1
|
Picher-Martel V, Locascio JJ, Chuang K, David WS, Amato AA, Gonzalez-Perez P. Investigating phenotypic variability patterns in myotonic dystrophy type 2 in a neuromuscular referral center retrospective cohort. Neuromuscul Disord 2025; 47:105255. [PMID: 39708548 PMCID: PMC11908914 DOI: 10.1016/j.nmd.2024.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
We aimed at investigating the presence of patterns that account for the phenotypic variability in a myotonic dystrophy type 2 (DM2) retrospective cohort at the Mass General Brigham Neuromuscular Centers. We collected the presence or absence of 23 clinical variables at symptom onset and diagnosis (n = 67 patients) and follow-up (n = 37 patients). We first identified set/s of variables (factors or cluster/s) representative of the large research data pool at onset by performing factor analyses, then assigned each patient to the cluster for which they had the highest computed total factor score. Twelve variables grouped into two distinct clusters that, based on their variable content, we named as proximal myotonic myopathy (PROMM)-DM2 or non-PROMM-DM2. Patients assigned to non-PROMM-DM2 more frequently had clinical myotonia and positive family history, and less frequently multiorgan involvement. Most patients (67.2 %) remained assigned to same cluster during disease course and 11 non-PROMM eventually transitioned to PROMM-DM2. Dyslipidemia and early cataracts (both in PROMM-DM2 cluster) were the earliest extramuscular manifestations that occurred during disease course and they accounted for the conversion of up to 8 out of 11 non-PROMM to PROMM converters. Identification of phenotypically homogeneous patient subgroups may help investigating DM2 prognosis and disease biomarkers in future prospective studies.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States; Department of Neurology, Brigham Women's Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Joseph J Locascio
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States; Harvard Catalyst Biostatistical Consulting Group, Boston MA02114, United States
| | - Kathy Chuang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States
| | - William S David
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States
| | - Anthony A Amato
- Department of Neurology, Brigham Women's Hospital, Harvard Medical School, Boston, MA02115, United States
| | - Paloma Gonzalez-Perez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114, United States.
| |
Collapse
|
2
|
Nisbet LC, Davey MJ, Nixon GM. Periodic limb movements during sleep in children with neuromuscular disease or cerebral palsy - An important potential contributor to sleep-related morbidity. Sleep Med 2024; 121:58-62. [PMID: 38924830 DOI: 10.1016/j.sleep.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES Poor sleep is frequently reported in children with neuromuscular diseases (NMD) and cerebral palsy (CP) however breathing disorders during sleep are often the clinical focus. Periodic limb movements (PLMs) have an increased prevalence in adults with NMD and may contribute to sleep disturbance in this population. We assessed the prevalence of PLMs in children with NMD or CP. METHODS Retrospective review of polysomnography (PSG) with leg electromyography in children age 1-18 years with NMD (including Duchenne muscular dystrophy, myotonic dystrophy, spinal muscular atrophy) or CP performed at a paediatric sleep centre 2004-2022. RESULTS Leg electromyography was available in at least 1 PSG in 239 children (125 NMD, 114 CP), and in 2 PSGs in 105 children (73 NMD, 32 CP). At initial PSG, 72 (30 %) were female with a median age 9y and respiratory disturbance index 3.5/h (interquartile range 1.3-9.9/h). Elevated PLM index (PLMI; >5/h) occurred in 9.6 % of each of the CP and NMD groups, quantified by initial PSG. Overall, PLMI increased from baseline (median 0, maximum 33/h) to follow-up (median 0, maximum 55.8/h; p < 0.05). In those with an elevated PLMI, arousal percentage attributable to PLMs was up to 25 % (median 7.5 %). CONCLUSIONS Elevated PLMI occurred at a higher prevalence in children with NMD and CP than reported in other clinic-referred paediatric populations. It is important that PLMs are not overlooked as identification and treatment may help improve sleep outcomes. Further research is required to understand the pathophysiology and consequences of PLMs specifically in this population.
