1
|
Iwata S, Noguchi R, Oosaki J, Adachi Y, Shiota Y, Kobayashi E, Takemori T, Nishino S, Yoshida A, Ohtori S, Kawai A, Kondo T. Establishment and characterization of NCC-SFT1-C1: a novel patient-derived cell line of solitary fibrous tumor. Hum Cell 2025; 38:49. [PMID: 39904835 DOI: 10.1007/s13577-025-01175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
Solitary fibrous tumors (SFTs) are rare mesenchymal tumors characterized by recurrent NAB2::STAT6 gene fusion, which are associated with an unpredictable clinical course, including the potential for recurrence or metastasis. Current therapeutic approaches for relapsed cases remain ineffective, and there is no established standard of care for SFTs. Although patient-derived cancer cell lines are fundamental research tools, only a few cell lines have been developed for SFTs. To address this, we established a novel SFT cell line, NCC-SFT1-C1, derived from surgically resected tumor tissues of a patient with SFT. The cell line retains the characteristic recurrent NAB2::STAT6 gene fusion in concordance with the matched original tumor. These cells exhibit moderate proliferation, invasion ability, and spheroid formation. We demonstrated that NCC-SFT1-C1 cells are useful for the high-throughput screening of the antiproliferative effects of 221 oncology drugs. Therefore, the NCC-SFT1-C1 cell line is a valuable tool for basic and preclinical studies on SFT.
Collapse
Affiliation(s)
- Shuhei Iwata
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Julia Oosaki
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Adachi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yomogi Shiota
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshiyuki Takemori
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shogo Nishino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology and Rehabilitation Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
2
|
Situ Y, Deng L, Huang Z, Jiang X, Zhao L, Zhang J, Lu L, Liang Q, Xu Q, Shao Z, Liang M. CDH2 and CDH13 as potential prognostic and therapeutic targets for adrenocortical carcinoma. Cancer Biol Ther 2024; 25:2428469. [PMID: 39545598 PMCID: PMC11572284 DOI: 10.1080/15384047.2024.2428469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Cadherin 2 (CDH2, N-cadherin) and cadherin 13 (CDH13, T-cadherin, H-cadherin) affect the progress and prognoses of many cancers. However, their roles in adrenocortical carcinoma (ACC), a rare endocrine cancer, remain unclear. To decipher the roles of these proteins in ACC and to identify their regulatory targets, we analyzed their expression levels, gene regulatory networks, prognostic value, and targets in ACC, using various bioinformatic analyses. CDH2 was strongly downregulated and CDH13 was strongly upregulated in patients with ACC; the expression levels of these genes affected the prognosis. In 75 patients, the expression of CDH2 and CDH13 was altered by 8% and 5%, respectively. CDH2 and CDH13, as well as their neighboring genes, were predicted to form a complex network of interactions, mainly through coexpression and physical and genetic interactions. CDH2 and its altered neighboring genes (ANGs) mainly affect tumor-related gene expression, cell cycle, and energy metabolism. The regulation of tumor-related integrin function, gene transcription, metabolism, and amide and phospholipid metabolism are the main functions of CDH13 and its ANGs. MiRNA and kinase targets of CDH2 and CDH13 in ACC were identified. CDH13 expression in patients with ACC was positively associated with immune cell infiltration. Anti-PD1/CTLA-4/PD-L1 immunotherapy significantly downregulated the expression of CDH13 in patients with ACC. Foretinib and elesclomol were predicted to exert strong inhibitory effects on SW13 cells by inhibiting the expression of CDH2 and CDH13. These data indicate that CDH2 and CDH13 are promising targets for precise treatment of ACC and may serve as new biomarkers for ACC prognosis.
Collapse
Affiliation(s)
- Yongli Situ
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Li Deng
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Ziqing Huang
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Xiaoli Jiang
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Liubing Zhao
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Juying Zhang
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Lingling Lu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Quanyan Liang
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Qinying Xu
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Zheng Shao
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| | - Meng Liang
- Department of Parasitology, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
3
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
4
|
Tsuchiya R, Yoshimatsu Y, Noguchi R, Sin Y, Ono T, Akiyama T, Kosako H, Yoshida A, Ohtori S, Kawai A, Kondo T. Integrating analysis of proteome profile and drug screening identifies therapeutic potential of MET pathway for the treatment of malignant peripheral nerve sheath tumor. Expert Rev Proteomics 2023:1-11. [PMID: 37229542 DOI: 10.1080/14789450.2023.2218035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with a poor prognosis that requires novel therapeutic agents. Proteome information is useful for identifying new therapeutic candidates because it directly reflects the biological phenotype. Additionally, in vitro drug screening is an effective tool to identify candidate drugs for common cancers. Hence, we attempted to identify novel therapeutic candidates for MPNST by integrating proteomic analysis and drug screening. METHODS We performed comprehensive proteomic analysis on 23 MPNST tumor samples using liquid chromatography-tandem mass spectrometry to identify therapeutic targets. We also conducted drug screening of six MPNST cell lines using 214 drugs. RESULTS Proteomic analysis revealed that the MET and IGF pathways were significantly enriched in the local recurrence/distant metastasis group of MPNST, whereas drug screening revealed that 24 drugs showed remarkable antitumor effects on the MPNST cell lines. By integrating the results of these two approaches, MET inhibitors, crizotinib and foretinib, were identified as novel therapeutic candidates for the treatment of MPNST. CONCLUSIONS We successfully identified novel therapeutic candidates for the treatment of MPNST, namely crizotinib and foretinib, which target the MET pathway. We hope that these candidate drugs will contribute to the treatment of MPNST.
