1
|
Fotedar N, Lüders HO. Nocturnal paroxysmal dystonia to sleep-related hypermotor epilepsy: A critical review. Epilepsia 2024; 65:2506-2518. [PMID: 39046177 DOI: 10.1111/epi.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Sleep-related paroxysmal motor episodes (SPMEs) have been described by various names, including nocturnal paroxysmal dystonia, nocturnal frontal lobe epilepsy (NFLE), and sleep-related hypermotor epilepsy. The underlying pathophysiology has been debated over the years, with these episodes assumed to be a form of paroxysmal dystonia or parasomnia versus a form of epilepsy. In most studies published on SPMEs and their variants (paroxysmal arousals, nocturnal paroxysmal dystonia, and episodic nocturnal wanderings) in the early 1990s, the authors speculated on the pathophysiology but did not commit to one idea. It was not until the mid-1990s that epilepsy became the leading prospect. We performed a narrative review of the major articles that have described this syndrome in a chronological fashion. We identified three eras, 1972-1993, 1994-1998, and 1999 to the present, each era marked by a landmark study. Our critical review of these early studies shows that the neurophysiological data supporting epilepsy as the sole basis for all SPME cases is very weak. In 1994-1995, a familial pattern of this syndrome was described and the term autosomal dominant NFLE was coined, with the authors claiming that all their patients had a form of frontal lobe epilepsy. With the exception of a few reference cases, the neurophysiological evidence that all patients had frontal lobe epilepsy was very weak. Compared to articles published on surgical series of frontal lobe epilepsy, the percentage of SPME cases with positive interictal/ictal electroencephalograms remained very low, seriously questioning the epileptic basis of the syndrome. Our critical review and analysis of the published literature shows that the evidence presented in favor of SPMEs being a homogenous focal epilepsy syndrome is very weak. Neurologists must recognize that SPMEs could be a form of movement disorder, parasomnia, or epilepsy. We recommend a pragmatic semiology-based classification of these episodes using the four-dimensional classification system.
Collapse
Affiliation(s)
- Neel Fotedar
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Hans O Lüders
- Epilepsy Center, Neurological Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
3
|
Holoyda B. Forensic Implications of the Parasomnias. Sleep Med Clin 2024; 19:189-198. [PMID: 38368065 DOI: 10.1016/j.jsmc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Although many sleep-related behaviors are benign, others can result in physical or sexual aggression toward bed partners or others. Individuals who engage in sleep-related violence (SRV) and sexual behavior in sleep (SBS) may face legal sanctions for their behavior. Attorneys or legal decision-makers may call on an expert to evaluate a defendant and opine about the veracity of an alleged parasomnia diagnosis, the criminal responsibility of the defendant, and his risk of violence to others. This article reviews the phenomena of SRV and SBS and guides evaluators in the forensic considerations relevant to parasomnias.
Collapse
Affiliation(s)
- Brian Holoyda
- Contra Costa County Detention Health Services, Martinez, CA, USA; Department of Psychiatry and Behavioral Medicine; Martinez Detention Facility, 1000 Ward Street, Martinez, CA 94553, USA; Forensic Psychiatrist, Denver, CO, USA.
| |
Collapse
|
4
|
Liu WK, Kothare S, Jain S. Sleep and Epilepsy. Semin Pediatr Neurol 2023; 48:101087. [PMID: 38065633 DOI: 10.1016/j.spen.2023.101087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/18/2023]
Abstract
The relationship between sleep and epilepsy is both intimate and bidirectional. The molecular mechanisms which control circadian rhythm and the sleep/wake cycle are dysregulated in epileptogenic tissue and are themselves effected by molecular pathways for epilepsy. Sleep affects the frequency of interictal epileptiform discharges and recent research has raised new questions regarding the impact of discharges on sleep function and cognition. Epileptiform discharges themselves affect sleep architecture and increase the risk of sleep disorders. Several sleep-related epilepsy syndromes have undergone changes in their classification which highlights their intimate relationship to sleep and novel screening tools have been developed to help clinicians better differentiate epileptic seizures from sleep-related paroxysmal events. Improving sleep and addressing sleep disorders has been associated with improved seizure control and increased well-being in people with epilepsy. These interactions are discussed in detail in this review.
Collapse
Affiliation(s)
- Wei K Liu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Division of Pulmonary and Sleep Medicine, Cincinnati Children's Hospital, Cincinnati, OH.
| | - Sanjeev Kothare
- Division of Pediatric Neurology, Department of Pediatrics, Cohen Children's Medical Center, New York, NY
| | - Sejal Jain
- Department of Anesthesiology and Pain Medicine, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Kim W, Lee H, Lee KW, Yang E, Kim S. The Association of Nocturnal Seizures and Interictal Cardiac/Central Autonomic Function in Frontal Lobe Epilepsy: Heart Rate Variability and Central Autonomic Network Analysis. Neuropsychiatr Dis Treat 2023; 19:2081-2091. [PMID: 37810949 PMCID: PMC10559795 DOI: 10.2147/ndt.s426263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Patients with epilepsy frequently experience autonomic dysfunction, closely related to sudden unexplained death in epilepsy (SUDEP). SUDEP occurs most often at night or during sleep, and frequent nocturnal seizures are an established risk factor. This study investigated the influence of nocturnal seizures on autonomic dysfunction in epilepsy. Patients and Methods This retrospective study enrolled frontal lobe epilepsy (FLE) patients who performed 24-hour EEG monitoring. All participants were divided into nocturnal FLE (NFLE, > 90% of seizures occurring during sleep) or diurnal FLE (DFLE) groups. EEG and ECG signals were simultaneously obtained during waking and sleep stages. EEG current density source and connectivity analysis of the autonomic network were performed. ECG was analyzed across time and frequency domains heart rate variability (HRV) analysis method was used. The obtained parameters were compared between the NFLE and DFLE groups. Results Fifteen NFLE and 16 DFLE patients were enrolled with no significant difference in age, sex, disease duration, seizure frequency, or the number of anti-seizure medications between the two groups. During sleep, a decrease in HRV parameters and an increase of the beta-1 (13-22 Hz) current source density power in the bilateral paracentral lobule (BA4,5,6), precuneus (BA7), and cingulate (BA31) were observed in the NFLE group compared to DFLE group. The NFLE group also showed hyperconnectivity in the central autonomic (12 edges distributed over 10 nodes), sympathetic (2 edges distributed over 3 nodes), and parasympathetic (4 edges distributed over 6 nodes) beta-1 frequency band networks during sleep. During wakefulness, central and cardiac autonomic variables were not significantly different between the NFLE and DFLE groups. Conclusion Interictal cardiac and central autonomic dysfunction occurred simultaneously and can be attributed to the brain-heart autonomic axis. Our findings suggest that nocturnal seizures may contribute to interictal autonomic dysfunction during sleep in people with epilepsy.
Collapse
Affiliation(s)
- Woojun Kim
- Department of Neurology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjo Lee
- Department of Neurology, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | - Kyung Won Lee
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunjin Yang
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seonghoon Kim
- Department of Neurology, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
6
|
Ahl M, Taylor MK, Avdic U, Lundin A, Andersson M, Amandusson Å, Kumlien E, Compagno Strandberg M, Ekdahl CT. Immune response in blood before and after epileptic and psychogenic non-epileptic seizures. Heliyon 2023; 9:e13938. [PMID: 36895367 PMCID: PMC9988551 DOI: 10.1016/j.heliyon.2023.e13938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Inflammatory processes may provoke epileptic seizures and seizures may promote an immune reaction. Hence, the systemic immune reaction is a tempting diagnostic and prognostic marker in epilepsy. We explored the immune response before and after epileptic and psychogenic non-epileptic seizures (PNES). Serum samples collected from patients with videoEEG-verified temporal or frontal lobe epilepsy (TLE or FLE) or TLE + PNES showed increased interleukin-6 (IL-6) levels in between seizures (interictally), compared to controls. Patients with PNES had no increase in IL-6. The IL-6 levels increased transiently even further within hours after a seizure (postictally) in TLE but not in FLE patients. The postictal to interictal ratio of additionally five immune factors were also increased in TLE patients only. We conclude that immune factors have the potential to be future biomarkers for epileptic seizures and that the heterogeneity among different epileptic and non-epileptic seizures may be disclosed in peripheral blood sampling independent of co-morbidities.