Collapse
Affiliation(s)
- Lauren C Nisbet
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Monash Health, Melbourne, Australia.
| | - Margot J Davey
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | - Gillian M Nixon
- Melbourne Children's Sleep Centre, Monash Children's Hospital, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Hoxhaj D, Pascazio A, Maestri M, Ricci G, Fabbrini M, Torresi FB, Siciliano G, Bonanni E. Excessive daytime sleepiness in myotonic dystrophy: a narrative review. Front Neurol 2024; 15:1389949. [PMID: 39011358 PMCID: PMC11248093 DOI: 10.3389/fneur.2024.1389949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Excessive daytime sleepiness (EDS) is a common and debilitating symptom in both forms of myotonic dystrophy (DM), significantly impacting patients' quality of life. The review focuses on the purpose of examining the current understanding of EDS in these conditions, the difficulty in correctly accessing it, the recent findings related to its etiology and prevalence, and a summary of potential therapeutic implications. Methods We conducted a comprehensive search through PubMed, selecting studies that provided significant insights into the mechanisms, prevalence, and management of EDS in DM1 and DM2. Results and discussion EDS is highly prevalent in both DM1 and DM2. Polysomnographic studies have revealed prominent dysregulation of REM sleep in DM1, suggesting a possible narcoleptic-like phenotype and alterations in NREM sleep that contributes to daytime sleepiness. Other factors have been proposed to explain EDS in DM1, including dysregulation of the sleep-wake circadian rhythm through nocturnal actigraphy analysis. The central origin of EDS is increasingly delineated supported by serotonin and orexin pathways dysfunction, and recent neuroradiological findings showing that in DM1 hippocampus volume was positively correlated with self-reported fatigue and somnolence. Sleep-disordered breathing and respiratory dysfunctions are prevalent in DM, their direct correlation with EDS remains complex and inconclusive, but respiratory evaluation should be recommended if obstructive sleep apneas or respiratory muscle dysfunctions are suspected. Drug interventions, such as modafinil and mexiletine, have shown promise in managing excessive daytime sleepiness and reducing myotonia without significant cardiac conduction effects. Enhancing EDS management in myotonic dystrophy is key to improving overall patient well-being.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Enrica Bonanni
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Zhang Y, Ren R, Yang L, Jin H, Nie Y, Zhang H, Shi Y, Sanford LD, Vitiello MV, Tang X. Polysomnographic findings of myotonic dystrophy type 1/type 2: evidence from case-control studies. Sleep 2024; 47:zsad280. [PMID: 37967212 DOI: 10.1093/sleep/zsad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
STUDY OBJECTIVES This study explores polysomnographic and multiple sleep latency test (MSLT) differences between myotonic dystrophy type 1/type 2 (DM1/DM2) patients and controls. METHODS An electronic literature search was conducted in MEDLINE, EMBASE, All EBM databases, and Web of Science from inception to Aug 2023. RESULTS Meta-analyses revealed significant reductions in sleep efficiency, N2 percentage, mean SpO2, and MSLT measured mean sleep latency, and increases in N3 sleep, wake time after sleep onset, apnea hypopnea index, and periodic limb movement index in DM1 patients compared with controls. However, any differences of polysomnographic sleep change between DM2 patients and controls could not be established due to limited available studies. CONCLUSIONS Multiple significant polysomnographic abnormalities are present in DM1. More case-control studies evaluating polysomnographic changes in DM2 compared with controls are needed.
