1
|
Chen Z, Lan R, Ran T, Tao L, Zhu Y, Li Y, Zhang C, Mao M, Gao D, Zuo Z. A multimodality score strategy for assessing the risk of immune checkpoint inhibitors related cardiotoxicity. Sci Rep 2024; 14:24821. [PMID: 39438579 PMCID: PMC11496699 DOI: 10.1038/s41598-024-76829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to find the association between four common clinical biomarkers and subsequent ICICT, developing a risk scoring strategy to assess the ICICT risk. Three terminals for ICICT were : Terminal 1, cancer therapy-related cardiomyopathies; Terminal 2, myocarditis or heart failure; and Terminal 3, myocarditis, heart failure, myocardial infarction, cerebral infarction, atrial fibrillation, or death. The thresholds were : N-terminal-pro-B-type-natriuretic-peptide ≥ 125 pg/mL, cardiac troponin T ≥ 6 ng/L, high-sensitivity C-reactive protein ≥ 3 mg/L, and coronary artery calcium score > 10 U. Each of the four abnormal biomarkers received 1 point. The links between biomarkers, score stage, and ICICT were analyzed. 375 patients with a mean follow-up of 1.91 years were included. All four biomarkers measured before immunotherapy were associated with a higher risk of developing ICICT. These scores were also associated with ICICT risk. The highest risk was the very high stage (score = 4) has 7.29, 8.83, and 7.02 folder higher risk compared to low risk group for Terminal 1-3, respectively. The cumulation of incidences also showed that the higher stages of score had an earlier onset and higher incidence of ICICT. 4 biomarkers and the scoring strategy enables clinicians to assess risk easily.
Collapse
Affiliation(s)
- Zhulu Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Rui Lan
- Department of Clinical Nutrition, School of Medicine, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Tao Ran
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanwei Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Chuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Min Mao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Diansa Gao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Street, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Krüger DN, Bosman M, Van Assche CXL, Wesley CD, Cillero-Pastor B, Delrue L, Heggermont W, Bartunek J, De Meyer GRY, Van Craenenbroeck EM, Guns PJ, Franssen C. Characterization of systolic and diastolic function, alongside proteomic profiling, in doxorubicin-induced cardiovascular toxicity in mice. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:40. [PMID: 38909263 PMCID: PMC11193203 DOI: 10.1186/s40959-024-00241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND The anthracycline doxorubicin (DOX) is a highly effective anticancer agent, especially in breast cancer and lymphoma. However, DOX can cause cancer therapy-related cardiovascular toxicity (CTR-CVT) in patients during treatment and in survivors. Current diagnostic criteria for CTR-CVT focus mainly on left ventricular systolic dysfunction, but a certain level of damage is required before it can be detected. As diastolic dysfunction often precedes systolic dysfunction, the current study aimed to identify functional and molecular markers of DOX-induced CTR-CVT with a focus on diastolic dysfunction. METHODS Male C57BL/6J mice were treated with saline or DOX (4 mg/kg, weekly i.p. injection) for 2 and 6 weeks (respectively cumulative dose of 8 and 24 mg/kg) (n = 8 per group at each time point). Cardiovascular function was longitudinally investigated using echocardiography and invasive left ventricular pressure measurements. Subsequently, at both timepoints, myocardial tissue was obtained for proteomics (liquid-chromatography with mass-spectrometry). A cohort of patients with CTR-CVT was used to complement the pre-clinical findings. RESULTS DOX-induced a reduction in left ventricular ejection fraction from 72 ± 2% to 55 ± 1% after 2 weeks (cumulative 8 mg/kg DOX). Diastolic dysfunction was demonstrated as prolonged relaxation (increased tau) and heart failure was evident from pulmonary edema after 6 weeks (cumulative 24 mg/kg DOX). Myocardial proteomic analysis revealed an increased expression of 12 proteins at week 6, with notable upregulation of SERPINA3N in the DOX-treated animals. The human ortholog SERPINA3 has previously been suggested as a marker in CTR-CVT. Upregulation of SERPINA3N was confirmed by western blot, immunohistochemistry, and qPCR in murine hearts. Thereby, SERPINA3N was most abundant in the endothelial cells. In patients, circulating SERPINA3 was increased in plasma of CTR-CVT patients but not in cardiac biopsies. CONCLUSION We showed that mice develop heart failure with impaired systolic and diastolic function as result of DOX treatment. Additionally, we could identify increased SERPINA3 levels in the mice as well as patients with DOX-induced CVT and demonstrated expression of SERPINA3 in the heart itself, suggesting that SERPINA3 could serve as a novel biomarker.