Collapse
Affiliation(s)
- Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Taro Akiyama
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
5
|
Foretinib Is Effective against Triple-Negative Breast Cancer Cells MDA-MB-231 In Vitro and In Vivo by Down-Regulating p-MET/HGF Signaling. Int J Mol Sci 2023; 24:ijms24010757. [PMID: 36614199 PMCID: PMC9821162 DOI: 10.3390/ijms24010757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 01/04/2023] Open
Abstract
This study investigated the antitumor effects of foretinib on triple-negative breast cancer cells MDA-MB-231 xenograft tumors in vivo underlying phosphorylated mesenchymal to epithelial transition (p-MET)/ hepatocyte growth factor (HGF)-related mechanism, as well as its pharmacokinetic characteristics. The MDA-MB-231 human breast cancer cell line was used for in vitro experiments, and the tumor xenograft model was established for in vivo experiments. MDA-MB-231 xenograft mice received oral foretinib (15 or 50 mg/kg/day) or vehicle for 18 days. The xenograft tumors were collected. Protein expressions of p-MET and HGF were examined with Western blotting and immunohistochemical staining. The mRNA expression of MET was examined with real-time PCR. Blood samples were collected from the mice treated with foretinib under different doses of 2, 10, and 50 mg/kg, and the pharmacokinetic profiles of foretinib were evaluated. We found that foretinib treatment caused a significant inhibition in tumor growth in a dose-dependent manner, whereas the continuous administration did not result in weight loss in treated nude mice. In both MDA-MB-231 cells and xenograft tumors, foretinib suppressed the expression of p-MET and HGF. These findings reveal that the decrease of p-MET and HGF may play an important role in the anti-breast cancer properties of foretinib.
Collapse
|
6
|
Ayoub NM, Ibrahim DR, Alkhalifa AE. Overcoming resistance to targeted therapy using MET inhibitors in solid cancers: evidence from preclinical and clinical studies. Med Oncol 2021; 38:143. [PMID: 34665336 DOI: 10.1007/s12032-021-01596-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 11/25/2022]
Abstract
Targeted therapy is a hallmark of cancer treatment that has changed the landscape of cancer management and enabled a personalized treatment approach. Nevertheless, the development of cancer resistance is a major challenge that is currently threatening the effective utilization of targeted therapies. The hepatocyte growth factor receptor, MET, is a receptor tyrosine kinase known for its oncogenic activity and tumorigenic potential. MET is a well-known driver of cancer resistance. A growing body of evidence revealed a major role of MET in mediating acquired resistance to several classes of targeted therapies. Deregulations of MET commonly associated with the development of cancer resistance include gene amplification, overexpression, autocrine activation, and crosstalk with other signaling pathways. Small-molecule tyrosine kinase inhibitors of MET are currently approved for the treatment of different solid cancers. This review summarizes the current evidence regarding MET-mediated cancer resistance toward targeted therapies. The molecular mechanisms associated with resistance are described along with findings from preclinical and clinical studies on using MET inhibitors to restore the anticancer activity of targeted therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan.
