1
|
Vaitiekiene A, Kulboke M, Bieseviciene M, Jankauskas A, Bartnykaite A, Rinkuniene D, Strazdiene I, Lidziute E, Jankauskaite D, Gaidamavicius I, Bucius P, Lapinskas T, Gerbutavicius R, Juozaityte E, Vaskelyte JJ, Vaitiekus D, Sakalyte G. T1 Mapping in Cardiovascular Magnetic Resonance-A Marker of Diffuse Myocardial Fibrosis in Patients Undergoing Hematopoietic Stem Cell Transplantation. J Pers Med 2024; 14:412. [PMID: 38673039 PMCID: PMC11051481 DOI: 10.3390/jpm14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: Hematopoietic stem cell transplantation (HSCT) recipients are at increased risk of cardiovascular diseases. In our study, we aimed to find subclinical changes in myocardial tissue after HSCT with the help of cardiovascular magnetic resonance (CMR) tissue imaging techniques. Methods: The data of 44 patients undergoing autologous and allogeneic HSCT in the Hospital of Lithuanian University of Health Sciences Kaunas Clinics from October 2021 to February 2023 were analyzed. Bioethics approval for the prospective study was obtained (No BE-2-96). CMR was performed two times: before enrolling for the HSCT procedure (before starting mobilization chemotherapy for autologous HSCT and before starting the conditioning regimen for allogeneic HSCT) and 12 ± 1 months after HSCT. LV end-diastolic volume, LV end-systolic volume, LV mass and values indexed to body surface area (BSA), and LV ejection fraction were calculated. T1 and T2 mapping values were measured. Results: There was a statistically significant change in T1 mapping values. Before HSCT, mean T1 mapping was 1226.13 ± 39.74 ms, and after HSCT, it was 1248.70 ± 41.07 ms (p = 0.01). The other parameters did not differ significantly. Conclusions: Increases in T1 mapping values following HSCT can show the progress of diffuse myocardial fibrosis and may reflect subclinical injury. T2 mapping values remain the same and do not show edema and active inflammation processes at 12 months after HSCT.
Collapse
Affiliation(s)
- Audrone Vaitiekiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Migle Kulboke
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Monika Bieseviciene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Antanas Jankauskas
- Department of Radiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Diana Rinkuniene
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Igne Strazdiene
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emilija Lidziute
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Darija Jankauskaite
- Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Ignas Gaidamavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Paulius Bucius
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Tomas Lapinskas
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rolandas Gerbutavicius
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Elona Juozaityte
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Jolanta Justina Vaskelyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Domas Vaitiekus
- Department of Oncology and Hematology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Oncology Institute, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania
| | - Gintare Sakalyte
- Department of Cardiology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
2
|
Cha MJ, Hong YJ, Park CH, Cha YJ, Kim TH, Kim C, Park CH. Utilities and Limitations of Cardiac Magnetic Resonance Imaging in Dilated Cardiomyopathy. Korean J Radiol 2023; 24:1200-1220. [PMID: 38016680 PMCID: PMC10700999 DOI: 10.3348/kjr.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 11/30/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common types of non-ischemic cardiomyopathy. DCM is characterized by left ventricle (LV) dilatation and systolic dysfunction without coronary artery disease or abnormal loading conditions. DCM is not a single disease entity and has a complex historical background of revisions and updates to its definition because of its diverse etiology and clinical manifestations. In cases of LV dilatation and dysfunction, conditions with phenotypic overlap should be excluded before establishing a DCM diagnosis. The differential diagnoses of DCM include ischemic cardiomyopathy, valvular heart disease, burned-out hypertrophic cardiomyopathy, arrhythmogenic cardiomyopathy, and non-compaction. Cardiac magnetic resonance (CMR) imaging is helpful for evaluating DCM because it provides precise measurements of cardiac size, function, mass, and tissue characterization. Comprehensive analyses using various sequences, including cine imaging, late gadolinium enhancement imaging, and T1 and T2 mapping, may help establish differential diagnoses, etiological work-up, disease stratification, prognostic determination, and follow-up procedures in patients with DCM phenotypes. This article aimed to review the utilities and limitations of CMR in the diagnosis and assessment of DCM.