Collapse
Affiliation(s)
- Matilda Ahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden.,Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Marie K Taylor
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden.,Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Una Avdic
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden.,Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Anna Lundin
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden
| | - My Andersson
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden.,Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Åsa Amandusson
- Clinical Neurophysiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Eva Kumlien
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Christine T Ekdahl
- Division of Clinical Neurophysiology and Department of Clinical Sciences, Lund University, Sweden.,Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| |
Collapse
|
7
|
Cortese S, Besag FM, Clark B, Hollis C, Kilgariff J, Moreno C, Nicholls D, Wilkinson P, Woodbury-Smith M, Sharma A. Common practical questions - and answers - at the British Association for Psychopharmacology child and adolescent psychopharmacology course. J Psychopharmacol 2023; 37:119-134. [PMID: 36476096 PMCID: PMC9912307 DOI: 10.1177/02698811221140005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The British Association for Psychopharmacology course on child and adolescent psychopharmacology has been run for more than 20 years and is currently a very popular course, attracting around 140 delegates/year from across the United Kingdom and abroad. As Faculty of recent sessions of the course, we have selected the most common questions we have been asked in recent years and provided evidence-based and/or expert-informed answers. We have included 27 questions and answers related to attention-deficit/hyperactivity disorder, anxiety and depressive disorders, autism spectrum disorder, bipolar disorder, eating disorders, epilepsy (in differential diagnosis or comorbid with mental health conditions), obsessive-compulsive disorder, personality disorders, psychotic spectrum disorders, and tics/Tourette syndrome in children and young people. We hope that this article will be helpful for prescribers in their daily clinical practice and we look forward to further, high-level evidence informing the answers to these and other questions in child and adolescent psychopharmacology.
Collapse
Affiliation(s)
- Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.,Solent NHS Trust, Southampton, UK.,Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York City, NY, USA.,Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Frank Mc Besag
- UCL School of Pharmacy, London, UK.,East London Foundation NHS Trust, Bedfordshire, UK.,Institute of Psychiatry, Psychology and Neuroscience, KCL, London, UK
| | - Bruce Clark
- National Specialist Clinic for Young People with OCD, BDD and Related Disorders, South London and Maudsley NHS Foundation Trust, London, UK
| | - Chris Hollis
- Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Child and Adolescent Psychiatry, Nottinghamshire Healthcare NHS Foundation Trust, Queen's Medical Centre, Nottingham, UK.,National Institute of Mental Health (NIHR) MindTech Medtech Co-operative, Institute of Mental Health, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Mental Health & Technology Theme, Institute of Mental Health, Nottingham, UK
| | - Joseph Kilgariff
- Department of Child and Adolescent Psychiatry, Nottinghamshire Healthcare NHS Foundation Trust, Queen's Medical Centre, Nottingham, UK
| | - Carmen Moreno
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Dasha Nicholls
- Division of Psychiatry, Imperial College London, London, UK.,NIHR ARC Northwest, London, UK
| | - Paul Wilkinson
- School of Clinical Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridgeshire, UK
| | | | - Aditya Sharma
- Academic Psychiatry, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Specialist Adolescent Mood Disorders Service (SAMS), Cumbria, Northumberland, Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
8
|
Xu S, Faust O, Seoni S, Chakraborty S, Barua PD, Loh HW, Elphick H, Molinari F, Acharya UR. A review of automated sleep disorder detection. Comput Biol Med 2022; 150:106100. [PMID: 36182761 DOI: 10.1016/j.compbiomed.2022.106100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/22/2022]
Abstract
Automated sleep disorder detection is challenging because physiological symptoms can vary widely. These variations make it difficult to create effective sleep disorder detection models which support hu-man experts during diagnosis and treatment monitoring. From 2010 to 2021, authors of 95 scientific papers have taken up the challenge of automating sleep disorder detection. This paper provides an expert review of this work. We investigated whether digital technology and Artificial Intelligence (AI) can provide automated diagnosis support for sleep disorders. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines during the content discovery phase. We compared the performance of proposed sleep disorder detection methods, involving differ-ent datasets or signals. During the review, we found eight sleep disorders, of which sleep apnea and insomnia were the most studied. These disorders can be diagnosed using several kinds of biomedical signals, such as Electrocardiogram (ECG), Polysomnography (PSG), Electroencephalogram (EEG), Electromyogram (EMG), and snore sound. Subsequently, we established areas of commonality and distinctiveness. Common to all reviewed papers was that AI models were trained and tested with labelled physiological signals. Looking deeper, we discovered that 24 distinct algorithms were used for the detection task. The nature of these algorithms evolved, before 2017 only traditional Machine Learning (ML) was used. From 2018 onward, both ML and Deep Learning (DL) methods were used for sleep disorder detection. The strong emergence of DL algorithms has considerable implications for future detection systems because these algorithms demand significantly more data for training and testing when compared with ML. Based on our review results, we suggest that both type and amount of labelled data is crucial for the design of future sleep disorder detection systems because this will steer the choice of AI algorithm which establishes the desired decision support. As a guiding principle, more labelled data will help to represent the variations in symptoms. DL algorithms can extract information from these larger data quantities more effectively, therefore; we predict that the role of these algorithms will continue to expand.
Collapse
Affiliation(s)
- Shuting Xu
- Cogninet Brain Team, Sydney, NSW, 2010, Australia
| | - Oliver Faust
- Anglia Ruskin University, East Rd, Cambridge CB1 1PT, UK.
| | - Silvia Seoni
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Subrata Chakraborty
- School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia; Centre for Advanced Modelling and Geospatial Lnformation Systems (CAMGIS), Faculty of Engineer and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Prabal Datta Barua
- Cogninet Brain Team, Sydney, NSW, 2010, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia; School of Business (Information System), University of Southern Queensland, Australia
| | - Hui Wen Loh
- School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore
| | | | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - U Rajendra Acharya
- School of Business (Information System), University of Southern Queensland, Australia; School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, 599494, Singapore; Department of Computer Engineering, Ngee Ann Polytechnic, Singapore, Singapore; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Villa C, Arrigoni F, Rivellini E, Lavitrano M, De Gioia L, Ferini-Strambi L, Combi R. Exome Sequencing in an ADSHE Family: VUS Identification and Limits. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12548. [PMID: 36231847 PMCID: PMC9565017 DOI: 10.3390/ijerph191912548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is the familial form of a focal epilepsy characterized by hyperkinetic focal seizures, mainly arising during non-rapid eye movements (NREM) sleep. Mutations associated with ADSHE account for a small proportion of the genetically determined cases, suggesting the existence of other disease-causing genes. Here, we reported the results obtained by performing trio-based whole-exome sequencing (WES) in an Italian family showing ADSHE and investigated the structural impact of putative variants by in silico modeling analysis. We identified a p.(Trp276Gly) variant in MOXD1 gene encoding the monooxigenase DBH like 1 protein, cosegregating with the disease and annotated as VUS under the ACMG recommendations. Structural bioinformatic analysis predicted a high destabilizing effect of this variant, due to the loss of important hydrophilic bonds and an expansion of cavity volume in the protein hydrophobic core. Although our data support a functional effect of the p.(Trp276Gly) variant, we highlight the need to identify additional families carrying MOXD1 mutations or functional analyses in suitable models to clarify its role in ADSHE pathogenesis. Moreover, we discuss the importance of VUS reporting due to the low rate of pathogenic variant identification by NGS in epilepsy and for future reinterpretation studies.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Eleonora Rivellini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, Neurology-Sleep Disorder Center, IRCCS San Raffaele Scientific Institute, 20127 Milan, Italy
- Department of Clinical Neurosciences, Vita-Salute San Raffaele University, 20127 Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
10
|
Lu J, Zhao G, Lv D, Cao L, Zhao G. Autosomal dominant sleep-related hypermotor epilepsy associated with a novel mutation of KCNT1. Transl Neurosci 2022; 13:240-245. [PMID: 36117860 PMCID: PMC9438967 DOI: 10.1515/tnsci-2022-0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Autosomal dominant sleep-related hypermotor epilepsy (ADSHE) is characterized by severe sleep-related rigid hypermotor seizures. The pathogenic genes of ADSHE include genes encoding subunits of the neuronal nicotinic acetylcholine receptor, KCNT1, DEPDC5, NPRL2/3, CABP4, and CRH. Individuals with KCNT1-related ADSHE are more likely to develop seizures at a younger age, have cognitive comorbidity, and display psychiatric and behavioral problems. In this study, a 12-year-old Chinese girl was referred for genetic evaluation of grand mal seizures. She had paroxysmal convulsions of the limbs and loss of consciousness just after falling asleep without obvious triggers. A novel heterozygous missense mutation c.2797C > T (p.Arg933Cys) in exon 24 of the KCNT1 was identified in the proband by whole-exome sequencing and Sanger sequencing, and the clinical symptoms were compatible with ADSHE. The proband’s father has been showing similar symptoms for more than 20 years and had the same site mutation. Her mother and sister were physically and genetically normal. The study revealed a novel variant in the KCNT1 and expanded the mutation spectrum for this clinical condition. Our results provide further evidence supporting a causative role in KCNT1 variants in ADSHE.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu , China
| | - Gaohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu , China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu , China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu , China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine , Yiwu , China
| |
Collapse
|
11
|
Nielsen TØ, Herlin MK, Linnet KM, Beniczky S, Sommerlund M, Granild-Jensen JB, Gregersen PA. Autosomal dominant sleep-related hypermotor epilepsy caused by a previously unreported CHRNA4 variant. Eur J Med Genet 2022; 65:104444. [DOI: 10.1016/j.ejmg.2022.104444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/09/2022] [Accepted: 01/22/2022] [Indexed: 11/03/2022]
|
12
|
Jain K, Jith A, Mathew K. Nocturnal frontal lobe epilepsy presenting as sleepwalking episodes and restless leg syndrome-like symptoms. ANNALS OF INDIAN PSYCHIATRY 2022. [DOI: 10.4103/aip.aip_154_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
13
|
Dumitrescu C, Costea IM, Cormos AC, Semenescu A. Automatic Detection of K-Complexes Using the Cohen Class Recursiveness and Reallocation Method and Deep Neural Networks with EEG Signals. SENSORS 2021; 21:s21217230. [PMID: 34770537 PMCID: PMC8587652 DOI: 10.3390/s21217230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Evoked and spontaneous K-complexes are thought to be involved in sleep protection, but their role as biomarkers is still under debate. K-complexes have two major functions: first, they suppress cortical arousal in response to stimuli that the sleeping brain evaluates to avoid signaling danger; and second, they help strengthen memory. K-complexes also play an important role in the analysis of sleep quality, in the detection of diseases associated with sleep disorders, and as biomarkers for the detection of Alzheimer’s and Parkinson’s diseases. Detecting K-complexes is relatively difficult, as reliable methods of identifying this complex cannot be found in the literature. In this paper, we propose a new method for the automatic detection of K-complexes combining the method of recursion and reallocation of the Cohen class and the deep neural networks, obtaining a recursive strategy aimed at increasing the percentage of classification and reducing the computation time required to detect K-complexes by applying the proposed methods.