| | - Dalia R Ibrahim
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan
| | - Amer E Alkhalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
7
|
Darwish HW, Bakheit AH, Al-Anazi ZS, Al-Shakliah NS, Al-Hossaini AM, Naguib IA, Darwish IA. Response surface methodology for optimization of micellar-enhanced spectrofluorimetric method for assay of foretinib in bulk powder and human urine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119811. [PMID: 33892248 DOI: 10.1016/j.saa.2021.119811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
This work investigates a sensitive and precise enhanced spectrofluorimetric assay for assay of foretinib (FTB); a tyrosine kinase inhibitor drug used for treatment of breast cancer, in tablets and urine through response surface optimization by micelle mediated protocol. The basis of the described method is the enhancement of the fluorescence behavior of FTB in Cremophor RH 40 (Cr RH 40) micellar medium and measuring the fluorescence of FTB at 344 nm after excitation at 245 nm. Optimization was performed through evaluation of diluting solvent, types of organized media, buffer type and its relevant pH. Response surface methodology was applied to obtain the optimized values of variables that mostly affect interaction of Cr RH 40 with FTB using Box-Behnken design. ICH guidelines were adhered for the validation of merit figures. Acceptable linear relationship was obtained between relative fluorescence intensity (RFI) and FTB concentrations in the range of 50 - 1000 µg L-1, with correlation coefficient of 0.998. Accuracy was ≥ 99.82% and calculated limit of detection (LOD) was 10.60 µg L-1. Method applications included FTB assaying in pure bulk powder. Furthermore, applications on urine samples were performed with accuracy of 100.59 ± 3.40%. The method represents echo-friendly approach and effective alternating methodology to the relevant analytical ones for FTB assaying.
Collapse
Affiliation(s)
- Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Analytical Chemistry Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Zahi S Al-Anazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, P.O. Box 6312, Yemen
| | - Abdullah M Al-Hossaini
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Gortany NK, Panahi G, Ghafari H, Shekari M, Ghazi-Khansari M. Foretinib induces G2/M cell cycle arrest, apoptosis, and invasion in human glioblastoma cells through c-MET inhibition. Cancer Chemother Pharmacol 2021; 87:827-842. [PMID: 33688998 DOI: 10.1007/s00280-021-04242-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Glioblastoma multiforme (GBM) is one of the most aggressive human cancers. The c-MET receptor tyrosine kinase (RTK) which is frequently deregulated in GBM is considered as a promising target for GBM treatment. The c-MET plays a key role in cell proliferation, cell cycle progression, invasion, angiogenesis, and metastasis. Here, we investigated the anti-tumour activity of foretinib, a c-MET inhibitor, on three human GBM cells (T98G, U87MG and U251). METHODS Anti-proliferative effect of foretinib was determined using MTT, crystal violet staining, and clonogenic assays. PI and Annexin V/PI staining flow cytometry were used to evaluate the effects of foretinib on cell cycle and apoptosis, respectively. Scratch assay, qRT-PCR, western blot, and zymography analyses were applied to elucidate the molecular mechanisms underlying the anti-tumour activity of foretinib. RESULTS Foretinib treatment reduced phosphorylation of c-MET on T98G and U251 cells, but not in U87MG cells. The highest inhibitory effect was observed in T98G cells (IC50 = 4.66 ± 0.29 µM) and the lowest one in U87MG cells (IC50 = 29.99 ± 1.31 µM). The results showed that foretinib inhibited the proliferation of GBM cells through a G2/M cell cycle arrest and mitochondrial-mediated apoptosis in association with alternation in expression of the related genes and protein-regulated G2/M phase and apoptosis. Foretinib diminished GBM cell invasion through downregulation of the proteolytic cascade of MMP2, uPA and uPAR and epithelial-mesenchymal transition (EMT)-related genes. A different GBM cell sensitivity pattern was noticeable in all experiments which demonstrated T98G as a sensitive and U87MG as a resistant phenotype to foretinib treatment. CONCLUSION The results indicated that foretinib might have the therapeutic potential against human GBM which deserve further investigation.
Collapse
Affiliation(s)
- Narges K Gortany
- Cancer Biology Research Center, Cancer Institute of I.R. Iran, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Maryam Shekari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Cancer Biology Research Center, Cancer Institute of I.R. Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| |
Collapse
|
9
|
Dong Y, Hu H, Sun Y, Qin M, Gong P, Hou Y, Zhao Y. Design, synthesis and biological evaluation of novel c-Met/HDAC dual inhibitors. Bioorg Med Chem Lett 2020; 30:127610. [PMID: 33045329 DOI: 10.1016/j.bmcl.2020.127610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
In this work three novel series of c-Met/HDAC bifunctional inhibitors were designed and synthesized by merging pharmacophores of c-Met and HDAC inhibitors. The most potent compound 11j inhibited c-Met kinase and HDAC1 with IC50 values of 21.44 and 45.22 nM, respectively. In addition, 11j showed efficient antiproliferative activities against both MCF-7 and A549 cells with greater potency than the reference drug SAHA and Cabozantinib. This work may lay the foundation for developing novel dual c-Met/HDAC inhibitors as potential anticancer therapeutics.