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Republic of Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Wang Y, Zou Z, Yuan A, Xiao Z, Geng N, Qiao Z, Li W, Ying X, Lu X, Pu J. Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3-NFS1 axis in doxorubicin-induced cardiotoxicity. Cell Signal 2023; 107:110655. [PMID: 36924813 DOI: 10.1016/j.cellsig.2023.110655] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a major cause of cardiotoxicity induced by doxorubicin (DOX). Previous studies have shown that hydrogen sulfide (H2S) inhibits ferroptosis in cardiomyocytes and myoblasts, but the underlying mechanism has not been fully elucidated. In this study, we investigated the role of H2S in protecting against DOX-induced cardiotoxicity both in vivo and in vitro, and elucidated the potential mechanisms involved. We found that DOX downregulated the expression of glutathione peroxidase 4 (GPX4) and NFS1, and upregulated the expression of acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) expression level, resulting in increased lipid peroxidation and ferroptosis. Additionally, DOX inhibited MFN2 expression and increased DRP1 and FIS1 expression, leading to abnormal mitochondrial structure and function. In contrast, exogenous H2S inhibited DOX-induced ferroptosis by restoring GPX4 and NFS1 expression, and reducing lipid peroxidation in H9C2 cells. This effect was similar to that of the ferroptosis antagonist ferrostatin-1 (Fer-1) in protecting against DOX-induced cardiotoxicity. We further demonstrated that the protective effect of H2S was mediated by the key mitochondrial membrane protein optic atrophy 3 (OPA3), which was downregulated by DOX and restored by exogenous H2S. Overexpression of OPA3 alleviated DOX-induced mitochondrial dysfunction and ferroptosis both in vivo and in vitro. Mechanistically, NFS1 has an inhibitory effect on ferroptosis, and NFS1 deficiency increases the susceptibility of cardiomyocytes to ferroptosis. OPA3 is involved in the regulation of ferroptosis by interacting with NFS1. Post-translationally, DOX promoted OPA3 ubiquitination, while exogenous H2S antagonized OPA3 ubiquitination by promoting OPA3 s-sulfhydration. In summary, our findings suggested that H2S protects against DOX-induced cardiotoxicity by inhibiting ferroptosis via targeting the OPA3-NFS1 axis. This provides a potential therapeutic strategy for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Yuehong Wang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Zhiguo Zou
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Zemeng Xiao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Na Geng
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - ZhiQing Qiao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Wenli Li
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| | - Xiaoying Ying
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China..
| | - Xiyuan Lu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China..
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Cancer Institute, Shanghai, China
| |
Collapse
|
4
|
Menon D, Kadiu G, Sanil Y, Aggarwal S. Anthracycline Treatment and Left Atrial Function in Children: A Real-Time 3-Dimensional Echocardiographic Study. Pediatr Cardiol 2022; 43:645-654. [PMID: 34787697 DOI: 10.1007/s00246-021-02769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Anthracycline (AC) therapy is associated with left ventricular (LV) dysfunction. Left atrial (LA) size and function are used to assess LV diastolic function in heart failure in adults. Data on LA size and function following AC therapy in children is limited. We hypothesized that LA size and function will be abnormal in children following AC chemotherapy. This retrospective review included patients who received AC for pediatric cancers. Controls had normal echocardiograms performed for evaluation of chest pain, murmur, or syncope. Real-time three-dimensional echocardiography was performed to evaluate LA reservoir, conduit, and booster pump function parameters. In addition to LA volume data, LV shortening fraction, spectral and tissue Doppler variables assessing diastolic function as well as myocardial performance index was obtained. Groups with and without AC therapy were compared by student t-test and chi-square test. We evaluated 136 patients, 55 (40.4%) had received AC. There was no significant difference between the groups in LV shortening fraction, diastolic as well as global function indices. LA reservoir and conduit function parameters were significantly lower in AC group compared to controls. The booster function parameters showed variable results. It is intriguing that AC-treated children have smaller LA reservoir and abnormal booster function. We speculate that these findings may reflect early changes in LA compliance associated with AC exposure. Assessment of LA volumes and function as prognostic markers of AC-induced cardiotoxicity in children is warranted.
