1
|
Chang ZY, Alhamami FAMS, Chin KL. Aptamer-Based Strategies to Address Challenges in COVID-19 Diagnosis and Treatments. Interdiscip Perspect Infect Dis 2023; 2023:9224815. [PMID: 37554129 PMCID: PMC10406522 DOI: 10.1155/2023/9224815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease (COVID-19), a highly contagious and rapidly spreading disease with significant fatality in the elderly population, has swept across the world since 2019. Since its first appearance, the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has undergone multiple mutations, with Omicron as the predominant circulating variant of concern at the moment. The gold standard for diagnosis of COVID-19 by real-time polymerase chain reaction (RT-PCR) to detect the virus is laborious and requires well-trained personnel to perform sophisticated procedures. Also, the genetic variants of SARS-CoV-2 that arise regularly could result in false-negative detection. Meanwhile, the current COVID-19 treatments such as conventional medicine, complementary and alternative medicine, passive antibody therapy, and respiratory therapy are associated with adverse effects. Thus, there is an urgent need to discover novel diagnostic and therapeutic approaches against SARS-CoV-2 and its variants. Over the past 30 years, nucleic acid-based aptamers have gained increasing attention and serve as a promising alternative to the antibodies in the diagnostic and therapeutic fields with their uniqueness of being small, nonimmunogenicity, and thermally stable. Aptamer targeting the SARS-CoV-2 structural proteins or the host receptor proteins represent a powerful tool to control COVID-19 infection. In this review, challenges faced by currently available diagnostic and therapeutic tools for COVID-19 are underscored, along with how aptamers can shed a light on the current COVID-19 pandemic, focusing on the critical factors affecting the discovery of high-affinity aptamers and their potential applications to control COVID-19 infection.
Collapse
Affiliation(s)
- Zi Yuan Chang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Zhou H, Møhlenberg M, Thakor JC, Tuli HS, Wang P, Assaraf YG, Dhama K, Jiang S. Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clin Microbiol Rev 2022; 35:e0001422. [PMID: 35862736 PMCID: PMC9491202 DOI: 10.1128/cmr.00014-22] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps evolving and mutating into newer variants over time, which gain higher transmissibility, disease severity, and spread in communities at a faster rate, resulting in multiple waves of surge in Coronavirus Disease 2019 (COVID-19) cases. A highly mutated and transmissible SARS-CoV-2 Omicron variant has recently emerged, driving the extremely high peak of infections in almost all continents at an unprecedented speed and scale. The Omicron variant evades the protection rendered by vaccine-induced antibodies and natural infection, as well as overpowers the antibody-based immunotherapies, raising the concerns of current effectiveness of available vaccines and monoclonal antibody-based therapies. This review outlines the most recent advancements in studying the virology and biology of the Omicron variant, highlighting its increased resistance to current antibody-based therapeutics and its immune escape against vaccines. However, the Omicron variant is highly sensitive to viral fusion inhibitors targeting the HR1 motif in the spike protein, enzyme inhibitors, involving the endosomal fusion pathway, and ACE2-based entry inhibitors. Omicron variant-associated infectivity and entry mechanisms of Omicron variant are essentially distinct from previous characterized variants. Innate sensing and immune evasion of SARS-CoV-2 and T cell immunity to the virus provide new perspectives of vaccine and drug development. These findings are important for understanding SARS-CoV-2 viral biology and advances in developing vaccines, antibody-based therapies, and more effective strategies to mitigate the transmission of the Omicron variant or the next SARS-CoV-2 variant of concern.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, New York, New York, USA
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Michelle Møhlenberg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Cancer Biology, Department of Oncology, VIB-KU Leuven, Leuven, Belgium
| | - Jigarji C. Thakor
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed University), Mullana, Ambala, Haryana, India
| | - Pengfei Wang
- State Key Laboratory of Genetic Engineering, Shanghai Institute of Infectious Disease and Biosecurity, School of Life Sciences, Fudan University, Shanghai, China