Collapse
Affiliation(s)
- Yuhong Dong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Hao Hu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yuwei Sun
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Ping Gong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
10
|
Fang P, Zhou L, Lim LY, Fu H, Yuan ZX, Lin J. Targeting Strategies for Renal Cancer Stem Cell Therapy. Curr Pharm Des 2020; 26:1964-1978. [PMID: 32188377 DOI: 10.2174/1381612826666200318153106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Renal cell carcinoma (RCC) is an intractable genitourinary malignancy that accounts for approximately 4% of adult malignancies. Currently, there is no approved targeted therapy for RCC that has yielded durable remissions, and they remain palliative in intent. Emerging evidence has indicated that renal tumorigenesis and RCC treatment-resistance may originate from renal cancer stem cells (CSCs) with tumor-initiating capacity (CSC hypothesis). A better understanding of the mechanism underlying renal CSCs will help to dissect RCC heterogeneity and drug treatment efficiency, to promote more personalized and targeted therapies. In this review, we summarized the stem cell characteristics of renal CSCs. We outlined the targeting strategies and challenges associated with developing therapies that target renal CSCs angiogenesis, immunosuppression, signaling pathways, surface biomarkers, microRNAs and nanomedicine. In conclusion, CSCs are an important role in renal carcinogenesis and represent a valid target for treatment of RCC patients.
Collapse
Affiliation(s)
- Pengchao Fang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuting Zhou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lee Y Lim
- Department of Pharmacy, School of Medicine and Pharmacology, The University of Western Australia, Crawley WA 6009, Perth, Australia
| | - Hualin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Darwish HW, Bakheit AH, Al-Shakliah NS, Darwish IA. Development of innovative artificial neural networks for simultaneous determination of lapatinib and foretinib in human urine by micellar enhanced synchronous spectrofluorimetry. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118438. [PMID: 32388416 DOI: 10.1016/j.saa.2020.118438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
A highly selective and simple micellar synchronous spectrofluorimetric method was described for simultaneous analysis of two tyrosine kinase inhibitors (TKIs); namely lapatinib (LPB) and foretinib (FTB) in human urine. The method depended on measuring synchronous fluorescence of the two drugs in micellar media composed of cremophor RH 40 (Cr RH 40) surfactant using feed-forward and cascade-forward neural networks preceded by genetic algorithm for data manipulation. Different experimental conditions that affect fluorescence of the cited drugs are optimized including pH, diluting solvent, surfactant's type and concentration. A training set of nine mixtures containing different concentrations of both drugs was prepared for models' construction. Extra validation set composed of other nine mixtures was prepared to validate prediction performance for the constructed models. Root mean square error of prediction (RMSEP) was used as a tool to compare prediction power of each model. The method was extended for quantification of LPB and FTB in spiked human urine.
Collapse
Affiliation(s)
- Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Nasser S Al-Shakliah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Huelse J, Fridlyand D, Earp S, DeRyckere D, Graham DK. MERTK in cancer therapy: Targeting the receptor tyrosine kinase in tumor cells and the immune system. Pharmacol Ther 2020; 213:107577. [PMID: 32417270 PMCID: PMC9847360 DOI: 10.1016/j.pharmthera.2020.107577] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MERTK is aberrantly expressed in numerous human malignancies, and is a novel target in cancer therapeutics. Physiologic roles of MERTK include regulation of tissue homeostasis and repair, innate immune control, and platelet aggregation. However, aberrant expression in a wide range of liquid and solid malignancies promotes neoplasia via growth factor independence, cell cycle progression, proliferation and tumor growth, resistance to apoptosis, and promotion of tumor metastases. Additionally, MERTK signaling contributes to an immunosuppressive tumor microenvironment via induction of an anti-inflammatory cytokine profile and regulation of the PD-1 axis, as well as regulation of macrophage, myeloid-derived suppressor cell, natural killer cell and T cell functions. Various MERTK-directed therapies are in preclinical development, and clinical trials are underway. In this review we discuss MERTK inhibition as an emerging strategy for cancer therapy, focusing on MERTK expression and function in neoplasia and its role in mediating resistance to cytotoxic and targeted therapies as well as in suppressing anti-tumor immunity. Additionally, we review preclinical and clinical pharmacological strategies to target MERTK.