Collapse
Affiliation(s)
- Ye Zhang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Jin
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuru Nie
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haipeng Zhang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Shi
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Michael V Vitiello
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195-6560, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Romigi A, Caccamo M, Testa F, Ticconi D, Cappellano S, Di Gioia B, Vitrani G, Rosenzweig I, Centonze D. Muscle atonia index during multiple sleep latency test: A possible marker to differentiate narcolepsy from other hypersomnias. Clin Neurophysiol 2023; 149:25-31. [PMID: 36870217 DOI: 10.1016/j.clinph.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVE The complexity and delay of the diagnosis of narcolepsy require several diagnostic tests and invasive procedures such as lumbar puncture. Our study aimed to determine the changes in muscle tone (atonia index, AI) at different levels of vigilance during the entire multiple sleep latency test (MSLT) and each nap in people with narcolepsy type 1 (NT1) and 2 (NT2) compared with other hypersomnias and its potential diagnostic value. METHODS Twenty-nine patients with NT1 (11 M 18F, mean age 34.9 years, SD 16.8) and sixteen with NT2 (10 M 6F, mean age 39 years, SD 11.8) and 20 controls with other hypersomnias (10 M, 10F mean age 45.1 years, SD 15.1) were recruited. AI was evaluated at different levels of vigilance (Wake and REM sleep) in each nap and throughout the MSLT of each group. The validity of AI in identifying patients with narcolepsy (NT1 and NT2) was analyzed using receiver operating characteristic (ROC) curves. RESULTS AI during wakefulness (WAI) was significantly higher in the narcolepsy groups (NT1 and NT2 p < 0.001) compared to the hypersomniac group. AI during REM sleep (RAI) (p = 0.03) and WAI in nap with sudden onsets of REM sleep periods (SOREMP) (p = 0.001) were lower in NT1 than in NT2. The ROC curves showed high AUC values for WAI (NT1 0.88; Best Cut-off > 0.57, Sensitivity 79.3 % Specificity 90 %; NT2 0.89 Best Cut-off > 0.67 Sensitivity 87.5 % Specificity 95 %; NT1 and NT2 0.88 Best Cut-off > 0.57 Sensitivity 82.2 % Specificity 90 %) in discriminating subjects suffering from other hypersomnias. RAI and WAI in nap with SOREMP showed a poor AUC value (RAI AUC: 0.7 Best cutoff 0.7 Sensitivity 50 % Specificity 87.5 %; WAI in nap before SOREMP AUC: 0.66, Best cut-off < 0.82 sensitivity 61.9 % and specificity 67.35 %) differentiating NT1 and NT2. CONCLUSIONS WAI may represent an encouraging electrophysiological marker of narcolepsy and suggests a vulnerable tendency to dissociative wake / sleep dysregulation lacking in other forms of hypersomnia. SIGNIFICANCE AI during wakefulness may help distinguish between narcolepsy and other hypersomnias.
Collapse
Affiliation(s)
- A Romigi
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy.
| | - M Caccamo
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - F Testa
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - D Ticconi
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - S Cappellano
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - B Di Gioia
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - G Vitrani
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| | - I Rosenzweig
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK; Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - D Centonze
- IRCCS Neuromed Istituto Neurologico Mediterraneo, Sleep Medicine Center, Via Atinense 18, Pozzilli, IS, Italy
| |
Collapse
|
6
|
Papadimas GK, Papadopoulos C, Kekou K, Kartanou C, Kladi A, Nitsa E, Sofocleous C, Tsanou E, Sarmas I, Kaninia S, Chroni E, Tsivgoulis G, Kimiskidis V, Arnaoutoglou M, Stefanis L, Panas M, Koutsis G, Karadima G, Traeger-Synodinos J. A Greek National Cross-Sectional Study on Myotonic Dystrophies. Int J Mol Sci 2022; 23:ijms232415507. [PMID: 36555146 PMCID: PMC9778724 DOI: 10.3390/ijms232415507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Myotonic Dystrophies (DM, Dystrophia Myotonia) are autosomal dominant inherited myopathies with a high prevalence across different ethnic regions. Despite some differences, mainly due to the pattern of muscle involvement and the age of onset, both forms, DM1 and DM2, share many clinical and genetic similarities. In this study, we retrospectively analyzed the medical record files of 561 Greek patients, 434 with DM1 and 127 with DM2 diagnosed in two large academic centers between 1994-2020. The mean age at onset of symptoms was 26.2 ± 15.3 years in DM1 versus 44.4 ± 17.0 years in DM2 patients, while the delay of diagnosis was 10 and 7 years for DM1 and DM2 patients, respectively. Muscle weakness was the first symptom in both types, while myotonia was more frequent in DM1 patients. Multisystemic involvement was detected in the great majority of patients, with cataracts being one of the most common extramuscular manifestations, even in the early stages of disease expression. In conclusion, the present work, despite some limitations arising from the retrospective collection of data, is the first record of a large number of Greek patients with myotonic dystrophy and emphasizes the need for specialized neuromuscular centers that can provide genetic counseling and a multidisciplinary approach.