Collapse
Affiliation(s)
- Dipika Menon
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Gilda Kadiu
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yamuna Sanil
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sanjeev Aggarwal
- Division of Pediatric Cardiology, Department of Pediatrics, The Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Aimo A, Gimelli A. Myocardial perfusion years after radiation therapy for left-sided breast cancer: Normal or abnormal? This is the question. J Nucl Cardiol 2021; 28:1933-1935. [PMID: 31745863 DOI: 10.1007/s12350-019-01959-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Alberto Aimo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Cardiology Division, University Hospital of Pisa, Pisa, Italy
| | | |
Collapse
|
6
|
Pourier MS, Dull MM, Weijers G, Loonen J, Bellersen L, de Korte CL, Kapusta L, Mavinkurve-Groothuis AMC. Left ventricular dyssynchrony in long-term childhood cancer survivors treated with anthracyclines: a retrospective cross-sectional study. Int J Cardiovasc Imaging 2021; 37:3469-3475. [PMID: 34357522 PMCID: PMC8604879 DOI: 10.1007/s10554-021-02347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to investigate left ventricular contraction patterns in asymptomatic Childhood cancer survivors (CCS) using two-dimensional speckle tracking echocardiography (2DSTE). Left ventricular longitudinal and circumferential myocardial parameters were assessed using 2DSTE, in asymptomatic CCS and age matched healthy controls. Time to peak (T2P) systolic strain was quantified. Dyssynchrony index (DI) was measured by calculating the standard deviation of T2P systolic strain of six segments in each view. Difference between T2P systolic longitudinal strain of septal and lateral wall was also assessed as a parameter for dyssynchrony. We included 115 CCS with a median age of 17.2 years (range 5.6–39.5) and a median follow up of 11.3 years (range 4.9–29.5) and 119 controls. Conventional echocardiographic parameters and global longitudinal strain were significantly decreased in CCS compared to controls (p < 0.01 and p = 0.02, respectively). Dyssynchrony index did not differ between CCS and controls. There was a clinically insignificant smaller absolute difference between T2P systolic longitudinal of septal and lateral wall in CCS compared to controls. We showed no difference in longitudinal or circumferential left ventricular dyssynchrony in CCS compared to controls using 2DSTE. Future research should focus on assessing dyssynchrony in more segments and a larger CCS population, using both 2D and 3DSTE.
Collapse
Affiliation(s)
- Milanthy S Pourier
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Medical UltraSound Imaging Centre (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Myrthe M Dull
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Weijers
- Department of Radiology and Nuclear Medicine, Medical UltraSound Imaging Centre (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jacqueline Loonen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Louise Bellersen
- Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris L de Korte
- Department of Radiology and Nuclear Medicine, Medical UltraSound Imaging Centre (MUSIC), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Livia Kapusta
- Pediatric Cardiology Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel.,Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
7
|
Sun X, Song Y, Xie Y, Han J, Chen F, Sun Y, Sui B, Jiang D. Shenlijia Attenuates Doxorubicin-Induced Chronic Heart Failure by Inhibiting Cardiac Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6659676. [PMID: 34326887 PMCID: PMC8310442 DOI: 10.1155/2021/6659676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Application of the anticancer drug doxorubicin (DOX) is restricted due to its adverse, cardiotoxic side effects, which ultimately result in heart failure. Moreover, there are a limited number of chemical agents for the clinical prevention of DOX-induced cardiotoxicity. Based on the theories of traditional Chinese medicine (TCM) on chronic heart failure (CHF), Shenlijia (SLJ), a new TCM compound, has been developed to fulfill multiple functions, including improving cardiac function and inhibiting cardiac fibrosis. In the present study, the protective effects and molecular mechanisms of SLJ on DOX-induced CHF rats were investigated. The CHF rat model was induced by intraperitoneal injection of DOX for six weeks with the cumulative dose of 15 mg/kg. All rats were then randomly divided into the control, CHF, CHF + SLJ (3.0 g/kg per day), and CHF + captopril (3.8 mg/kg per day) groups and treated for further four weeks. Echocardiography and the assessment of hemodynamic parameters were performed to evaluate heart function. A protein chip was applied to identify proteins with diagnostic values that were differentially expressed following SLJ treatment. The data from these investigations showed that SLJ treatment significantly improved cardiac function by increasing the left ventricular ejection fraction, improving the hemodynamic index, and inhibiting interstitial fibrosis. Protein chip analysis revealed that SLJ upregulated MCP-1, MDC, neuropilin-2, TGF-β3, thrombospondin, TIE-2, EG-VEGF/PK1, and TIMP-1/2/3 expressions and downregulated that of MMP-13. In addition, immunohistochemistry and western blot results further confirmed that SLJ promoted TIMP-1/2/3 and inhibited MMP-13 expression. The results of the present study suggest that SLJ was effective against DOX-induced CHF rats and is related to the improvement of heart function and ultrastructure and the inhibition of myocardial fibrosis.