Collapse
Affiliation(s)
- Justus Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Diana Fridlyand
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Shelton Earp
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Yu T, Cheng L, Yan X, Xiong H, Chen J, He G, Zhou H, Dong H, Xu G, Tang Y, Shi Z. Systems biology approaches based discovery of a small molecule inhibitor targeting both c-Met/PARP-1 and inducing cell death in breast cancer. J Cancer 2020; 11:2656-2666. [PMID: 32201536 PMCID: PMC7065998 DOI: 10.7150/jca.40758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the second most common types of cancer worldwide. Molecular strategies have developed rapidly; however, novel treatments strategies with high efficacy and lower toxicity are still urgently demanded. Notably, biological networks estimated from microarray data and functional activity network analysis could be utilized to identify and validate potential targets. In this study, two microarray data (GSE13477, GSE31192) were firstly selected, and analyzed by multi-functional activity network analysis to generate the core protein-protein-interaction (PPI) network. Several potential targets were subsequently identified and c-Met and poly (ADP-ribose) polymerase-1 (PARP-1) were manually chosen as the key targets in breast cancer. Furthermore, virtual screening and molecular dynamics (MD) simulations were utilized to recognize novel c-Met/PARP-1 inhibitors in Specs products database. Three small molecules, namely, ZINC19909930, ZINC20032678 and ZINC13562414 were selected. Additionally, these compounds were synthesized, and two breast cancer cell lines, MDA-MB-231 and MCF-7 cells were used to validate our bioinformatic findings in vitro. MTT assay and Hoechst staining showed that ZINC20032678 significantly induced breast cancer cell death, which was mediated through apoptosis by flow cytometry. Furthermore, ZINC20032678 was shown to target the active sites of the both targets and recruitment of downstream apoptotic signaling pathways, eventually inducing breast cancer cell apoptosis. Collectively, our findings not only offer systems biology approaches based drug target identification, but also provide the new clues for developing novel inhibitors for future breast cancer research.
Collapse
Affiliation(s)
- Tian Yu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Lijia Cheng
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Xueling Yan
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hang Xiong
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Jie Chen
- Central Laboratory of Clinical Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, 610000, China
| | - Gang He
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hui Zhou
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Hongbo Dong
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Guangya Xu
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| | - Yong Tang
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China.,School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zheng Shi
- School of Medicine & Sichuan Industrial Institute of Antibiotics & Department of Respiratory and Critical Care Medicine, Affiliated Hospital/ Clinical College of Chengdu University, Chengdu University, Chengdu 610015, China
| |
Collapse
|
14
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Ai J, Chen Y, Peng X, Ji Y, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Ma Y, Xiong B, Shen J, Ding J, Geng M. Preclinical Evaluation of SCC244 (Glumetinib), a Novel, Potent, and Highly Selective Inhibitor of c-Met in MET-dependent Cancer Models. Mol Cancer Ther 2017; 17:751-762. [DOI: 10.1158/1535-7163.mct-17-0368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
|
16
|
Chen S, Zhu Y, Cui J, Wang Y, Xia Y, Song J, Cheng S, Zhou C, Zhang D, Zhang B, Shi B. The role of c-Met in prognosis and clinicopathology of renal cell carcinoma: Results from a single-centre study and systematic review. Urol Oncol 2017; 35:532.e15-532.e23. [PMID: 28427859 DOI: 10.1016/j.urolonc.2017.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/12/2017] [Accepted: 03/21/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND OBJECTIVES The c-Met proto-oncogene pathway plays an important role in the progression of various cancers. However, the effect of the c-Met pathway on renal cell carcinoma (RCC) remains controversial. We decided to clarify the role of c-Met in prognosis and clinicopathology of RCC. METHODS A total of 10 pairs of tumour and adjacent tissues were obtained from patients with primary RCC between 2013 and 2014 and tissue microarrays to assess c-Met expression in tumour tissues from 90 patients with RCC by Western blot and immunohistochemical staining. We also presented a meta-analysis to explore the correlation between c-Met and pathological grade and stage of RCC. The two-tailed Pearson's χ2 and Fischer exact tests were used to compare categorical variables. Multivariate analysis was performed using the multivariate Cox proportional hazards model. RESULTS C-Met protein levels were increased in 8 of 10 RCC tissue samples compared with their adjacent normal tissue and c-Met expression levels were positively associated with a high nuclear grade (P = 0.008) and pT stage (P = 0.002). Multivariate analysis showed that a high expression of c-Met was an independent predictor of disease-specific survival (P = 0.017). A meta-analysis found that increased c-Met expression in RCC tissues was closely correlated with high tumour grade (P<0.001) and high pT stage (P = 0.001). Most importantly, c-Met expression was significantly correlated with disease-specific survival (P<0.001). CONCLUSIONS Because c-Met is strongly associated with pathological grade, stage and disease-specific survival, c-Met levels may have potential to predict patient prognosis and to guide clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yong Wang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Jing Song