Collapse
Affiliation(s)
- Catalin Dumitrescu
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
- Correspondence:
| | - Ilona-Madalina Costea
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
| | - Angel-Ciprian Cormos
- Department Telematics and Electronics for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania; (I.-M.C.); (A.-C.C.)
| | - Augustin Semenescu
- Department Engineering and Management for Transports, University “Politehnica” of Bucharest, 060042 Bucharest, Romania;
| |
Collapse
|
14
|
Automated Identification of Sleep Disorder Types Using Triplet Half-Band Filter and Ensemble Machine Learning Techniques with EEG Signals. ELECTRONICS 2021. [DOI: 10.3390/electronics10131531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A sleep disorder is a medical condition that affects an individual’s regular sleeping pattern and routine, hence negatively affecting the individual’s health. The traditional procedures of identifying sleep disorders by clinicians involve questionnaires and polysomnography (PSG), which are subjective, time-consuming, and inconvenient. Hence, an automated sleep disorder identification is required to overcome these limitations. In the proposed study, we have proposed a method using electroencephalogram (EEG) signals for the automated identification of six sleep disorders, namely insomnia, nocturnal frontal lobe epilepsy (NFLE), narcolepsy, rapid eye movement behavior disorder (RBD), periodic leg movement disorder (PLM), and sleep-disordered breathing (SDB). To the best of our belief, this is one of the first studies ever undertaken to identify sleep disorders using EEG signals employing cyclic alternating pattern (CAP) sleep database. After sleep-scoring EEG epochs, we have created eight different data subsets of EEG epochs to develop the proposed model. A novel optimal triplet half-band filter bank (THFB) is used to obtain the subbands of EEG signals. We have extracted Hjorth parameters from subbands of EEG epochs. The selected features are fed to various supervised machine learning algorithms for the automated classification of sleep disorders. Our proposed system has obtained the highest accuracy of 99.2%, 98.2%, 96.2%, 98.3%, 98.8%, and 98.8% for insomnia, narcolepsy, NFLE, PLM, RBD, and SDB classes against normal healthy subjects, respectively, applying ensemble boosted trees classifier. As a result, we have attained the highest accuracy of 91.3% to identify the type of sleep disorder. The proposed method is simple, fast, efficient, and may reduce the challenges faced by medical practitioners during the diagnosis of various sleep disorders accurately in less time at sleep clinics and homes.
Collapse
|
15
|
Sharma M, Tiwari J, Acharya UR. Automatic Sleep-Stage Scoring in Healthy and Sleep Disorder Patients Using Optimal Wavelet Filter Bank Technique with EEG Signals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3087. [PMID: 33802799 PMCID: PMC8002569 DOI: 10.3390/ijerph18063087] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023]
Abstract
Sleep stage classification plays a pivotal role in effective diagnosis and treatment of sleep related disorders. Traditionally, sleep scoring is done manually by trained sleep scorers. The analysis of electroencephalogram (EEG) signals recorded during sleep by clinicians is tedious, time-consuming and prone to human errors. Therefore, it is clinically important to score sleep stages using machine learning techniques to get accurate diagnosis. Several studies have been proposed for automated detection of sleep stages. However, these studies have employed only healthy normal subjects (good sleepers). The proposed study focuses on the automated sleep-stage scoring of subjects suffering from seven different kind of sleep disorders such as insomnia, bruxism, narcolepsy, nocturnal frontal lobe epilepsy (NFLE), periodic leg movement (PLM), rapid eye movement (REM) behavioural disorder and sleep-disordered breathing as well as normal subjects. The open source physionet's cyclic alternating pattern (CAP) sleep database is used for this study. The EEG epochs are decomposed into sub-bands using a new class of optimized wavelet filters. Two EEG channels, namely F4-C4 and C4-A1, combined are used for this work as they can provide more insights into the changes in EEG signals during sleep. The norm features are computed from six sub-bands coefficients of optimal wavelet filter bank and fed to various supervised machine learning classifiers. We have obtained the highest classification performance using an ensemble of bagged tree (EBT) classifier with 10-fold cross validation. The CAP database comprising of 80 subjects is divided into ten different subsets and then ten different sleep-stage scoring tasks are performed. Since, the CAP database is unbalanced with different duration of sleep stages, the balanced dataset also has been created using over-sampling and under-sampling techniques. The highest average accuracy of 85.3% and Cohen's Kappa coefficient of 0.786 and accuracy of 92.8% and Cohen's Kappa coefficient of 0.915 are obtained for unbalanced and balanced databases, respectively. The proposed method can reliably classify the sleep stages using single or dual channel EEG epochs of 30 s duration instead of using multimodal polysomnography (PSG) which are generally used for sleep-stage scoring. Our developed automated system is ready to be tested with more sleep EEG data and can be employed in various sleep laboratories to evaluate the quality of sleep in various sleep disorder patients and normal subjects.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India;
| | - Jainendra Tiwari
- Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad 380026, India;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- School of Management and Enterprise, University of Southern Queensland, Springfield 4300, Australia
| |
Collapse
|
16
|
Maytum J, Garcia J, Leighty D, Belew J. Utility of the Frontal Lobe Epilepsy Parasomnia Scale in Evaluation of Children With Nocturnal Events. J Neurosci Nurs 2021; 53:34-38. [PMID: 33298683 DOI: 10.1097/jnn.0000000000000567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT BACKGROUND: Sleep-related hypermotor epilepsy (SHE) and nocturnal non-rapid eye movement parasomnias are difficult to differentiate. Neurologists and sleep medicine clinicians largely rely on clinical history when evaluating nocturnal spells. When the diagnosis is in question, referral for video electroencephalogram monitoring is the standard. However, there are no guidelines as to when this evaluation is needed. The Frontal Lobe Epilepsy Parasomnia (FLEP) scale was developed to assist clinicians in differentiating the two among adults. The aim of this study was to provide a preliminary evaluation of the FLEP for use with children. METHODS: This was a retrospective pilot instrument validation study with a convenience sample of 17 children seen in neurology or sleep medicine clinics. To determine concurrent validity, FLEP scores were compared with clinical diagnoses by neurology providers confirmed by electroencephalography. RESULTS: With a cutoff score of 2, the modified FLEP distinguished between children with and without SHE. The FLEP tool had a specificity of 0.58, implying that 7 of the 12 children without SHE would have been accurately recommended to follow up for parasomnia management rather than more urgent evaluation of potential frontal lobe epilepsy. CONCLUSIONS: With some minor adaptations for children, the FLEP satisfactorily distinguished between SHE and non-SHE patients.
Collapse
|
17
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
18
|
Peron A, Catusi I, Recalcati MP, Calzari L, Larizza L, Vignoli A, Canevini MP. Ring Chromosome 20 Syndrome: Genetics, Clinical Characteristics, and Overlapping Phenotypes. Front Neurol 2020; 11:613035. [PMID: 33363513 PMCID: PMC7753021 DOI: 10.3389/fneur.2020.613035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Ring chromosome 20 [r(20)] syndrome is a rare condition characterized by a non-supernumerary ring chromosome 20 replacing a normal chromosome 20. It is commonly seen in a mosaic state and is diagnosed by means of karyotyping. r(20) syndrome is characterized by a recognizable epileptic phenotype with typical EEG pattern, intellectual disability manifesting after seizure onset in otherwise normally developing children, and behavioral changes. Despite the distinctive phenotype, many patients still lack a diagnosis-especially in the genomic era-and the pathomechanisms of ring formation are poorly understood. In this review we address the genetic and clinical aspects of r(20) syndrome, and discuss differential diagnoses and overlapping phenotypes, providing the reader with useful tools for clinical and laboratory practice. We also discuss the current issues in understanding the mechanisms through which ring 20 chromosome causes the typical manifestations, and present unpublished data about methylation studies. Ultimately, we explore future perspectives of r(20) research. Our intended audience is clinical and laboratory geneticists, child and adult neurologists, and genetic counselors.