Collapse
Affiliation(s)
- Georgios K. Papadimas
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Correspondence: or ; Tel.: +30-210-7289152; Fax: +30-210-7216474
| | - Constantinos Papadopoulos
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, “Ag. Sofia” Children’s Hospital, 11527 Athens, Greece
| | - Chrisoula Kartanou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Athina Kladi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Evangelia Nitsa
- Postgraduate Program in Biostatistics School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, “Ag. Sofia” Children’s Hospital, 11527 Athens, Greece
| | - Evangelia Tsanou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Sarmas
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Stefania Kaninia
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, “Attikon” University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vasilios Kimiskidis
- 1st Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Marianthi Arnaoutoglou
- Department of Clinical Neurophysiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Marios Panas
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgios Koutsis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Georgia Karadima
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, “Ag. Sofia” Children’s Hospital, 11527 Athens, Greece
| |
Collapse
|
7
|
Montagnese F. Current Treatment Options for Patients with Myotonic Dystrophy Type 2. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose of the review
Myotonic dystrophy types 1 and 2 are frequent forms of muscular dystrophies in adulthood. Their clinical differences need to be taken into account for the most appropriate treatment of patients. The aim of this article is to provide an overview on the current and upcoming therapeutic options for patients with myotonic dystrophy type 2 (DM2).
Recent findings
At the moment, no disease-modifying therapies are available for DM2; next-generation therapies may however be available in the near future. In the meanwhile, the symptomatic management of patients has greatly improved, thank to the production of consensus-based standards of care and the growing evidence of efficacy of anti-myotonic drugs, promising employment of cannabinoids for symptom’s relief, regular monitoring, and early detection of treatable extra-muscular manifestations.
Summary
The treatment of DM2 is currently symptomatic and relies on the coordinated intervention of a multidisciplinary team. It remains to be determined whether upcoming causal therapies for myotonic dystrophy type 1 will be applicable also in DM2.
Collapse
|
8
|
Peric S, Rakocevic-Stojanovic V, Meola G. Cerebral involvement and related aspects in myotonic dystrophy type 2. Neuromuscul Disord 2021; 31:681-694. [PMID: 34244019 DOI: 10.1016/j.nmd.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
Myotonic dystrophy type 2 (DM2) is an autosomal dominant multisystemic disorder caused by CCTG repeats expansion in the first intron of the CNBP gene. In this review we focus on the brain involvement in DM2, including its pathogenic mechanisms, microstructural, macrostructural and functional brain changes, as well as the effects of all these impairments on patients' everyday life. We also try to understand how brain abnormalities in DM2 should be adequately measured and potentially treated. The most important pathogenetic mechanisms in DM2 are RNA gain-of-function and repeat-associated non-ATG (RAN) translation. One of the main neuroimaging findings in DM2 is the presence of diffuse periventricular white matter hyperintensity lesions (WMHLs). Brain atrophy has been described in DM2 patients, but it is not clear if it is mostly caused by a decrease of the white or gray matter volume. The most commonly reported specific cognitive symptoms in DM2 are dysexecutive syndrome, visuospatial and memory impairments. Fatigue, sleep-related disorders and pain are also frequent in DM2. The majority of key symptoms and signs in DM2 has a great influence on patients' daily lives, their psychological status, economic situation and quality of life.