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Aouissi HA, Hamimes A, Ababsa M, Bianco L, Napoli C, Kebaili FK, Krauklis AE, Bouzekri H, Dhama K. Bayesian Modeling of COVID-19 to Classify the Infection and Death Rates in a Specific Duration: The Case of Algerian Provinces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9586. [PMID: 35954953 PMCID: PMC9368112 DOI: 10.3390/ijerph19159586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 01/03/2023]
Abstract
COVID-19 causes acute respiratory illness in humans. The direct consequence of the spread of the virus is the need to find appropriate and effective solutions to reduce its spread. Similar to other countries, the pandemic has spread in Algeria, with noticeable variation in mortality and infection rates between regions. We aimed to estimate the proportion of people who died or became infected with SARS-CoV-2 in each provinces using a Bayesian approach. The estimation parameters were determined using a binomial distribution along with an a priori distribution, and the results had a high degree of accuracy. The Bayesian model was applied during the third wave (1 January-15 August 2021), in all Algerian's provinces. For spatial analysis of duration, geographical maps were used. Our findings show that Tissemsilt, Ain Defla, Illizi, El Taref, and Ghardaia (Mean = 0.001) are the least affected provinces in terms of COVID-19 mortality. The results also indicate that Tizi Ouzou (Mean = 0.0694), Boumerdes (Mean = 0.0520), Annaba (Mean = 0.0483), Tipaza (Mean = 0.0524), and Tebessa (Mean = 0.0264) are more susceptible to infection, as they were ranked in terms of the level of corona infections among the 48 provinces of the country. Their susceptibility seems mainly due to the population density in these provinces. Additionally, it was observed that northeast Algeria, where the population is concentrated, has the highest infection rate. Factors affecting mortality due to COVID-19 do not necessarily depend on the spread of the pandemic. The proposed Bayesian model resulted in being useful for monitoring the pandemic to estimate and compare the risks between provinces. This statistical inference can provide a reasonable basis for describing future pandemics in other world geographical areas.
Collapse
Affiliation(s)
- Hani Amir Aouissi
- Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra 07000, Algeria
- Laboratoire de Recherche et d’Etude en Aménagement et Urbanisme (LREAU), Université des Sciences et de la Technologie (USTHB), Algiers 16000, Algeria
- Environmental Research Center (CRE), Badji-Mokhtar Annaba University, Annaba 23000, Algeria
| | - Ahmed Hamimes
- Faculty of Medicine, University of Constantine 3, Constantine 25000, Algeria
| | - Mostefa Ababsa
- Scientific and Technical Research Center on Arid Regions (CRSTRA), Biskra 07000, Algeria
| | - Lavinia Bianco
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, “Sapienza” University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Feriel Kheira Kebaili
- Laboratoire de Recherche et d’Etude en Aménagement et Urbanisme (LREAU), Université des Sciences et de la Technologie (USTHB), Algiers 16000, Algeria
| | - Andrey E. Krauklis
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Hafid Bouzekri
- Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria
| | - Kuldeep Dhama
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India
| |
Collapse
|
4
|
Mohapatra RK, Tiwari R, Sarangi AK, Islam MR, Chakraborty C, Dhama K. Omicron (B.1.1.529) variant of SARS-CoV-2: Concerns, challenges, and recent updates. J Med Virol 2022; 94:2336-2342. [PMID: 35118666 PMCID: PMC9015506 DOI: 10.1002/jmv.27633] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Omicron has shown immune escape from neutralizing antibodies generated through previous infection or vaccination. It could evade the protection provided by mAbs being used in clinics for treating coronavirus disease 2019 (COVID‐19) patients. Booster dose is recommended to elevate the protective levels of antibodies in COVID‐19 vaccinated individuals. The development of powerful oral antiviral drugs such as Molnupiravir and Paxlovid have shown promising clinical results and raised new hopes of COVID‐19 treatment. High efforts are being made to develop highly efficacious vaccines, and by implementing appropriate prevention and control strategies to counter Omicron.
Collapse
Affiliation(s)
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and ImmunologyCollege of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya PashuChikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Ashish K. Sarangi
- Department of Chemistry, School of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | | | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and BiotechnologyAdamas UniversityKolkataWest BengalIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyIndia
| |
Collapse
|