Collapse
Affiliation(s)
- Dustin N Krüger
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium.
| | - Matthias Bosman
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Charles X L Van Assche
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
| | - Callan D Wesley
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Berta Cillero-Pastor
- Division M4I - Imaging Mass Spectrometry (IMS), Faculty of Health, Medicine and Life Sciences, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, Maastricht, 6229 ER, The Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Leen Delrue
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Ward Heggermont
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Jozef Bartunek
- Cardiovascular Centre, OLV Hospital, Moorselbaan 164, Aalst, B-9300, Belgium
| | - Guido R Y De Meyer
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Emeline M Van Craenenbroeck
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| | - Pieter-Jan Guns
- Laboratory of Psychopharmacology, Faculty of Medicine and Health Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, Antwerp, B-2610, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, University of Antwerp, Wilrijkstraat 10, Edegem, B-2650, Belgium
- Department of Cardiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, Edegem, B-2650, Belgium
| |
Collapse
|
3
|
Hwang HJ, Han SA, Sohn IS. Breast Cancer and Therapy-Related Cardiovascular Toxicity. J Breast Cancer 2024; 27:147-162. [PMID: 38769686 PMCID: PMC11221208 DOI: 10.4048/jbc.2024.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/10/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
The global incidence of breast cancer is on the rise, a trend also observed in South Korea. However, thanks to the rapid advancements in anticancer therapies, survival rates are improving. Consequently, post-treatment health and quality of life for breast cancer survivors are emerging as significant concerns, particularly regarding treatment-related cardiotoxicity. In this review, we delve into the cardiovascular complications associated with breast cancer treatment, explore surveillance protocols for early detection and diagnosis of late complications, and discuss protective strategies against cardiotoxicity in breast cancer patients undergoing anticancer therapy, drawing from multiple guidelines.
Collapse
Affiliation(s)
- Hui-Jeong Hwang
- Department of Cardiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sang-Ah Han
- Department of Surgery, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Il Suk Sohn
- Department of Cardiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea.
| |
Collapse
|
4
|
Lopez-Garcia A, Macia E, Gomez-Talavera S, Castillo E, Morillo D, Tuñon J, Ibañez B, Cordoba R. Predictive Factors of Therapy-Related Cardiovascular Events in Patients with Lymphoma Receiving Anthracyclines. Med Sci (Basel) 2024; 12:23. [PMID: 38804379 PMCID: PMC11130872 DOI: 10.3390/medsci12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cancer-therapy-related cardiac dysfunction (CTRCD) is a growing concern for public health, with a growing incidence due to improved survival rates of patients with hematological malignancies due to diagnostic and therapeutic advances. The identification of patients at risk for CTRCD is vital to developing preventive strategies. METHODS A single-center retrospective cohort study was conducted between 1 January 2017 and 15 February 2023. Medical records of patients with lymphoma treated with first-line anthracyclines were reviewed. Demographic data, cardiovascular risk factors, biomarkers of myocardial damage, and echocardiographic information were collected. RESULTS A total of 200 patients were included. The incidence of CTRCD was 17.4% (35/200). Patients with CTRCD were older than those without CTRCD, with a mean age of 65.17 years vs. 56.77 (p = 0.008). Dyslipidemia (DL) (31.4% vs. 13.4% p = 0.017) and previous cardiovascular disease (40% vs. 13.3%; p < 0.001) were more frequent in the group who developed an event. Mean baseline NT-proBNP levels in the subgroup with cardiovascular events were 388.73 kg/L ± 101.02, and they were 251.518 kg/L ± 26.22 in those who did not (p = 0.004). Differences in Troponin I levels were identified during and after treatment without exceeding the laboratory's upper reference limit. Patients were followed for a median of 51.83 months (0.76-73.49). The presence of a CTCRD event had a negative impact on overall mortality from any cause (HR = 2.23 (95% CI: 1.08-2.93); p = 0.031). CONCLUSIONS Early identification of risk factors is crucial to manage patients at risk for CTRCD.