Collapse
Affiliation(s)
- Xutao Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Xie
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jieru Han
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fei Chen
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Sun
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Deyou Jiang
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
de Baat EC, Naaktgeboren WR, Leiner T, Teske AJ, Habets J, Grotenhuis HB. Update in imaging of cancer therapy-related cardiac toxicity in adults. Open Heart 2021; 8:openhrt-2020-001506. [PMID: 33863836 PMCID: PMC8055139 DOI: 10.1136/openhrt-2020-001506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, prognosis of patients with cancer has strongly improved and the number of cancer survivors is rapidly growing. Despite this success, cancer treatment is associated with development of serious cardiovascular diseases including left ventricular (LV) systolic dysfunction, heart failure, valvular disease, myocardial infarction, arrhythmias or pericardial diseases. Serial non-invasive cardiac imaging is an important tool to detect early signs of cardiotoxicity, to allow for timely intervention and provide optimal circumstances for long-term prognosis. Currently, echocardiographic imaging is the method of choice for the evaluation of myocardial function during and after cancer therapy. However, 2D echocardiography may fail to detect subtle changes in myocardial function, potentially resulting in a significant delay of therapeutic intervention to impede advanced cardiac disease states with more overt systolic dysfunction. Strain imaging is a promising method for early detection of myocardial dysfunction and may predict future changes in LV ejection fraction. The use of three-dimensional echocardiography may overcome the limitations of 2D echocardiography with more precise and reproducible measurements of LV performance. Cardiac MRI is the gold standard for volumetric assessment and can also be used to perform myocardial tissue characterisation. Visualisation of oedema and fibrosis may provide insights into the degree and disease course of cardiotoxicity and underlying pathophysiological mechanisms. There is growing body of literature regarding the promising role of these advanced imaging modalities in early detection of cardiotoxicity. With this overview paper, new insights and recent results in literature regarding echocardiographic and cardiac magnetic resonance imaging of cancer therapy-related cardiac dysfunction in post-cancer therapy adults will be highlighted.
Collapse
Affiliation(s)
- Esmée C de Baat
- Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Willeke R Naaktgeboren
- Psychosocial Research and Epidemiology, Antoni van Leeuwenhoek Netherlands Cancer Institute, Amsterdam, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tim Leiner
- Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
| | - Arco J Teske
- Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jesse Habets
- Radiology, University Medical Center Utrecht Imaging Division, Utrecht, The Netherlands
- Radiology, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Heynric B Grotenhuis
- Pediatric Cardiology, Wilhelmina Children's Hospital University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
9
|
Zhong Y, Ma CY, Dai X, Wang G. Case Report: Multi-Modality Imaging of a Right Atrial Pseudoaneurysm in a Patient With Breast Cancer. Front Cardiovasc Med 2021; 7:623580. [PMID: 33553268 PMCID: PMC7864283 DOI: 10.3389/fcvm.2020.623580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/25/2022] Open
Abstract
Cardiac pseudoaneurysms occur when a blood vessel wall is injured and the leaking blood is collected in the surrounding tissue. They are very rare events and have a high risk of rupture and poor prognosis. We report a case of right atrial pseudoaneurysm in a 54-year-old female patient diagnosed with breast cancer and lung metastasis. The patient underwent five intrapericardial infusions of cisplatin and nine cycles of systemic chemotherapy. Non-contrast-enhanced computed tomography (CT) was performed at follow-up evaluation during the chemotherapeutic process as this patient was contraindicated to iodine. CT without contrast and ultrasonography showed a crescent-shaped lesion near the right atrium but its nature