Collapse
Affiliation(s)
- Stojan Peric
- Neurology Clinic, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Giovanni Meola
- Department of Neurorehabilitation Sciences, Casa Di Cura del Policlinico, Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Roy B, Wu Q, Whitaker CH, Felice KJ. Myotonic Muscular Dystrophy Type 2 in CT, USA: A Single-Center Experience With 50 Patients. J Clin Neuromuscul Dis 2021; 22:135-146. [PMID: 33595997 DOI: 10.1097/cnd.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Myotonic dystrophy type 2 (DM2) is an autosomal dominant disorder due to a (CCTG)n repeat expansion in intron 1 of the CNBP gene. In this article, we report the clinicopathologic findings in 50 patients seen at a single site over a 27 year period. DM2 was the fifth most common type of muscular dystrophy seen at our center with a 5-fold lower frequency as compared to DM1. Age of symptom onset ranged from 15 to 72 years, and the mean duration between symptom onset and diagnosis was 7.4 years. Weakness referable to the proximal lower extremities was the presenting symptom in 62% of patients. The degree of generalized weakness varied from severe in 30% to no weakness in 20% of patients. Clinical myotonia was noted in 18% and myotonic discharges on electromyography in 97% of patients. Pain symptoms were uncommon in our cohort. A significant correlation was noted between limb weakness and degree of muscle pathologic changes. There was no correlation between CCTG repeat size and other clinicopathologic findings. Six patients (12%) had cardiac abnormalities including one who developed progressive nonischemic dilated cardiomyopathy ultimately leading to cardiac transplantation. In 21 patients followed for 2 or more years, we noted a mean rate of decline in total Medical Research Council score of about 1% per year.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT
| | - Qian Wu
- Department of Pathology and Laboratory Medicine, University of Connecticut School of Medicine, Farmington, CT; and
| | - Charles H Whitaker
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| | - Kevin J Felice
- Department of Neuromuscular Medicine, Muscular Dystrophy Association Care Center, Hospital for Special Care, New Britain, CT
| |
Collapse
|
10
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
11
|
McNally EM, Mann DL, Pinto Y, Bhakta D, Tomaselli G, Nazarian S, Groh WJ, Tamura T, Duboc D, Itoh H, Hellerstein L, Mammen PPA. Clinical Care Recommendations for Cardiologists Treating Adults With Myotonic Dystrophy. J Am Heart Assoc 2020; 9:e014006. [PMID: 32067592 PMCID: PMC7070199 DOI: 10.1161/jaha.119.014006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Myotonic dystrophy is an inherited systemic disorder affecting skeletal muscle and the heart. Genetic testing for myotonic dystrophy is diagnostic and identifies those at risk for cardiac complications. The 2 major genetic forms of myotonic dystrophy, type 1 and type 2, differ in genetic etiology yet share clinical features. The cardiac management of myotonic dystrophy should include surveillance for arrhythmias and left ventricular dysfunction, both of which occur in progressive manner and contribute to morbidity and mortality. To promote the development of care guidelines for myotonic dystrophy, the Myotonic Foundation solicited the input of care experts and organized the drafting of these recommendations. As a rare disorder, large scale clinical trial data to guide the management of myotonic dystrophy are largely lacking. The following recommendations represent expert consensus opinion from those with experience in the management of myotonic dystrophy, in part supported by literature-based evidence where available.
Collapse
Affiliation(s)
| | | | - Yigal Pinto
- University of AmsterdamAmsterdamThe Netherlands
| | | | | | | | | | - Takuhisa Tamura
- National Hospital Organization Higashisaitama National HospitalSaitamaJapan
| | - Denis Duboc
- Hopital CochinUniversite Paris DescartesParisFrance
| | - Hideki Itoh
- Shiga University of Medical ScienceShigaJapan
| | | | | |
Collapse
|
12
|
Excessive daytime sleepiness and fatigue in neurological disorders. Sleep Breath 2019; 24:413-424. [DOI: 10.1007/s11325-019-01921-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022]
|