Collapse
Affiliation(s)
- Alberto Lopez-Garcia
- Lymphoma Unit, Department of Hematology, Fundación Jiménez Díaz University Hospital, IIS-FJD Health Research Institute, Avenida Reyes Catolicos, 228040 Madrid, Spain
| | - Ester Macia
- Cardio-Oncology Unit, Department of Cardiology, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos, 228040 Madrid, Spain
| | - Sandra Gomez-Talavera
- Cardio-Oncology Unit, Department of Cardiology, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos, 228040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Eva Castillo
- Department of Pharmacy, Fundación Jimenez Diaz University Hospital, Avenida Reyes Católicos, 228040 Madrid, Spain
| | - Daniel Morillo
- Lymphoma Unit, Department of Hematology, Fundación Jiménez Díaz University Hospital, IIS-FJD Health Research Institute, Avenida Reyes Catolicos, 228040 Madrid, Spain
| | - Jose Tuñon
- Cardio-Oncology Unit, Department of Cardiology, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos, 228040 Madrid, Spain
| | - Borja Ibañez
- Cardio-Oncology Unit, Department of Cardiology, Fundacion Jimenez Diaz University Hospital, Avenida Reyes Catolicos, 228040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Raul Cordoba
- Lymphoma Unit, Department of Hematology, Fundación Jiménez Díaz University Hospital, IIS-FJD Health Research Institute, Avenida Reyes Catolicos, 228040 Madrid, Spain
| |
Collapse
|
5
|
Zheng Y, Liu Y, Chen Z, Zhang Y, Qi Z, Wu N, Zhao Z, Tse G, Wang Y, Hu H, Niu Y, Liu T. Cardiovascular disease burden in patients with urological cancers: The new discipline of uro-cardio-oncology. CANCER INNOVATION 2024; 3:e108. [PMID: 38946935 PMCID: PMC11212304 DOI: 10.1002/cai2.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 07/02/2024]
Abstract
Cancer remains a major cause of mortality worldwide, and urological cancers are the most common cancers among men. Several therapeutic agents have been used to treat urological cancer, leading to improved survival for patients. However, this has been accompanied by an increase in the frequency of survivors with cardiovascular complications caused by anticancer medications. Here, we propose the novel discipline of uro-cardio-oncology, an evolving subspecialty focused on the complex interactions between cardiovascular disease and urological cancer. In this comprehensive review, we discuss the various cardiovascular toxicities induced by different classes of antineoplastic agents used to treat urological cancers, including androgen deprivation therapy, vascular endothelial growth factor receptor tyrosine kinase inhibitors, immune checkpoint inhibitors, and chemotherapeutics. In addition, we discuss possible mechanisms underlying the cardiovascular toxicity associated with anticancer therapy and outline strategies for the surveillance, diagnosis, and effective management of cardiovascular complications. Finally, we provide an analysis of future perspectives in this emerging specialty, identifying areas in need of further research.