- Laboratory of Experimental Teratology, Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Shanshan Cheng
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Changkuo Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Dongqing Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Bing Zhang
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, People's Republic of China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Chen GZ, Dai WS, Zhu HC, Song HM, Yang X, Wang YD, Min H, Lu Q, Liu S, Sun XC, Zeng XN. Foretinib Enhances the Radiosensitivity in Esophageal Squamous Cell Carcinoma by Inhibiting Phosphorylation of c-Met. J Cancer 2017; 8:983-992. [PMID: 28529610 PMCID: PMC5436250 DOI: 10.7150/jca.18135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022] Open
Abstract
As a crucial event involved in the metastasis and relapse of esophageal cancer, c-Met overexpression has been considered as one of the culprits responsible for the failure in patients who received radiochemotherapy. Since c-Met has been confirmed to be pivotal for cell survival, proliferation and migration, little is known about its impact on the regulation of radiosensitivity in esophageal cancer. The present study investigated the radiosensitization effects of c-Met inhibitor foretinib in ECA-109 and TE-13 cell lines. Foretinib inhibited c-Met signaling in a dose-dependent manner resulting in decreases in the cell viability of ECA-109 and TE-13. Pretreatment with foretinib synergistically prompted cell apoptosis and G2/M arrest induced by irradiation. Moreover, decreases ability of DNA damage repair was also observed. In vivo studies confirmed that the combinatorial use of foretinib with irradiation significantly diminishes tumor burden compared to either treatment alone. The present findings implied a crucial role of c-Met in the modulation of radiosensitization in esophageal cancer, and foretinib increased the radiosensitivity in ECA-109 and TE-13 cells mainly via c-Met signaling, highlighting a novel profile of foretinib as a potential radiosensitizer for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Guang-Zong Chen
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wang-Shu Dai
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Cheng Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Mei Song
- Department of Radiation Oncology, Lianyungang NO.2 People's Hospital Affiliated to Bengbu Medical College, Lianyungang 222000, China
| | - Xi Yang
- Department of Radiation Oncology, the Cancer Hospital of Fudan University, Shanghai 200000, China
| | - Yuan-Dong Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hua Min
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Lu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shu Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Chen Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Ning Zeng
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
18
|
Stella GM, Gentile A, Baderacchi A, Meloni F, Milan M, Benvenuti S. Ockham's razor for the MET-driven invasive growth linking idiopathic pulmonary fibrosis and cancer. J Transl Med 2016; 14:256. [PMID: 27590450 PMCID: PMC5010719 DOI: 10.1186/s12967-016-1008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) identifies a specific lung disorder characterized by chronic, progressive fibrosing interstitial pneumonia of unknown etiology, which lacks effective treatment. According to the current pathogenic perspective, the aberrant proliferative events in IPF resemble those occurring during malignant transformation. MAIN BODY Receptor tyrosine kinases (RTK) are known to be key players in cancer onset and progression. It has been demonstrated that RTK expression is sometimes also altered and even druggable in IPF. One example of an RTK-the MET proto-oncogene-is a key regulator of invasive growth. This physiological genetic program supports embryonic development and post-natal organ regeneration, as well as cooperating in the evolution of cancer metastasis when aberrantly activated. Growing evidence sustains that MET activation may collaborate in maintaining tissue plasticity and the regenerative potential that characterizes IPF. CONCLUSION The present work aims to elucidate-by applying the logic of simplicity-the bio-molecular mechanisms involved in MET activation in IPF. This clarification is crucial to accurately design MET blockade strategies within a fully personalized approach to IPF.
Collapse
Affiliation(s)
- Giulia M. Stella
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alessandra Gentile
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Alice Baderacchi
- Investigational Clinical Oncology (INCO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Federica Meloni
- Pneumology Unit, Cardiothoracic and Vascular Department, IRCCS Policlinico San Matteo Foundation and University of Pavia Medical School, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Melissa Milan
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| | - Silvia Benvenuti
- Experimental Clinical Molecular Oncology (ECMO), IRCCS Candiolo Cancer Institute-FPO, Candiolo, 20060 Turin, Italy
| |
Collapse
|
19
|
Seeger-Nukpezah T, Geynisman DM, Nikonova AS, Benzing T, Golemis EA. The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease. Nat Rev Nephrol 2015; 11:515-34. [PMID: 25870008 PMCID: PMC5902186 DOI: 10.1038/nrneph.2015.46] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.
