoli Federico II, Via Cinthia 4, I-80126, Napoli, Italy.
| | - Isabella Romeo
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Carmine Talarico
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Maria Giovanna Gagliardi
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Simona Distinto
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Elias Maccioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria di Monserrato, SS554, 09042, Monserrato, Cagliari, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università degli Studi "Magna Græcia" di Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| |
Collapse
|
8
|
Salehi B, Kumar NVA, Şener B, Sharifi-Rad M, Kılıç M, Mahady GB, Vlaisavljevic S, Iriti M, Kobarfard F, Setzer WN, Ayatollahi SA, Ata A, Sharifi-Rad J. Medicinal Plants Used in the Treatment of Human Immunodeficiency Virus. Int J Mol Sci 2018; 19:E1459. [PMID: 29757986 PMCID: PMC5983620 DOI: 10.3390/ijms19051459] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/29/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
Since the beginning of the epidemic, human immunodeficiency virus (HIV) has infected around 70 million people worldwide, most of whom reside is sub-Saharan Africa. There have been very promising developments in the treatment of HIV with anti-retroviral drug cocktails. However, drug resistance to anti-HIV drugs is emerging, and many people infected with HIV have adverse reactions or do not have ready access to currently available HIV chemotherapies. Thus, there is a need to discover new anti-HIV agents to supplement our current arsenal of anti-HIV drugs and to provide therapeutic options for populations with limited resources or access to currently efficacious chemotherapies. Plant-derived natural products continue to serve as a reservoir for the discovery of new medicines, including anti-HIV agents. This review presents a survey of plants that have shown anti-HIV activity, both in vitro and in vivo.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, 88777539 Tehran, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, 22439789 Tehran, Iran.
| | - Nanjangud V Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576104, India.
| | - Bilge Şener
- Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, 61663-335 Zabol, Iran.
| | - Mehtap Kılıç
- Department of Pharmacognosy, Gazi University, Faculty of Pharmacy, 06330 Ankara, Turkey.
| | - Gail B Mahady
- PAHO/WHO Collaborating Centre for Traditional Medicine, College of Pharmacy, University of Illinois, 833 S. Wood St., Chicago, IL 60612, USA.
| | - Sanja Vlaisavljevic
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 11369 Tehran, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
9
|
Bedoya LM, Beltrán M, García-Pérez J, Obregón-Calderón P, Callies O, Jímenez IA, Bazzocchi IL, Alcamí J. Promiscuous, Multi-Target Lupane-Type Triterpenoids Inhibits Wild Type and Drug Resistant HIV-1 Replication Through the Interference With Several Targets. Front Pharmacol 2018; 9:358. [PMID: 29720939 PMCID: PMC5915803 DOI: 10.3389/fphar.2018.00358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Current research on antiretroviral therapy is mainly focused in the development of new formulations or combinations of drugs belonging to already known targets. However, HIV-1 infection is not cured by current therapy and thus, new approaches are needed. Bevirimat was developed by chemical modification of betulinic acid, a lupane-type pentacyclic triterpenoid (LPT), as a first-in-class HIV-1 maturation inhibitor. However, in clinical trials, bevirimat showed less activity than expected because of the presence of a natural mutation in Gag protein that conferred resistance to a high proportion of HIV-1 strains. In this work, three HIV-1 inhibitors selected from a set of previously screened LPTs were investigated for their targets in the HIV-1 replication cycle, including their maturation inhibitor effect. LPTs were found to inhibit HIV-1 infection acting as promiscuous compounds with several targets in the HIV-1 replication cycle. LPT12 inhibited HIV-1 infection mainly through reverse transcription, integration, viral transcription, viral proteins (Gag) production and maturation inhibition. LPT38 did it through integration, viral transcription or Gag production inhibition and finally, LPT42 inhibited reverse transcription, viral transcription or Gag production. The three LPTs inhibited HIV-1 infection of human primary lymphocytes and infections with protease inhibitors and bevirimat resistant HIV-1 variants with similar values of IC50. Therefore, we show that the LPTs tested inhibited HIV-1 infection through acting on different targets depending on their chemical structure and the activities of the different LPTs vary with slight structural alterations. For example, of the three LPTs under study, we found that only LPT12 inhibited infectivity of newly-formed viral particles, suggesting a direct action on the maturation process. Thus, the multi-target behavior gives a potential advantage to these compounds since HIV-1 resistance can be overcome by modulating more than one target.
Collapse
Affiliation(s)
- Luis M Bedoya
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, Pharmacy Faculty, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Beltrán
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier García-Pérez
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Obregón-Calderón
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Callies
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ignacio A Jímenez
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Isabel L Bazzocchi
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José Alcamí
- Retrovirus Laboratory, Department of AIDS Immunopathogenesis, National Centre of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Zuo X, Huo Z, Kang D, Wu G, Zhou Z, Liu X, Zhan P. Current insights into anti-HIV drug discovery and development: a review of recent patent literature (2014-2017). Expert Opin Ther Pat 2018; 28:299-316. [PMID: 29411697 DOI: 10.1080/13543776.2018.1438410] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION To deal with the rapid emergence of drug resistance challenges, together with the difficulty to eradicate the virus, off-target effects and significant cumulative drug toxicities, it is still imperative to develop next-generation anti-HIV agents with novel chemical classes or new mechanisms of action. AREAS COVERED We primarily focused on current strategies to discover novel anti-HIV agents. Moreover, examples of anti-HIV lead compounds were mainly selected from recently patented publications (reported between 2014 and 2017). In particular, 'privileged structure'-focused substituents decorating approach, scaffold hopping, natural-product diversification and prodrug are focused on. Furthermore, exploitation of new compounds with unexplored mechanisms of action and medicinal chemistry strategies to deplete the HIV reservoir were also described. Perspectives that could inspire future anti-HIV drug discovery are delineated. EXPERT OPINION Even if a large number of patents have been disclosed recently, additional HIV inhibitors are still required, especially novel chemical skeletons displaying a unexploited mechanism of action. Current medicinal chemistry strategies are inadequate, and appropriate and new methodologies and technologies should be exploited to identify novel anti-HIV drug candidates in a time- and cost- effective manner.
Collapse
Affiliation(s)
- Xiaofang Zuo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhipeng Huo
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Dongwei Kang
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Gaochan Wu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Zhongxia Zhou
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Ji'nan , PR China
| |
Collapse
|