Collapse
Affiliation(s)
- Yi Zheng
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ying Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ziliang Chen
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yunpeng Zhang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zuo Qi
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Ning Wu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Gary Tse
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
- School of Nursing and Health StudiesHong Kong Metropolitan UniversityHong KongChina
| | - Yong Wang
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Hailong Hu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuanjie Niu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| | - Tong Liu
- Tianjin Key Laboratory of Ionic‐Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of CardiologySecond Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
6
|
Knowlton SE, Cristian A, Orada R, Sokolof J. Medical and Cardiac Risk Stratification and Exercise Prescription in Persons With Cancer. Am J Phys Med Rehabil 2024; 103:S16-S22. [PMID: 38364025 DOI: 10.1097/phm.0000000000002381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
ABSTRACT Cancer patients are recommended to exercise at all stages of disease given the multiple health and functional benefits of physical activity. Certain safety precautions, including a preparticipation medical evaluation and periodic re-evaluations, should be undertaken before creating an exercise program based on individual cancer and treatment history. When designing an exercise program, physiatrists should use similar principles of frequency, intensity, timing, and type for cancer patients that are used for noncancer patients. Special attention to risks of cardiac and pulmonary disease along with risks of sarcopenia, thrombocytopenia, anemia, neutropenia, fracture risk, neurotoxicity, lymphedema, and metastases should be made. This article will outline these specific risks and necessary modifications to the exercise prescription for cancer patients that can be used to enable safe participation in recommended exercise.
Collapse
Affiliation(s)
- Sasha E Knowlton
- From the Department of Physical Medicine and Rehabilitation, University of North Carolina, Chapel Hill, North Carolina (SEK); Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina (SEK); Miami Cancer Institute, Miami, Florida (AC, RO); and Department of Functional Medicine and Oncological Rehabilitation, Catholic Health-Saint Francis Hospital East Hills, New York (JS)
| | | | | | | |
Collapse
|
7
|
Murtagh G, Januzzi JL, Scherrer‐Crosbie M, Neilan TG, Dent S, Ho JE, Appadurai V, McDermott R, Akhter N. Circulating Cardiovascular Biomarkers in Cancer Therapeutics-Related Cardiotoxicity: Review of Critical Challenges, Solutions, and Future Directions. J Am Heart Assoc 2023; 12:e029574. [PMID: 37889193 PMCID: PMC10727390 DOI: 10.1161/jaha.123.029574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Cardiotoxicity is a growing concern in the oncology population. Transthoracic echocardiography and multigated acquisition scans have been used for surveillance but are relatively insensitive and resource intensive. Innovative imaging techniques are constrained by cost and availability. More sensitive, cost-effective cardiotoxicity surveillance strategies are needed. Circulating cardiovascular biomarkers could provide a sensitive, low-cost solution. Biomarkers such as troponins, natriuretic peptides (NPs), novel upstream signals of oxidative stress, inflammation, and fibrosis as well as panomic technologies have shown substantial promise, and guidelines recommend baseline measurement of troponins and NPs in all patients receiving potential cardiotoxins. Nonetheless, supporting evidence has been hampered by several limitations. Previous reviews have provided valuable perspectives on biomarkers in cancer populations, but important analytic aspects remain to be examined in depth. This review provides comprehensive assessment of critical challenges and solutions in this field, with focus on analytical issues relating to biomarker measurement and interpretation. Examination of evidence pertaining to common and serious forms of cardiotoxicity reveals that improved study designs incorporating larger, more diverse populations, registry-based approaches, and refinement of current definitions are key. Further efforts to harmonize biomarker methodologies including centralized biobanking and analyses, novel decision limits, and head-to-head comparisons are needed. Multimarker algorithms incorporating machine learning may allow rapid, personalized risk assessment. These improvements will not only augment the predictive value of circulating biomarkers in cardiotoxicity but may elucidate both direct and indirect relationships between cardiovascular disease and cancer, allowing biomarkers a greater role in the development and success of novel anticancer therapies.