Collapse
Affiliation(s)
- Angela Peron
- Human Pathology and Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.,Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy.,Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Ilaria Catusi
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Maria Paola Recalcati
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Lidia Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano IRCCS-Istituto di Ricovero e Cura a Carattere Scientifico, Cusano Milanino, Milan, Italy
| | - Aglaia Vignoli
- Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy
| | - Maria Paola Canevini
- Child Neuropsychiatry Unit - Epilepsy Center, Department of Health Sciences, ASST Santi Paolo e Carlo, San Paolo Hospital, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Eichelberger H, Nelson ALA. Nocturnal events in children: When and how to evaluate. Curr Probl Pediatr Adolesc Health Care 2020; 50:100893. [PMID: 33139210 DOI: 10.1016/j.cppeds.2020.100893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nocturnal events of wide variety and concern are frequently reported by patients and their caregivers. To evaluate suspected abnormal events, primary care physicians must first be familiar with normal behaviors, movements and breathing patterns. Abnormal nocturnal events can then be categorized as nocturnal seizure, parasomnia, sleep-related movement disorder or sleep-related breathing disorder. Diagnoses in the above categories can be made clinically; however, it is important to know when to refer for additional evaluation. Comprehensive literature review was undertaken of nocturnal and sleep-related disorders. This guide reviews nocturnal seizures, normal and abnormal nonepileptic movements and behaviors, discusses broad indications for referral for electroencephalography (EEG) or polysomnography (PSG), and guides counseling and management for patients and their families, ultimately aiding in interpretation of both findings and prognosis. Epilepsy syndromes can result in seizures during sleep or adjacent periods of wakefulness. Parasomnias and sleep-related movement disorders tend to also occur in childhood and may be distinguished clinically. Referral to additional specialists for specific studies including EEG or PSG can be necessary, while other times a knowledgeable and vigilant clinician can contribute to a prompt diagnosis based on clinical features. Nocturnal events often can be managed with parental reassurance and watchful waiting, but treatment or evaluation may be needed. Sleep-related breathing disorders are important to recognize as they present very differently in children than in adults and early intervention can be life-saving. This review should allow both primary and subspecialty non-neurologic pediatric and adolescent health care providers to better utilize EEG and PSG as part of a larger comprehensive clinical approach, distinguishing and managing both epileptic and nonepileptic nocturnal disorders of concern while fostering communication across providers to facilitate and coordinate better holistic long-term care of pediatric and adolescent patients.
Collapse
Affiliation(s)
| | - Aaron L A Nelson
- The Department of Neurology, NYU Langone Health, New York, NY, United States; The Department of Neurology, Bellevue Hospital Center, New York, NY, United States.
| |
Collapse
|
20
|
Age-Dependent and Sleep/Seizure-Induced Pathomechanisms of Autosomal Dominant Sleep-Related Hypermotor Epilepsy. Int J Mol Sci 2020; 21:ijms21218142. [PMID: 33143372 PMCID: PMC7662760 DOI: 10.3390/ijms21218142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
The loss-of-function S284L-mutant α4 subunit of the nicotinic acetylcholine receptor (nAChR) is considered to contribute to the pathomechanism of autosomal dominant sleep-related hypermotor epilepsy (ADSHE); however, the age-dependent and sleep-related pathomechanisms of ADSHE remain to be clarified. To explore the age-dependent and sleep-induced pathomechanism of ADSHE, the present study determined the glutamatergic transmission abnormalities associated with α4β2-nAChR and the astroglial hemichannel in the hyperdirect and corticostriatal pathways of ADSHE model transgenic rats (S286L-TG) bearing the rat S286L-mutant Chrna4 gene corresponding to the human S284L-mutant CHRNA4 gene of ADSHE, using multiprobe microdialysis and capillary immunoblotting analyses. This study could not detect glutamatergic transmission in the corticostriatal pathway from the orbitofrontal cortex (OFC) to the striatum. Before ADSHE onset (four weeks of age), functional abnormalities of glutamatergic transmission compared to the wild-type in the cortical hyperdirect pathway, from OFC to the subthalamic nucleus (STN) in S286L-TG, could not be detected. Conversely, after ADSHE onset (eight weeks of age), glutamatergic transmission in the hyperdirect pathway of S286L-TG was enhanced compared to the wild-type. Notably, enhanced glutamatergic transmission of S286L-TG was revealed by hemichannel activation in the OFC. Expression of connexin43 (Cx43) in the OFC of S286L-TG was upregulated after ADSHE onset but was almost equal to the wild-type prior to ADSHE onset. Differences in the expression of phosphorylated protein kinase B (pAkt) before ADSHE onset between the wild-type and S286L-TG were not observed; however, after ADSHE onset, pAkt was upregulated in S286L-TG. Conversely, the expression of phosphorylated extracellular signal-regulated kinase (pErk) was already upregulated before ADSHE onset compared to the wild-type. Both before and after ADSHE onset, subchronic nicotine administration decreased and did not affect the both expression of Cx43 and pErk of respective wild-type and S286L-TG, whereas the pAkt expression of both the wild-type and S286L-TG was increased by nicotine. Cx43 expression in the plasma membrane of the primary cultured astrocytes of the wild-type was increased by elevation of the extracellular K+ level (higher than 10 mM), and the increase in Cx43 expression in the plasma membrane required pErk functions. These observations indicate that a combination of functional abnormalities, GABAergic disinhibition, and upregulated pErk induced by the loss-of-function S286L-mutant α4β2-nAChR contribute to the age-dependent and sleep-induced pathomechanism of ADSHE via the upregulation/hyperactivation of the Cx43 hemichannels.
Collapse
|
21
|
Abstract
Abstract:Purpose:Our purpose was to determine the role of CHRNA4 and CHRNB2 in insular epilepsy.Method:We identified two patients with drug-resistant predominantly sleep-related hypermotor seizures, one harboring a heterozygous missense variant (c.77C>T; p. Thr26Met) in the CHRNB2 gene and the other a heterozygous missense variant (c.1079G>A; p. Arg360Gln) in the CHRNA4 gene. The patients underwent electrophysiological and neuroimaging studies, and we performed functional characterization of the p. Thr26Met (c.77C>T) in the CHRNB2 gene.Results:We localized the epileptic foci to the left insula in the first case (now seizure-free following epilepsy surgery) and to both insulae in the second case. Based on tools predicting the possible impact of amino acid substitutions on the structure and function of proteins (sorting intolerant from tolerant and PolyPhen-2), variants identified in this report could be deleterious. Functional expression in human cell lines of α4β2 (wild-type), α4β2-Thr26Met (homozygote), and α4β2/β2-Thr26Met (heterozygote) nicotinic acetylcholine receptors revealed that the mutant subunit led to significantly higher whole-cell nicotinic currents. This feature was observed in both homo- and heterozygous conditions and was not accompanied by major alterations of the current reversal potential or the shape of the concentration-response relation.Conclusions:This study suggests that variants in CHRNB2 and CHRNA4, initially linked to autosomal dominant nocturnal frontal lobe epilepsy, are also found in patients with predominantly sleep-related insular epilepsy. Although the reported variants should be considered of unknown clinical significance for the moment, identification of additional similar cases and further functional studies could eventually strengthen this association.
Collapse
|
22
|
Heyat MBB, Lai D, Akhtar F, Hayat MAB, Azad S, Azad S, Azad S. Bruxism Detection Using Single‐Channel C4‐A1 on Human Sleep S2 Stage Recording. INTELL DATA ANAL 2020. [DOI: 10.1002/9781119544487.ch17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
Upregulated and Hyperactivated Thalamic Connexin 43 Plays Important Roles in Pathomechanisms of Cognitive Impairment and Seizure of Autosomal Dominant Sleep-Related Hypermotor Epilepsy with S284L-Mutant α4 Subunit of Nicotinic ACh Receptor. Pharmaceuticals (Basel) 2020; 13:ph13050099. [PMID: 32443400 PMCID: PMC7280967 DOI: 10.3390/ph13050099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/26/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
To understand the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), we studied functional abnormalities of glutamatergic transmission in thalamocortical pathway from reticular thalamic nucleus (RTN), mediodorsal thalamic nucleus (MDTN) to orbitofrontal cortex (OFC) associated with S286L-mutant α4β2-nicotinic acetylcholine receptor (nAChR), and connexin43 (Cx43) hemichannel of transgenic rats bearing rat S286L-mutant Chrna4 gene (S286L-TG), corresponding to the human S284L-mutant CHRNA4 gene using simple Western analysis and multiprobe microdialysis. Cx43 expression in the thalamic plasma membrane fraction of S286L-TG was upregulated compared with that of wild-type. Subchronic administrations of therapeutic-relevant doses of zonisamide (ZNS) and carbamazepine (CBZ) decreased and did not affect Cx43 expression of S286L-TG, respectively. Upregulated Cx43 enhanced glutamatergic transmission during both resting and hyperexcitable stages in S286L-TG. Furthermore, activation of GABAergic transmission RTN-MDTN pathway conversely enhanced, but not inhibited, l-glutamate release in the MDTN via upregulated/activated Cx43. Local administration of therapeutic-relevant concentration of ZNS and CBZ acutely supressed and did not affect glutamatergic transmission in the thalamocortical pathway, respectively. These results suggest that pathomechanisms of ADSHE seizure and its cognitive deficit comorbidity, as well as pathophysiology of CBZ-resistant/ZNS-sensitive ADSHE seizures of patients with S284L-mutation.