Collapse
Affiliation(s)
- Tamina Seeger-Nukpezah
- Department I of Internal Medicine and Centre for Integrated Oncology, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Daniel M Geynisman
- Department of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Anna S Nikonova
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Centre for Molecular Medicine Cologne, University of Cologne, Kerpenerstrasse 62, D-50937 Cologne, Germany
| | - Erica A Golemis
- Department of Developmental Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
20
|
Dasatinib Modulates Invasive and Migratory Properties of Canine Osteosarcoma and has Therapeutic Potential in Affected Dogs. Transl Oncol 2015; 8:231-8. [PMID: 26310368 PMCID: PMC4562978 DOI: 10.1016/j.tranon.2015.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND: This investigation sought to elucidate the relationship between hepatocyte growth factor (HGF)–induced metastatic behavior and the tyrosine kinase inhibitors (TKIs) crizotinib and dasatinib in canine osteosarcoma (OS). Preliminary evidence of an apparent clinical benefit from adjuvant therapy with dasatinib in four dogs is described. METHODS: The inhibitors were assessed for their ability to block phosphorylation of MET; reduce HGF-induced production of matrix metalloproteinase (MMP); and prevent invasion, migration, and cell viability in canine OS cell lines. Oral dasatinib (0.75 mg/kg) was tested as an adjuvant therapy in four dogs with OS. RESULTS: Constitutive phosphorylation of MET was detected in two cell lines, and this was unaffected by 20-nM incubation with either dasatinib or crizotinib. Incubation of cell lines with HGF (MET ligand) increased cell migration and invasion in both cell lines and increased MMP-9 activity in one. Dasatinib suppressed OS cell viability and HGF-induced invasion and migration, whereas crizotinib reduced migration and MMP-9 production but did not inhibit invasion or viability. CONCLUSIONS: Invasion, migration, and viability of canine OS cell lines are increased by exogenous HGF. HGF induces secretion of different forms of MMP in different cell lines. The HGF-driven increase in viability and metastatic behaviors we observed are more uniformly inhibited by dasatinib. These observations suggest a potential clinical benefit of adjuvant dasatinib treatment for dogs with OS.
Collapse
|
21
|
Abstract
There is a pressing need for effective therapies to treat uveal melanoma. Agents that inhibit the c-MET pathway have shown promise in multiple malignancies that overexpress c-MET. Herein, we assess c-MET expression in both primary uveal melanoma and liver metastases of uveal melanoma and evaluate the association of c-MET expression with clinical and pathologic variables. We have retrospectively identified tumor samples from primary and liver metastases of uveal melanoma from 1 January 1990 to 1 January 2012. We utilized immunohistochemistry to assess c-MET expression, and two pathologists quantified c-MET expression using an H-score (product of the intensity of staining and percentage of positive cells). The Mann-Whitney U-test, Pearson's correlation, and Cox model were used as appropriate. Thirty-nine of 40 (98%) primary tumors and nine of 10 (90%) metastatic liver lesions expressed c-MET (H-score range 0-300). There was a strong association between the percentage of positive cells and the intensity of c-MET expression (P=0.007). We found no association between c-MET H-score and clinicopathologic variables such as age, sex, or stage. c-MET expression was significantly higher in metastatic compared with primary tumors (median H-score 190 vs. 30, P=0.022). c-MET is expressed in the vast majority of primary and liver metastases of uveal melanomas; however, c-MET expression did not associate with pathologic features in our cohort. Metastatic lesions have higher expression of c-MET expression than primary tumors. Clinical trials involving c-MET inhibitors deserve further study in patients with uveal melanoma in both the adjuvant and metastatic setting.
Collapse
|
22
|
Zhang Q, Sun J, Lu T, Zhang J, Wu C, Li L, He Z, Zhao Y, Liu X. A rapid and sensitive LC-MS/MS method for evaluation of the absolute oral bioavailability of a novel c-Met tyrosine kinase inhibitor QBH-196 in rats. Biomed Chromatogr 2015; 29:1650-6. [PMID: 25880630 DOI: 10.1002/bmc.3474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/20/2015] [Accepted: 03/07/2015] [Indexed: 01/31/2023]
Abstract
A sensitive, selective and high-throughput UPLC-MS/MS method was developed and validated for the determination of a novel c-Met tyrosine kinase inhibitor, QBH-196, in rat plasma. QBH-196 and its analog BH357 (IS) were extracted from rat plasma using a mixture of dichloromethane and N-hexane (2:3, v/v). The chromatographic separation was carried out on Phenomenex C18 column (50 × 2.1 mm, 2.6 µm particle size) with a gradient mobile phase of methanol (A) and water containing 0.05% formic acid (B) at a flow rate of 0.2 mL/min. The assay was performed by positive electrospray ionization in multiple reaction monitoring mode using transitions of m/z 622.68 → 140.41 for QBH-196 and m/z 591.19 →126.21 for the IS, respectively. Good linearity was obtained over the concentration range of 8.0-4000 ng/mL (r(2) > 0.99) for QBH-196 and the lower limit of quantification was 8.0 ng/mL in rat plasma. Validations of the method, including its sensitivity, extraction recovery, matrix effect, intra- and inter-day precision, accuracy and stability, were all within acceptable limits. The established method was successfully applied to determine absolute oral bioavailability of QBH-196 in rats for the first time. The mean oral absolute bioavailability of QBH-196 was found to be about 40.8% and the elimination half-life was 40.0 ± 13.1 h. This result suggested that QBH-196 exhibits good oral absorption in vivo, which is very important for the further development of QBH-196 as a new oral anticancer drug.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Tianshu Lu