could not be determined. Cardiac magnetic resonance (CMR) imaging with gadolinium contrast provided important information as an alternative enhanced imaging modality. By combining CT, ultrasonography and CMR images with the medical history of the patient, we inferred that the lesion was a pseudoaneurysm in the right atrium. This condition was related to the erosion of metastasized tumor cells or the accumulated cardiac toxicity of multiple cycles of chemotherapy or pericardiocentesis. This single case report suggests that cardiac rupture should be considered as a potential complication in patients with suspected pericardial metastasis. CMR imaging is an excellent tool for the detection of right atrial rupture.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chun-Yan Ma
- Department of Echocardiography, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Dai
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
The role of metabolic diseases in cardiotoxicity associated with cancer therapy: What we know, what we would know. Life Sci 2020; 255:117843. [PMID: 32464123 DOI: 10.1016/j.lfs.2020.117843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Metabolic diseases, such as obesity and type 2 diabetes, are known risk factors for cardiovascular (CV) diseases. Thus, patients with those comorbidities could be at increased risk of experiencing cardiotoxicity related to treatment with Anthracyclines and the other new generation targeted anticancer drugs. However, investigations addressing the mechanisms underlying the development of CV complications and poor outcome in such cohort of patients are still few and controversial. Given the importance of a personalized approach against chemotherapy-induced cardiomyopathy, this review summarizes our current knowledge on the pathophysiology of chemotherapy-induced cardiomyopathy and its association with obesity and type 2 diabetes. Along with clinical evidences, future perspectives of preclinical research around this field and its role in addressing important open questions, including the development of more proactive strategies for prevention, and treatment of cardiotoxicity during and after chemotherapy in the presence of metabolic diseases, is also presented.
Collapse
|
11
|
Suerken CK, D'Agostino RB, Jordan JH, Meléndez GC, Vasu S, Lamar ZS, Hundley WG. Simultaneous Left Ventricular Volume and Strain Changes During Chemotherapy Associate With 2-Year Postchemotherapy Measures of Left Ventricular Ejection Fraction. J Am Heart Assoc 2020; 9:e015400. [PMID: 31959033 PMCID: PMC7033821 DOI: 10.1161/jaha.119.015400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Although changes in left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume, and global circumferential strain occur during cancer treatment, the relationship of these changes to the 2-year post-cancer-treatment measures of left ventricular ejection fraction (LVEF) are unknown. Methods and Results In a prospective, continuously recruited cohort of 95 patients scheduled to receive potentially cardiotoxic chemotherapy for breast cancer, lymphoma, or soft tissue sarcoma, measures of left ventricular end-diastolic volume, LVESV, global circumferential strain, and LVEF were acquired via cardiac magnetic resonance imaging before and then 3 and 24 months after initiating treatment by individuals blinded to all patient identifiers. Participants had an average age of 54±15 years; 68% were women, and 82% were of white race. LVEF declined from 62±7% to 58±9% over the 24 months (P<0.0001), with 42% of participants experiencing a >5% decline in LVEF at 24 months. Predictors of a 24-month >5% decline in LVEF included the following factors from baseline to 3 months into treatment: (1) >3-mL increases in LVESV (P=0.033), (2) >3-mL increases in LVESV or 10-mL declines in left ventricular end-diastolic volume with little change in LVESV (P=0.001), or (3) ≥10% deteriorations in global circumferential strain with little change in LVESV (P=0.036). Conclusion During receipt of potentially cardiotoxic chemotherapy, increases in LVESV, the absence of its deterioration during decreases of left ventricular end-diastolic volume, or the deterioration of global circumferential strain without a marked decrease in LVESV help identify those who will develop more permanent 2-year declines in LVEF.