Collapse
|
24
|
Upregulated Connexin 43 Induced by Loss-of-Functional S284L-Mutant α4 Subunit of Nicotinic ACh Receptor Contributes to Pathomechanisms of Autosomal Dominant Sleep-Related Hypermotor Epilepsy. Pharmaceuticals (Basel) 2020; 13:ph13040058. [PMID: 32235384 PMCID: PMC7243124 DOI: 10.3390/ph13040058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/07/2023] Open
Abstract
To study the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities of glutamatergic transmission in the thalamocortical motor pathway, from the reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN) tosecondary motor cortex (M2C) associated with the S286L-mutant α4β2-nicotinic acetylcholine receptor (nAChR) and the connexin43 (Cx43) hemichannel of transgenic rats bearing the rat S286L-mutant Chrna4 gene (S286L-TG), which corresponds to the human S284L-mutant CHRNA4 gene using multiprobe microdialysis, primary cultured astrocytes and a Simple Western system. Expression of Cx43 in the M2C plasma membrane fraction of S286L-TG was upregulated compared with wild-type rats. Subchronic nicotine administration decreased Cx43 expression of wild-type, but did not affect that of S286L-TG; however, zonisamide (ZNS) decreased Cx43 in both wild-type and S286L-TG. Primary cultured astrocytes of wild-type were not affected by subchronic administration of nicotine but was decreased by ZNS. Upregulated Cx43 enhanced glutamatergic transmission during both resting and hyperexcitable stages in S286L-TG. Furthermore, activation of glutamatergic transmission associated with upregulated Cx43 reinforced the prolonged Cx43 hemichannel activation. Subchronic administration of therapeutic-relevant doses of ZNS compensated the upregulation of Cx43 and prolonged reinforced activation of Cx43 hemichannel induced by physiological hyperexcitability during the non-rapid eye movement phase of sleep. The present results support the primary pathomechanisms and secondary pathophysiology of ADSHE seizures of patients with S284L-mutation.
Collapse
|
25
|
Fukuyama K, Fukuzawa M, Shiroyama T, Okada M. Pathomechanism of nocturnal paroxysmal dystonia in autosomal dominant sleep-related hypermotor epilepsy with S284L-mutant α4 subunit of nicotinic ACh receptor. Biomed Pharmacother 2020; 126:110070. [PMID: 32169758 DOI: 10.1016/j.biopha.2020.110070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
To study the pathomechanism and pathophysiology of nocturnal paroxysmal dystonia of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities in thalamic hyperdirect pathway from reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN), subthalamic nucleus (STN) to substantia nigra pars reticulata (SNr) of transgenic rats (S286L-TG) bearing S286 L missense mutation of rat Chrna4 gene, which corresponds to the S284 L mutation in the human CHRNA4 gene. The activation of α4β2-nAChR in the RTN increased GABA release in MoTN resulting in reduced glutamatergic transmission in thalamic hyperdirect pathway of wild-type. Contrary to wild-type, activation of S286L-mutant α4β2-nAChR (loss-of-function) in the RTN relatively enhanced glutamatergic transmission in thalamic hyperdirect pathway of S286L-TG via impaired GABAergic inhibition in intra-thalamic (RTN-MoTN) pathway. These functional abnormalities in glutamatergic transmission in hyperdirect pathway contribute to the pathomechanism of electrophysiologically negative nocturnal paroxysmal dystonia of S286L-TG. Therapeutic-relevant concentration of zonisamide (ZNS) inhibited the glutamatergic transmission in the hyperdirect pathway via activation of group II metabotropic glutamate receptor (II-mGluR) in MoTN and STN. The present results suggest that S286L-mutant α4β2-nAChR induces GABAergic disinhibition in intra-thalamic (RTN-MoTN) pathway and hyperactivation of glutamatergic transmission in thalamic hyperdirect pathway (MoTN-STN-SNr), possibly contributing to the pathomechanism of nocturnal paroxysmal dystonia of ADSHE patients with S284L mutant CHRNA4. Inhibition of glutamatergic transmission in thalamic hyperdirect pathway induced by ZNS via activation of II-mGluR may be involved, at least partially, in ZNS-sensitive nocturnal paroxysmal dystonia of ADSHE patients with S284L mutation.
Collapse
Affiliation(s)
- Kouji Fukuyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Masashi Fukuzawa
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki. 036-8560, Japan.
| | - Takashi Shiroyama
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| | - Motohiro Okada
- Department of Neuropsychiatry, Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
26
|
Saadeldin IY, Kabiraj MM, Salih MAM. Childhood and Adolescent Epileptic Syndromes. CLINICAL CHILD NEUROLOGY 2020:863-915. [DOI: 10.1007/978-3-319-43153-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
27
|
Bartolini E, Campostrini R, Kiferle L, Pradella S, Rosati E, Chinthapalli K, Palumbo P. Epilepsy and brain channelopathies from infancy to adulthood. Neurol Sci 2019; 41:749-761. [PMID: 31838630 DOI: 10.1007/s10072-019-04190-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Genetic brain channelopathies result from inherited or de novo mutations of genes encoding ion channel subunits within the central nervous system. Most neurological channelopathies arise in childhood with paroxysmal or episodic symptoms, likely because of a transient impairment of homeostatic mechanisms regulating membrane excitability, and the prototypical expression of this impairment is epilepsy. Migraine, episodic ataxia and alternating hemiplegia can also occur, as well as chronic phenotypes, such as spinocerebellar ataxias, intellectual disability and autism spectrum disorder. Voltage-gated and ligand-gated channels may be involved. In most cases, a single gene may be associated with a phenotypical spectrum that shows variable expressivity. Different clinical features may arise at different ages and the adult phenotype may be remarkably modified from the syndrome onset in childhood or adolescence. Recognizing the prominent phenotypical traits of brain channelopathies is essential to perform appropriate diagnostic investigations and to provide the better care not only in the paediatric setting but also for adult patients and their caregivers. Herein, we provide an overview of genetic brain channelopathies associated with epilepsy, highlight the different molecular mechanisms and describe the different clinical characteristics which may prompt the clinician to suspect specific syndromes and to possibly establish tailored treatments.
Collapse
Affiliation(s)
- Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy.
| | - Roberto Campostrini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Lorenzo Kiferle
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Silvia Pradella
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | - Eleonora Rosati
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| | | | - Pasquale Palumbo
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Via Suor Niccolina Infermiera 20, 59100, Prato, Italy
| |
Collapse
|
28
|
Coelli S, Maggioni E, Rubino A, Campana C, Nobili L, Bianchi AM. Multiscale Functional Clustering Reveals Frequency Dependent Brain Organization in Type II Focal Cortical Dysplasia With Sleep Hypermotor Epilepsy. IEEE Trans Biomed Eng 2019; 66:2831-2839. [PMID: 30716026 DOI: 10.1109/tbme.2019.2896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A multiscale functional clustering approach is proposed to investigate the organization of the epileptic networks during different sleep stages and in relation with the occurrence of seizures. METHOD Stereo-electroencephalographic signals from seven pharmaco-resistant epileptic patients (focal cortical dysplasia type II) were analyzed. The discrete wavelet transform provided a multiscale framework on which a data-driven functional clustering procedure was applied, based on multivariate measures of integration and mutual information. The most interacting functional clusters (FCs) within the sampled brain areas were extracted. RESULTS FCs characterized by strongly integrated activity were observed mostly in the beta and alpha frequency bands, immediately before seizure onset and in deep sleep stages. These FCs generally included the electrodes from the epileptogenic zone. Furthermore, repeatable patterns were found across ictal events in the same patient. CONCLUSION In line with previous studies, our findings provide evidence of the important role of beta and alpha activity in seizures generation and support the relation between epileptic activity and sleep stages. SIGNIFICANCE Despite the small number of subjects included in the study, the present results suggest that the proposed multiscale functional clustering approach is a useful tool for the identification of the frequency-dependent mechanisms underlying seizure generation.