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Jinling Zhang
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Chunnuan Wu
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Lin Li
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Zhonggui He
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanfang Zhao
- Key Laboratory of Structure-Based Drugs Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaohong Liu
- Department of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| |
Collapse
|
23
|
Knubel KH, Pernu BM, Sufit A, Nelson S, Pierce AM, Keating AK. MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget 2015; 5:1338-51. [PMID: 24658326 PMCID: PMC4012720 DOI: 10.18632/oncotarget.1793] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is an aggressive tumor that occurs in both adult and pediatric patients and is known for its invasive quality and high rate of recurrence. Current therapies for glioblastoma result in high morbidity and dismal outcomes. The TAM subfamily of receptor tyrosine kinases includes Tyro3, Axl, and MerTK. Axl and MerTK exhibit little to no expression in normal brain but are highly expressed in glioblastoma and contribute to the critical malignant phenotypes of survival, chemosensitivity and migration. We have found that Foretinib, a RTK inhibitor currently in clinical trial, inhibited phosphorylation of TAM receptors, with highest efficacy against MerTK, and blocked downstream activation of Akt and Erk in adult and pediatric glioblastoma cell lines, findings that are previously unreported. Survival, proliferation, migration, and collagen invasion were hindered in vitro. Foretinib treatment in vivo abolished MerTK phosphorylation and reduced tumor growth 3-4 fold in a subcutaneous mouse model. MerTK targeted shRNA completely prevented intracranial and subcutaneous glioma growth further delineating the impact of MerTK inhibition on glioblastoma. Our findings provide additional target validation for MerTK inhibition in glioblastoma and demonstrate that robust MerTK inhibition can be achieved with the multi-kinase inhibitor Foretinib as an innovative and translational therapeutic approach to glioblastoma.
Collapse
Affiliation(s)
- Kristina H Knubel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
24
|
McCarthy C, Walker E. Tropomyosin receptor kinase inhibitors: a patent update 2009 - 2013. Expert Opin Ther Pat 2014; 24:731-44. [PMID: 24809946 DOI: 10.1517/13543776.2014.910195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Tropomyosin receptor kinases (Trks) are a family of three similar tyrosine kinases activated by peptide hormones of the neurotrophin family. The nerve growth factor antibody tanezumab has provided clinical proof of concept for inhibition of the TrkA pathway in pain. As an alternative modality, small-molecule inhibitors of the Trks have been pursued in recent years to probe the role of these neurotrophin pathways in pain, cancer and other indications. AREAS COVERED This paper reviews the patent literature between mid-2009 and 2013, claiming inhibitors of Trk family members as the primary biological targets. Additional patents have been reviewed where Trk is not the main kinase of interest but in which high Trk potency is observed and the chemical matter is particularly noteworthy. Patents pre-dating this period have been reviewed previously. Scifinder and Google were used to find relevant patents and clinical information using Trk or Tropomyosin as the search term. EXPERT OPINION Considerable recent progress has been made in the identification of selective pan Trk inhibitors with pharmacodynamic and pharmacokinetic properties appropriate for clinical evaluation. Inhibitors of both active and inactive conformations of the Trks as well as peripherally restricted molecules have been identified. Furthermore, TrkA-selective allosteric inhibitors have recently been disclosed, which enables the biology of this isoform to be probed. The recent identification of a TrkA gene fusion in a subset of lung cancer patients will increase further the attraction of Trk inhibition to the pharmaceutical industry.
Collapse
|
25
|
Realizing the promise of cancer predisposition genes. Nature 2014; 505:302-8. [PMID: 24429628 DOI: 10.1038/nature12981] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022]
Abstract
Genes in which germline mutations confer highly or moderately increased risks of cancer are called cancer predisposition genes. More than 100 of these genes have been identified, providing important scientific insights in many areas, particularly the mechanisms of cancer causation. Moreover, clinical utilization of cancer predisposition genes has had a substantial impact on diagnosis, optimized management and prevention of cancer. The recent transformative advances in DNA sequencing hold the promise of many more cancer predisposition gene discoveries, and greater and broader clinical applications. However, there is also considerable potential for incorrect inferences and inappropriate clinical applications. Realizing the promise of cancer predisposition genes for science and medicine will thus require careful navigation.
Collapse
|