Collapse
Affiliation(s)
- Cynthia K. Suerken
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston‐SalemNC
| | - Ralph B. D'Agostino
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston‐SalemNC
| | - Jennifer H. Jordan
- Department of Biomedical EngineeringVirginia Commonwealth UniversityRichmondVA
- Pauley Heart CenterDepartment of Internal Medicine at Virginia Commonwealth University Health SciencesRichmondVA
| | - Giselle C. Meléndez
- Section on Cardiovascular Medicine and PathologySection on Comparative MedicineDepartment of Internal MedicineWake Forest School of MedicineWinston‐SalemNC
| | - Sujethra Vasu
- Section on Cardiovascular Medicine and PathologySection on Comparative MedicineDepartment of Internal MedicineWake Forest School of MedicineWinston‐SalemNC
| | - Zanetta S. Lamar
- Department of Hematology/OncologyWake Forest Baptist Medical CenterWinston‐SalemNC
| | - W. Gregory Hundley
- Section on Cardiovascular Medicine and PathologySection on Comparative MedicineDepartment of Internal MedicineWake Forest School of MedicineWinston‐SalemNC
- Pauley Heart CenterDepartment of Internal Medicine at Virginia Commonwealth University Health SciencesRichmondVA
| |
Collapse
|
12
|
Manolis AA, Manolis TA, Mikhailidis DP, Manolis AS. Cardiovascular safety of oncologic agents: a double-edged sword even in the era of targeted therapies - Part 2. Expert Opin Drug Saf 2018; 17:893-915. [PMID: 30126303 DOI: 10.1080/14740338.2018.1513489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Patients with cancer are subject to the cardiotoxic effects of cancer therapy. Improved cancer treatments lead to more cancer-survivors, who though are exposed to various forms of cardiovascular (CV) disease (CVD) as they age. Aging patients are at increased risk of developing both malignancy and CVD or they may have survived some form of CVD as a result of effective CV treatments. Furthermore, patients with CVD may develop cancer and require treatment (and vice versa), all contributing to increased morbidity and mortality. The prevalence of both malignancy and CVD will increase due to the trend toward a longer lifespan. AREAS COVERED In part 2 of this review, the discussion of the CV effects of specific oncology drugs is completed with inclusion of additional immunological agents, current hormonal and other agents. Early detection and monitoring of cardiotoxicity, use of biomarkers and other imaging and diagnostic methods and prevention and treatment options are also discussed. EXPERT OPINION As outlined in part 1 of this review, oncologists need to be aware of the CV adverse-effects of their treatments and make careful and expectant clinical decisions, especially in patients with preexisting CVD or CV risk factors. Similarly, cardiologists should consider a detailed previous history of treatment for malignant disease, including prior chemotherapy exposure, dose(s) received, and/or combined modality therapy with chest radiotherapy. Both specialists should collaborate in order to minimize the impact of these two ubiquitous diseases (cancer and CVD) and mitigate the adverse effects of treatment modalities.
Collapse
Affiliation(s)
| | | | - Dimitri P Mikhailidis
- c Department of Clinical Biochemistry , Royal Free Hospital Campus, University College London Medical School , London , UK
| | - Antonis S Manolis
- d Third Department of Cardiology , Athens University School of Medicine , Athens , Greece
| |
Collapse
|
13
|
Levick SP, Soto-Pantoja DR, Bi J, Hundley WG, Widiapradja A, Manteufel EJ, Bradshaw TW, Meléndez GC. Doxorubicin-Induced Myocardial Fibrosis Involves the Neurokinin-1 Receptor and Direct Effects on Cardiac Fibroblasts. Heart Lung Circ 2018; 28:1598-1605. [PMID: 30205930 DOI: 10.1016/j.hlc.2018.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer patients receiving anthracycline-based chemotherapy (Anth-bC) may experience early cardiac fibrosis, which could be an important contributing mechanism to the development of impaired left ventricular (LV) function. Substance P, a neuropeptide that predominantly acts via the neurokinin 1 receptor (NK-1R), contributes to adverse myocardial remodelling and fibrosis in other cardiomyopathies. We sought to determine if NK-1R blockade is effective against doxorubicin (Dox - a frequently used Anth-bC)-induced cardiac fibrosis and cardiomyocyte apoptosis. In addition, we explored the direct effects of Dox on cardiac fibroblasts. METHODS Male Sprague-Dawley rats were randomised to receive saline, six cycles of Dox (1.5mg Dox/kg/cycle) or Dox with an NK-1R antagonist (L732138, 5mg/kg/daily through Dox treatment). At 8 weeks after the initial dose of Dox, LV function and histopathological myocardial fibrosis and cell apoptosis were assessed. Collagen secretion was measured in vitro to test direct Dox activation of cardiac fibroblasts. RESULTS Rats undergoing Dox treatment (9mg/kg cumulative dose) developed cardiac fibrosis and cardiomyocyte apoptosis. NK-1R blockade partially mitigated cardiac fibrosis while completely preventing cardiomyocyte apoptosis. This resulted in improved diastolic function. Furthermore, we found that Dox had direct effects on cardiac fibroblasts to cause increased collagen production and enhanced cell survival. CONCLUSIONS This study demonstrates that cardiac fibrosis induced by Anth-bC can be reduced by NK-1R blockade. The residual fibrotic response is likely due to direct Dox effects on cardiac fibroblasts to produce collagen.