Collapse
|
29
|
Woolfe M, Prime D, Tjoa L, O'Keefe S, Rowlands D, Dionisio S. Nocturnal motor events in epilepsy: Is there a defined physiological network? Clin Neurophysiol 2019; 130:1531-1538. [DOI: 10.1016/j.clinph.2019.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/22/2019] [Accepted: 05/27/2019] [Indexed: 11/15/2022]
|
30
|
Kishk NA, Nawito AM, Ebraheim AM, Rizk H. Insights into sleep-related hyper-motor epilepsy: an Egyptian case series. Neurol Res 2019; 41:771-779. [PMID: 31084342 DOI: 10.1080/01616412.2019.1611191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objective: Sleep-related hypermotor epilepsy (SHE) is a sleep-related focal epilepsy which is often misdiagnosed. Despite active pharmacological therapy in the management of this disorder, satisfactory seizure control still cannot be achieved. Therefore, the aim of the present study was to identify this disorder among people who were seeking medical advice at Cairo University Epilepsy Unit (CUEU), characterizing its clinical, electroencephalographic and imaging features besides identifying possible indicators of inadequate seizure control on drug-therapy. Patients and methods: This study was carried out on 26 patients with SHE who were subjected to detailed history taking and examination in addition to home video recording, video electroencephalographic (EEG) monitoring and brain imaging. Ictal semiology and EEGs were reviewed and analyzed by experienced neurologists. Results: SHE is an uncommon sleep-related focal epilepsy. In our series, median age of the patients was 18.5 years. It is characterized by being sporadic, with often frontal lobe seizure onset (14/26, 53.8%) and with occasional occurrence in wakefulness. Adolescence age at disease onset (11 years, 6-15), duration less than 1 min, clustering, lack of auras and often uninformative brain imaging (22/25, 88%) are all documented features. Moreover, it has a relatively poor outcome on pharmacological therapy (16/26, 61.5%). Longer disease duration (>4.5 years) was a significant feature of the patients exhibiting inadequate seizure control. Conclusions: Our data show relatively poor prognosis of SHE on medical therapy. Its outcome is significantly related to disease duration at the time of diagnosis. Abbreviation: SHE = Sleep related hypermotor epilepsy.
Collapse
Affiliation(s)
- Nirmeen A Kishk
- Neurology department, Faculty of Medicine, Cairo University , Giza , Egypt
| | - Amani M Nawito
- Clinical neurophysiology unit, Faculty of Medicine, Cairo University , Giza , Egypt
| | - Asmaa M Ebraheim
- Neurology department, Faculty of Medicine, Cairo University , Giza , Egypt
| | - Haytham Rizk
- Neurology department, Faculty of Medicine, Cairo University , Giza , Egypt
| |
Collapse
|
31
|
Villa C, Colombo G, Meneghini S, Gotti C, Moretti M, Ferini-Strambi L, Chisci E, Giovannoni R, Becchetti A, Combi R. CHRNA2 and Nocturnal Frontal Lobe Epilepsy: Identification and Characterization of a Novel Loss of Function Mutation. Front Mol Neurosci 2019; 12:17. [PMID: 30809122 PMCID: PMC6379349 DOI: 10.3389/fnmol.2019.00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in genes coding for subunits of the neuronal nicotinic acetylcholine receptor (nAChR) have been involved in familial sleep-related hypermotor epilepsy (also named autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE). Most of these mutations reside in CHRNA4 and CHRNB2 genes, coding for the α4 and β2 nAChR subunits, respectively. Two mutations with contrasting functional effects were also identified in the CHRNA2 gene coding for the α2 subunit. Here, we report the third mutation in the CHRNA2, found in a patient showing ADNFLE. The patient was examined by scalp EEG, contrast-enhanced brain magnetic resonance imaging (MRI), and nocturnal video-polysomnographic recording. All exons and the exon-intron boundaries of CHRNA2, CHRNA4, CHRNB2, CRH, KCNT1 were amplified and Sanger sequenced. In the proband, we found a c.754T>C (p.Tyr252His) missense mutation located in the N-terminal ligand-binding domain and inherited from the mother. Functional studies were performed by transient co-expression of α2 and α2Tyr252His, with either β2 or β4, in human embryonic kidney (HEK293) cells. Equimolar amounts of subunits expression were obtained by using F2A-based multi-cistronic constructs encoding for the genes relative to the nAChR subunits of interest and for the enhanced green fluorescent protein. The mutation reduced the maximal currents by approximately 80% in response to saturating concentrations of nicotine in homo- and heterozygous form, in both the α2β4 and α2β2 nAChR subtypes. The effect was accompanied by a strong right-shift of the concentration-response to nicotine. Similar effects were observed using ACh. Negligible effects were produced by α2Tyr252His on the current reversal potential. Moreover, binding of (±)-[3H]Epibatidine revealed an approximately 10-fold decrease of both Kd and Bmax (bound ligand in saturating conditions), in cells expressing α2Tyr252His. The reduced Bmax and whole-cell currents were not caused by a decrease in mutant receptor expression, as minor effects were produced by α2Tyr252His on the level of transcripts and the membrane expression of α2β4 nAChR. Overall, these results suggest that α2Tyr252His strongly reduced the number of channels bound to the agonist, without significantly altering the overall channel expression. We conclude that mutations in CHRNA2 are more commonly linked to ADNFLE than previously thought, and may cause a loss-of-function phenotype.
Collapse
Affiliation(s)
- Chiara Villa
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Giulia Colombo
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | | | - Milena Moretti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luigi Ferini-Strambi
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Sleep Disorders Center, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Chisci
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| | - Romina Combi
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy
| |
Collapse
|
32
|
Kumar J, Solaiman A, Mahakkanukrauh P, Mohamed R, Das S. Sleep Related Epilepsy and Pharmacotherapy: An Insight. Front Pharmacol 2018; 9:1088. [PMID: 30319421 PMCID: PMC6171479 DOI: 10.3389/fphar.2018.01088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/07/2018] [Indexed: 01/26/2023] Open
Abstract
In the last several decades, sleep-related epilepsy has drawn considerable attention among epileptologists and neuroscientists in the interest of new paradigms of the disease etiology, pathogenesis and management. Sleep-related epilepsy is nocturnal seizures that manifest solely during the sleep state. Sleep comprises two distinct stages i.e., non-rapid eye movement (NREM) and rapid eye movement (REM) that alternate every 90 min with NREM preceding REM. Current findings indicate that the sleep-related epilepsy manifests predominantly during the synchronized stages of sleep; NREM over REM stage. Sleep related hypermotor epilepsy (SHE), benign partial epilepsy with centrotemporal spikes or benign rolandic epilepsy (BECTS), and Panayiotopoulos Syndrome (PS) are three of the most frequently implicated epilepsies occurring during the sleep state. Although some familial types are described, others are seemingly sporadic occurrences. In the present review, we aim to discuss the predominance of sleep-related epilepsy during NREM, established familial links to the pathogenesis of SHE, BECTS and PS, and highlight the present available pharmacotherapy options.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Amro Solaiman
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Pasuk Mahakkanukrauh
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Excellence Centre in Forensic Osteology Research Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rashidi Mohamed
- Department of Familty Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Jiang YL, Yuan F, Yang Y, Sun XL, Song L, Jiang W. CHRNA4 variant causes paroxysmal kinesigenic dyskinesia and genetic epilepsy with febrile seizures plus? Seizure 2018; 56:88-91. [PMID: 29454195 DOI: 10.1016/j.seizure.2018.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Paroxysmal kinesigenic dyskinesia (PKD) and epilepsy are thought to have a shared genetic etiology. PRRT2 has been identified as a causative gene of both disorders. In this study, we aim to explore the potential novel causative gene in a PRRT2-negative family with three individuals diagnosed with PKD or genetic epilepsy with febrile seizures plus (GEFS+). METHODS Clinical data were collected from all the affected and unaffected members of a PKD/GEFS+ family. The Brain magnetic resonance imaging and 24 h video-EEG of all three affected members were analyzed. Targeted gene-panel sequencing was used to detect the genetic defect in genomic DNAs of three affected and five normal individuals. Co-segregation analysis of putatively pathogenic mutations with the phenotype was carried out in all the family members alive to examine the inheritance status. RESULTS The inheritance model of this pedigree was autosomal dominant. A novel, fully co-segregated mutation (NM_000744: c.979G > A) in CHRNA4 was identified in the family with three individuals diagnosed with PKD or GEFS+. CONCLUSIONS CHRNA4 may be a novel gene causing of PKD and GEFS+. Our study extends the genotypic-phenotypic spectrum of combined epileptic and dyskinetic syndromes, and provides a genetic linkage between PKD and GEFS+.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fang Yuan
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiao-Long Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lu Song
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
34
|
Abstract
In this review, the authors discuss the problem of management of the patient with epilepsy with regard an impact of epileptic seizures and syndromes on sleep structure. Sleep disorders can lead to worsening of seizure control and general medical condition of the patients. However, seizures themselves and types of epilepsy can affect the sleep architecture. One of the most frequent symptoms of disordered sleep in epilepsy patients is excessive daytime sleepiness, which can be a consequence of poor sleep quality due to frequent nocturnal seizures or excessive interictal epileptiform activity during sleep leading to frequent arousals. is frequently referred to antiepileptic drug side effects. In patients with frontal and temporal lobe epilepsies, which are more associated with sleep, the sleep architecture is significantly different from healthy individuals. They have more frequent arousals, disturbed relationship between sleep phases and stages, in particular inhibited REM-sleep phase. Most recent data on this problem are reviewed. Sleep patterns for different major epileptic syndromes are presented and some general recommendations for patient management, with a special consideration of sleep issues, are given.