Collapse
Affiliation(s)
- Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David R Soto-Pantoja
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jianli Bi
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - W Gregory Hundley
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Radiological Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Widiapradja
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edward J Manteufel
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tancia W Bradshaw
- Surgery-Hypertension and Vascular Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Giselle C Meléndez
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA; Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
14
|
Meléndez GC, Hundley WG. Is Myocardial Fibrosis a New Frontier for Discovery in Cardiotoxicity Related to the Administration of Anthracyclines? Circ Cardiovasc Imaging 2018; 9:CIRCIMAGING.116.005797. [PMID: 27923797 DOI: 10.1161/circimaging.116.005797] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Giselle C Meléndez
- From the Department of Internal Medicine, Section on Cardiovascular Medicine (G.C.M., W.G.H.), Department of Pathology, Section on Comparative Medicine (G.C.M.), and Department of Radiological Sciences (W.G.H.), Wake Forest Health Sciences, Winston-Salem, NC
| | - W Gregory Hundley
- From the Department of Internal Medicine, Section on Cardiovascular Medicine (G.C.M., W.G.H.), Department of Pathology, Section on Comparative Medicine (G.C.M.), and Department of Radiological Sciences (W.G.H.), Wake Forest Health Sciences, Winston-Salem, NC.
| |
Collapse
|
15
|
Zheng P, Li J, Kros JM. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research-practice gaps, challenges, and insights. Med Res Rev 2018; 38:325-376. [PMID: 28862319 PMCID: PMC5763363 DOI: 10.1002/med.21463] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/16/2022]
Abstract
To date, five cancer treatment modalities have been defined. The three traditional modalities of cancer treatment are surgery, radiotherapy, and conventional chemotherapy, and the two modern modalities include molecularly targeted therapy (the fourth modality) and immunotherapy (the fifth modality). The cardiotoxicity associated with conventional chemotherapy and radiotherapy is well known. Similar adverse cardiac events are resurging with the fourth modality. Aside from the conventional and newer targeted agents, even the most newly developed, immune-based therapeutic modalities of anticancer treatment (the fifth modality), e.g., immune checkpoint inhibitors and chimeric antigen receptor (CAR) T-cell therapy, have unfortunately led to potentially lethal cardiotoxicity in patients. Cardiac complications represent unresolved and potentially life-threatening conditions in cancer survivors, while effective clinical management remains quite challenging. As a consequence, morbidity and mortality related to cardiac complications now threaten to offset some favorable benefits of modern cancer treatments in cancer-related survival, regardless of the oncologic prognosis. This review focuses on identifying critical research-practice gaps, addressing real-world challenges and pinpointing real-time insights in general terms under the context of clinical cardiotoxicity induced by the fourth and fifth modalities of cancer treatment. The information ranges from basic science to clinical management in the field of cardio-oncology and crosses the interface between oncology and onco-pharmacology. The complexity of the ongoing clinical problem is addressed at different levels. A better understanding of these research-practice gaps may advance research initiatives on the development of mechanism-based diagnoses and treatments for the effective clinical management of cardiotoxicity.