Collapse
Affiliation(s)
- S G Khachatryan
- Mkhitar Heratsi Erevan State Medical University, Erevan, Armenia
| | - Yu S Tunyan
- Mkhitar Heratsi Erevan State Medical University, Erevan, Armenia
| |
Collapse
|
35
|
Puligheddu M, Melis M, Pillolla G, Milioli G, Parrino L, Terzano GM, Aroni S, Sagheddu C, Marrosu F, Pistis M, Muntoni AL. Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia 2017; 58:1762-1770. [DOI: 10.1111/epi.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Monica Puligheddu
- Sleep Disorder Research Center; Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
| | - Miriam Melis
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Giuliano Pillolla
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Giulia Milioli
- Department of Neurosciences; Sleep Disorder Center; University of Parma; Parma Italy
| | - Liborio Parrino
- Department of Neurosciences; Sleep Disorder Center; University of Parma; Parma Italy
| | | | - Sonia Aroni
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
| | - Francesco Marrosu
- Sleep Disorder Research Center; Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
- Department of Medical Sciences and Public Health; University of Cagliari; Cagliari Italy
| | - Marco Pistis
- Department of Biomedical Sciences; University of Cagliari; Monserrato Italy
- Neuroscience Institute; National Research Council of Italy; Cagliari Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute; National Research Council of Italy; Cagliari Italy
| |
Collapse
|
36
|
Coelli S, Maggioni E, Cerutti S, Nobili L, Rubino A, Campana C, Bianchi AM. Functional Clustering approach for the analysis of Stereo-EEG activity patterns in correspondence of epileptic seizures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2806-2809. [PMID: 29060481 DOI: 10.1109/embc.2017.8037440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, a functional clustering approach is proposed and tested for the identification of brain functional networks emerging during sleep-related seizures. Stereo-EEG signals recorded in patients with Type II Focal Cortical Dysplasia (FCD type II), were analyzed. This novel approach is able to identify the network configuration changes in pre-ictal and early ictal periods, by grouping Stereo-EEG signals on the basis of the Cluster Index, after wavelet multiscale decomposition. Results showed that the proposed method is able to detect clusters of interacting leads, mainly overlapped on the Epileptogenic Zone (EZ) identified by a clinical expert, with distinctive configurations related to analyzed frequency ranges. This suggested the presence of coupling activities between the elements of the epileptic system at different frequency scales.
Collapse
|
37
|
Tinuper P, Bisulli F. From nocturnal frontal lobe epilepsy to Sleep-Related Hypermotor Epilepsy: A 35-year diagnostic challenge. Seizure 2017; 44:87-92. [DOI: 10.1016/j.seizure.2016.11.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
|
38
|
Samsonsen C, Sand T, Bråthen G, Helde G, Brodtkorb E. The impact of sleep loss on the facilitation of seizures: A prospective case-crossover study. Epilepsy Res 2016; 127:260-266. [PMID: 27665308 DOI: 10.1016/j.eplepsyres.2016.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE The relationship between sleep and seizures is intricate. The aim of this study was to assess whether sleep loss is an independent seizure precipitant in a clinical setting. METHODS In this prospective, observational cross-over study, 179 consecutive hospital admissions for epileptic seizures were included. A semi-structured interview regarding several seizure precipitants was performed. The sleep pattern prior to the seizure, as well as alcohol, caffeine and drug use, were recorded. The interview was repeated by telephone covering the same weekday at a time when there had been no recent seizure. The Hospital Anxiety and Depression Scale (HADS) and a visual analogue scale for perceived stress were applied at admission. Student's t-test, Fisher exact test and ANOVA were used for statistical analyses. RESULTS Complete data for analysis were retrieved in 144 patients. The sleep-time during the 24h prior to the seizure was lower (7.3h) compared to follow-up (8.3h; p<0.0005). Caffeine consumption and use of relevant non antiepileptic drugs (AED) were not different. HADS and stress scores at admission did not correlate with sleep-time difference. In ANOVA, controlled for alcohol consumption and AED use, the sleep-time difference remained significant (p=0.008). The interaction with alcohol intake was high, but the sleep-time difference remained highly significant also for the non- and low-consumption (≤2 units per day) subgroup (n=121, 7.50h vs 8.42h, p=0.001). CONCLUSION Epileptic seizures are often precipitated by a combination of various clinical factors, but sleep loss stands out as an independent seizure trigger.
Collapse
Affiliation(s)
- Christian Samsonsen
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Trond Sand
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Grethe Helde
- Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eylert Brodtkorb
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Faculty of Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
39
|
Gold JA, Sher Y, Maldonado JR. Frontal Lobe Epilepsy: A Primer for Psychiatrists and a Systematic Review of Psychiatric Manifestations. PSYCHOSOMATICS 2016; 57:445-64. [DOI: 10.1016/j.psym.2016.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022]
|
40
|
Dos Passos GR, Fernández AC, Vasques AM, Martins WA, Palmini A. Mother and daughter with adolescent-onset severe frontal lobe dysfunction and epilepsy. Dement Neuropsychol 2016; 10:238-243. [PMID: 29213461 PMCID: PMC5642421 DOI: 10.1590/s1980-5764-2016dn1003011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Familial cases of early-onset prominent frontal lobe dysfunction associated with
epilepsy have not been reported to date. We report a mother and her only daughter
with incapacitating behavioral manifestations of frontal lobe dysfunction and
epilepsy of variable severity. The possibility of a hitherto undescribed genetic
condition is discussed.
Collapse
Affiliation(s)
| | - Alonso Cuadrado Fernández
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Adriana Machado Vasques
- Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - William Alves Martins
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil.,Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, RS, Porto Alegre, Brazil
| | - André Palmini
- Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre RS, Brazil.,Porto Alegre Epilepsy Surgery Program, Neurology Service, São Lucas Hospital, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Liguori C, Romigi A, Placidi F, Sarpa MG, Mercuri NB, Izzi F. Effective treatment of nocturnal frontal lobe epilepsy with lacosamide: a report of two cases. Sleep Med 2016; 23:121-122. [DOI: 10.1016/j.sleep.2015.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
|
42
|
Cox FME, Lammers GJ, Thijs RD, Visser GH. Pearls & Oy-sters: Diagnostic challenges in nocturnal frontal lobe epilepsy. Neurology 2016; 86:e151-e153. [PMID: 27044618 DOI: 10.1212/wnl.0000000000002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Fieke M E Cox
- From Stichting Epilepsie Instellingen Nederland (SEIN) (F.M.E.C., G.J.L., R.D.T., G.H.V.), Heemstede; and Leiden University Medical Center (G.J.L., R.D.T.), the Netherlands.
| | - Gert Jan Lammers
- From Stichting Epilepsie Instellingen Nederland (SEIN) (F.M.E.C., G.J.L., R.D.T., G.H.V.), Heemstede; and Leiden University Medical Center (G.J.L., R.D.T.), the Netherlands
| | - Roland D Thijs
- From Stichting Epilepsie Instellingen Nederland (SEIN) (F.M.E.C., G.J.L., R.D.T., G.H.V.), Heemstede; and Leiden University Medical Center (G.J.L., R.D.T.), the Netherlands
| | - Gerhard H Visser
- From Stichting Epilepsie Instellingen Nederland (SEIN) (F.M.E.C., G.J.L., R.D.T., G.H.V.), Heemstede; and Leiden University Medical Center (G.J.L., R.D.T.), the Netherlands
| |
Collapse
|
43
|
Gibbs SA, Proserpio P, Terzaghi M, Pigorini A, Sarasso S, Lo Russo G, Tassi L, Nobili L. Sleep-related epileptic behaviors and non-REM-related parasomnias: Insights from stereo-EEG. Sleep Med Rev 2016; 25:4-20. [DOI: 10.1016/j.smrv.2015.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
44
|
Gibbs SA, Figorilli M, Casaceli G, Proserpio P, Nobili L. Sleep Related Hypermotor Seizures with a Right Parietal Onset. J Clin Sleep Med 2015; 11:953-5. [PMID: 25902821 DOI: 10.5664/jcsm.4952] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/22/2015] [Indexed: 11/13/2022]
Abstract
Nocturnal frontal lobe epilepsy (NFLE) is a syndrome characterized by the occurrence of sleep related seizures of variable complexity and duration. Hypermotor seizures (HMS) represent a classic manifestation of this syndrome, associated with a perturbation of the ventromesial frontal cortex and anterior cingulate gyrus regions. Nevertheless, in recent years, reports have showed that the seizure onset zone (SOZ) need not be of frontal origin to generate HMS. Here we report an unusual case of a patient presenting with a seven-year history of drug-resistant sleep related HMS arising from the mesial parietal region. The presence of an infrequent feeling of levitation before the HMS was key to suspecting a subtle focal cortical dysplasia in the right precuneus region. A stereo-EEG investigation confirmed the extra-frontal seizure onset of the HMS and highlighted the interrelationship between unstable sleep and seizure precipitation.