Collapse
Affiliation(s)
- Ping‐Pin Zheng
- Cardio‐Oncology Research GroupErasmus Medical CenterRotterdamthe Netherlands
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| | - Jin Li
- Department of OncologyShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Johan M Kros
- Department of PathologyErasmus Medical CenterRotterdamthe Netherlands
| |
Collapse
|
16
|
Meléndez GC, Sukpraphrute B, D'Agostino RB, Jordan JH, Klepin HD, Ellis L, Lamar Z, Vasu S, Lesser G, Burke GL, Weaver KE, Ntim WO, Hundley WG. Frequency of Left Ventricular End-Diastolic Volume-Mediated Declines in Ejection Fraction in Patients Receiving Potentially Cardiotoxic Cancer Treatment. Am J Cardiol 2017; 119:1637-1642. [PMID: 28341361 DOI: 10.1016/j.amjcard.2017.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
We sought to determine the frequency by which decreases in left ventricular (LV) end-diastolic volume (LVEDV) with and without increases in end-systolic volume (LVESV) influenced early cancer treatment-associated declines in LV ejection fraction (LVEF) or LV mass. One hundred twelve consecutively recruited subjects (aged 52 ± 14 years) with cancer underwent blinded cardiovascular magnetic resonance measurements of LV volumes, mass, and LVEF before and 3 months after initiating potentially cardiotoxic chemotherapy (72% of participants received anthracyclines). Twenty-six participants developed important declines in LVEF of >10% or to values <50% at 3 months, in whom 19% versus 60%, respectively, experienced their decline in LVEF due to isolated declines in LVEDV versus an increase in LVESV; participants who dropped their LVEF due to decreases in LVEDV lost more LV mass than those who dropped their LVEF due to an increase in LVESV (p = 0.03). Nearly one fifth of subjects experience marked LVEF declines due to an isolated decline in LVEDV after initiating potentially cardiotoxic chemotherapy. Because reductions in intravascular volume (which could be treated by volume repletion) may account for LVEDV-related declines in LVEF, these data indicate that LV volumes should be reviewed along with LVEF when acquiring imaging studies for cardiotoxicity during the treatment for cancer.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina; Section of Comparative Medicine, Department of Pathology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Bunyapon Sukpraphrute
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Jennifer H Jordan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Heidi D Klepin
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Leslie Ellis
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Zanetta Lamar
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Sujethra Vasu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Glenn Lesser
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Gregory L Burke
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Kathryn E Weaver
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - William O Ntim
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - W Gregory Hundley
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina; Department of Radiological Sciences, Wake Forest University, School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
17
|
Laursen AH, Thune JJ, Hutchings M, Hasbak P, Kjaer A, Elming MB, Ripa RS. 123
I-MIBG imaging for detection of anthracycline-induced cardiomyopathy. Clin Physiol Funct Imaging 2017; 38:176-185. [DOI: 10.1111/cpf.12419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Adam H. Laursen
- Department of Haematology; Rigshospitalet; Copenhagen Denmark
| | | | | | - Philip Hasbak
- Department of Clinical Physiology; Nuclear Medicine & PET and Cluster for Molecular Imaging; Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology; Nuclear Medicine & PET and Cluster for Molecular Imaging; Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| | - Marie B. Elming
- Department of Cardiology; Rigshospitalet; Copenhagen Denmark
| | - Rasmus S. Ripa
- Department of Clinical Physiology; Nuclear Medicine & PET and Cluster for Molecular Imaging; Rigshospitalet and University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
18
|
Cao L, Zhu W, Wagar EA, Meng QH. Biomarkers for monitoring chemotherapy-induced cardiotoxicity. Crit Rev Clin Lab Sci 2016; 54:87-101. [PMID: 28013560 DOI: 10.1080/10408363.2016.1261270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cardiotoxicity, including acute and late-onset cardiotoxicity, is a well-known adverse effect of many types of antitumor agents. Early identification of patients with cardiotoxicity is important to ensure prompt treatment and minimize toxic effects. The etiology of chemotherapy-induced cardiotoxicity is multifactorial. Traditional methods for assessment of chemotherapy-induced cardiotoxicity typically involve serial measurements of cardiac function via multi-modality imaging techniques. Typically, however, significant left ventricular dysfunction has already occurred when cardiotoxicity is detected by imaging techniques. Biomarkers, most importantly cardiac natriuretic peptides and troponins, are promising markers for identifying patients potentially at risk for clinical heart failure symptoms. This review summarizes the recent progress in clinical utilization of biomarkers for early diagnosis of acute cardiotoxicity and for prediction of late-onset cardiotoxicity. We also discuss the conflicting results of different studies and the association of results with study design.
Collapse
Affiliation(s)
- Liyun Cao
- a Department of Laboratory Medicine , Unit 37, The University of Texas MD Anderson Cancer Center , Houston , TX , USA and
| | - Wuqiang Zhu
- b Department of Biomedical Engineering , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Elizabeth A Wagar
- a Department of Laboratory Medicine , Unit 37, The University of Texas MD Anderson Cancer Center , Houston , TX , USA and
| | - Qing H Meng
- a Department of Laboratory Medicine , Unit 37, The University of Texas MD Anderson Cancer Center , Houston , TX , USA and
| |
Collapse
|