Collapse
Affiliation(s)
- Steve A Gibbs
- Center of Sleep Medicine, Centre for Epilepsy Surgery "C. Munari," Department of Neurosciences, Hospital Niguarda, Milan, Italy
| | - Michela Figorilli
- Center of Sleep Medicine, Centre for Epilepsy Surgery "C. Munari," Department of Neurosciences, Hospital Niguarda, Milan, Italy
| | - Giuseppe Casaceli
- Center of Sleep Medicine, Centre for Epilepsy Surgery "C. Munari," Department of Neurosciences, Hospital Niguarda, Milan, Italy
| | - Paola Proserpio
- Center of Sleep Medicine, Centre for Epilepsy Surgery "C. Munari," Department of Neurosciences, Hospital Niguarda, Milan, Italy
| | - Lino Nobili
- Center of Sleep Medicine, Centre for Epilepsy Surgery "C. Munari," Department of Neurosciences, Hospital Niguarda, Milan, Italy
| |
Collapse
|
45
|
Bassetti CL, Ferini-Strambi L, Brown S, Adamantidis A, Benedetti F, Bruni O, Cajochen C, Dolenc-Groselj L, Ferri R, Gais S, Huber R, Khatami R, Lammers GJ, Luppi PH, Manconi M, Nissen C, Nobili L, Peigneux P, Pollmächer T, Randerath W, Riemann D, Santamaria J, Schindler K, Tafti M, Van Someren E, Wetter TC. Neurology and psychiatry: waking up to opportunities of sleep. : State of the art and clinical/research priorities for the next decade. Eur J Neurol 2015; 22:1337-54. [DOI: 10.1111/ene.12781] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022]
Affiliation(s)
- C. L. Bassetti
- Department of Neurology; Inselspital, Bern University Hospital; University of Bern; Bern Switzerland
| | - L. Ferini-Strambi
- Division of Neuroscience; Sleep Disorders Centre; Università Vita-Salute San Raffaele; Milan Italy
| | - S. Brown
- Institute of Pharmacology and Toxicology; University of Zürich; Zürich Switzerland
| | - A. Adamantidis
- Department of Neurology; Inselspital, Bern University Hospital; University of Bern; Bern Switzerland
| | - F. Benedetti
- Department of Clinical Neurosciences; Scientific Institute and University Vita-Salute San Raffaele; Milan Italy
| | - O. Bruni
- Department of Developmental and Social Psychology; Sapienza University; Rome Italy
| | - C. Cajochen
- Psychiatric University Clinic; Basel Switzerland
| | - L. Dolenc-Groselj
- Division of Neurology; Institute of Clinical Neurophysiology; University Medical Centre Ljubljana; Ljubljana Slovenia
| | - R. Ferri
- Department of Neurology; Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS); Troina Italy
| | - S. Gais
- Medical Psychology and Behavioural Neurobiology; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - R. Huber
- Department of Paediatrics; Children's University Hospital; Zurich Switzerland
| | - R. Khatami
- Sleep Centre; Klinik Barmelweid AG; Barmelweid Switzerland
| | - G. J. Lammers
- Department of Neurology and Clinical Neurophysiology; Leiden University Medical Centre; Leiden The Netherlands
- Sleep Wake Centre SEIN; Stichting Epilepsie Instellingen Nederland; Heemstede The Netherlands
| | - P. H. Luppi
- UMR 5292 CNRS/U1028 INSERM; Centre de Recherche en Neurosciences de Lyon (CRNL); Team “Physiopathologie des réseaux neuronaux responsables du cycle veille-sommeil”; Université Claude Bernard Lyon I; Lyon France
| | - M. Manconi
- Sleep and Epilepsy Centre; Neurocentre of Southern Switzerland; Civic Hospital (EOC) of Lugano; Lugano Switzerland
| | - C. Nissen
- Department of Clinical Psychology and Psychophysiology/Sleep Medicine; Centre for Mental Disorders; Freiburg University Medical Centre; Freiburg Germany
| | - L. Nobili
- Centre of Epilepsy Surgery ‘C. Munari’; Niguarda Hospital; Milan Italy
| | - P. Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit; CRCN - Centre de Recherches Cognition et Neurosciences and UNI - ULB Neurosciences Institute; Université Libre de Bruxelles (ULB); Brussels Belgium
| | - T. Pollmächer
- Center of Mental Health; Klinikum Ingolstadt; Ingolstadt Germany
| | - W. Randerath
- Institut für Pneumologie; Krankenhaus Bethanien gGmbH; Universität Witten/Herdecke; Solingen Germany
| | - D. Riemann
- Department of Clinical Psychology and Psychophysiology/Sleep Medicine; Centre for Mental Disorders; Freiburg University Medical Centre; Freiburg Germany
| | - J. Santamaria
- Neurology Service; Hospital Clínic of Barcelona; Institut d'Investigació Biomèdiques August Pi i Sunyer (IDIBAPS); Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED); Barcelona Spain
| | - K. Schindler
- Department of Neurology; Inselspital, Bern University Hospital; University of Bern; Bern Switzerland
| | - M. Tafti
- Centre for Integrative Genomics; University of Lausanne; Lausanne Switzerland
- Centre for Investigation and Research in Sleep; Vaud University Hospital; Lausanne Switzerland
| | - E. Van Someren
- Department of Sleep and Cognition; Netherlands Institute for Neuroscience; Amsterdam The Netherlands
- Departments of Integrative Neurophysiology and Medical Psychology; Center for Neurogenomics and Cognitive Research (CNCR); VU University and Medical Center; Amsterdam The Netherlands
| | - T. C. Wetter
- Department of Psychiatry and Psychotherapy; University of Regensburg; Regensburg Germany
| |
Collapse
|
46
|
Baud MO, Vulliemoz S, Seeck M. Recurrent secondary generalization in frontal lobe epilepsy: Predictors and a potential link to surgical outcome? Epilepsia 2015. [DOI: 10.1111/epi.13086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maxime O. Baud
- Department of Neurology; University of California San Francisco; San Francisco California U.S.A
| | - Serge Vulliemoz
- Epilepsy Center; Geneva University Hospital; Geneva Switzerland
| | - Margitta Seeck
- Epilepsy Center; Geneva University Hospital; Geneva Switzerland
| |
Collapse
|
47
|
Conti V, Aracri P, Chiti L, Brusco S, Mari F, Marini C, Albanese M, Marchi A, Liguori C, Placidi F, Romigi A, Becchetti A, Guerrini R. Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function. Neurology 2015; 84:1520-8. [PMID: 25770198 DOI: 10.1212/wnl.0000000000001471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/29/2014] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We assessed the mutation frequency in nicotinic acetylcholine receptor (nAChR) subunits CHRNA4, CHRNB2, and CHRNA2 in a cohort including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and sporadic nocturnal frontal lobe epilepsy (NFLE). Upon finding a novel mutation in CHRNA2 in a large family, we tested in vitro its functional effects. METHODS We sequenced all the coding exons and their flanking intronic regions in 150 probands (73 NFLE, 77 ADNFLE), in most of whom diagnosis had been validated by EEG recording of seizures. Upon finding a missense mutation in CHRNA2, we measured whole-cell currents in human embryonic kidney cells in both wild-type and mutant α2β4 and α2β2 nAChR subtypes stimulated with nicotine. RESULTS We found a c.889A>T (p.Ile297Phe) mutation in the proband (≈0.6% of the whole cohort) of a large ADNFLE family (1.2% of familial cases) and confirmed its segregation in all 6 living affected individuals. Video-EEG studies demonstrated sleep-related paroxysmal epileptic arousals in all mutation carriers. Oxcarbazepine treatment was effective in all. Whole-cell current density was reduced to about 40% in heterozygosity and to 0% in homozygosity, with minor effects on channel permeability and sensitivity to nicotine. CONCLUSION ADNFLE had previously been associated with CHRNA2 dysfunction in one family, in which a gain of function mutation was demonstrated. We confirm the causative role of CHRNA2 mutations in ADNFLE and demonstrate that also loss of function of α2 nAChRs may have pathogenic effects. CHRNA2 mutations are a rare cause of ADNFLE but this gene should be included in mutation screening.
Collapse
Affiliation(s)
- Valerio Conti
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Patrizia Aracri
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Laura Chiti
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Simone Brusco
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Francesco Mari
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Carla Marini
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Maria Albanese
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Angela Marchi
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Claudio Liguori
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Fabio Placidi
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Andrea Romigi
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Andrea Becchetti
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy
| | - Renzo Guerrini
- From the Pediatric Neurology and Neurogenetics Unit and Laboratories (V.C., L.C., F.M., C.M., R.G.), A. Meyer Children's Hospital-University of Florence; Department of Biotechnology and Biosciences and Center of Neuroscience (P.A., S.B., A.B.), Università di Milano-Bicocca, Milan; Neurophysiopathology Unit (M.A., A.M., C.L., F.P., A.R.), Sleep and Epilepsy Center, Department of Systems Medicine, University of Rome Tor Vergata General Hospital, Rome; IRCCS Neuromed (A.R.), Pozzilli, Isernia; and IRCCS Stella Maris Foundation (R.G.), Calambrone, Pisa, Italy.
| |
Collapse
|
48
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
49
|
|
50
|
Stores G. Psychological disturbance associated with recurrent abnormal nocturnal events. Br J Hosp Med (Lond) 2014; 75:337-41. [PMID: 25040410 DOI: 10.12968/hmed.2014.75.6.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gregory Stores
- Emeritus Professor of Developmental Neuropsychiatry in the Department of Psychiatry, University of Oxford, Oxford
| |
Collapse
|