Collapse
Affiliation(s)
| | - James L. Januzzi
- Division of Cardiology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | | | - Tomas G. Neilan
- Division of Cardiology, Department of MedicineMassachusetts General Hospital, Harvard Medical SchoolBostonMAUSA
| | - Susan Dent
- Duke Cancer Institute, Department of MedicineDuke UniversityDurhamNCUSA
| | - Jennifer E. Ho
- CardioVascular Institute and Division of Cardiology, Department of MedicineBeth Israel Deaconess Medicine CenterBostonMAUSA
| | - Vinesh Appadurai
- Division of Cardiovascular MedicineNorthwestern University Feinberg School of MedicineChicagoILUSA
- School of MedicineThe University of QueenslandSt LuciaQueenslandAustralia
| | - Ray McDermott
- Medical OncologySt. Vincent’s University HospitalDublinIreland
| | - Nausheen Akhter
- Division of Cardiovascular MedicineNorthwestern University Feinberg School of MedicineChicagoILUSA
| |
Collapse
|
8
|
Jhawar N, Mcpherson A, Chirila R, Ray J. Cardio-Oncology for the Primary Care Provider. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2023; 61:127-134. [PMID: 37249550 DOI: 10.2478/rjim-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 05/31/2023]
Abstract
Cardiovascular disease is a major cause of mortality among oncologic patients. As cancer therapies continue to evolve and advance, cancer survival rates have been increasing and so has the burden of cardiovascular disease within this population. For this reason, cardio-oncology plays an important role in promoting multidisciplinary care with the primary care provider, oncology, and cardiology. In this review, we discuss the roles of different providers, strategies to monitor patients receiving cardiotoxic therapies, and summarize cancer therapy class-specific toxicities. Continued collaboration among providers and ongoing research related to cardiotoxic cancer therapies will enable patients to receive maximal, evidence-based, comprehensive care.
Collapse
Affiliation(s)
- Nikita Jhawar
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224
| | - Alyssa Mcpherson
- Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, FL 32224
| | - Razvan Chirila
- Department of Internal Medicine, Mayo Clinic, Jacksonville, FL 32224
| | - Jordan Ray
- Department of Cardiovascular Diseases, Mayo Clinic, Jacksonville, FL 32224
| |
Collapse
|
9
|
Simões R, Ferreira AC, Silva LM, Sabino ADP, Carvalho MDG, Gomes KB. Evaluation of the RDW Index (Red Cell Distribution Width) in Women with Breast Cancer Treated with Doxorubicin in a One-Year Follow-Up Study. Diagnostics (Basel) 2023; 13:diagnostics13091552. [PMID: 37174944 PMCID: PMC10177911 DOI: 10.3390/diagnostics13091552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Breast cancer is the most common cancer and the most frequent cause of death in women. Doxorubicin, an anthracycline, is an important drug due to its efficacy in treating solid cancers, especially breast cancer. However, this drug is often responsible for cardiotoxicity that may affect more than 25% of patients. This study aimed to evaluate the red cell distribution width (RDW) in women with breast cancer to monitor adverse events associated with the use of doxorubicin. A prospective study of 80 women with breast malignancy undergoing neoadjuvant doxorubicin-based chemotherapy was conducted. The patients were evaluated at baseline (T0), just after the last cycle of chemotherapy with doxorubicin (T1), and 1 year after the treatment (T2). There was a significant increase over the time points for the RDW (p < 0.001). There was a negative correlation between the RDW and C-reactive protein (CRP) levels at T1. The RDW did not show a significant difference between the groups classified according to cardiotoxicity. Based on these results, the RDW is a cost-effective test that shows a relationship with the doxorubicin response, but not with cardiotoxicity. It is a potential biomarker to evaluate patients with breast cancer after they receive chemotherapy with doxorubicin.
Collapse
Affiliation(s)
- Ricardo Simões
- Department of Internal Medicine, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Amanda Cambraia Ferreira
- Department of Internal Medicine, Faculty of Medical Sciences of Minas Gerais, Belo Horizonte 30130-100, MG, Brazil
| | - Luciana Maria Silva
- Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte 30130-110, MG, Brazil
| | - Adriano de Paula Sabino
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria das Graças Carvalho
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
10
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1218] [Impact Index Per Article: 406.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
11
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Delombaerde D, Vervloet D, Berwouts D, Beckers R, Prenen H, Peeters M, Gremonprez F, Croes L, Vulsteke C. Ipilimumab- and nivolumab-induced myocarditis in a patient with metastatic cholangiocarcinoma: a case report. J Med Case Rep 2022; 16:275. [PMID: 35831829 PMCID: PMC9281161 DOI: 10.1186/s13256-022-03487-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Myocarditis in patients treated with immune checkpoint inhibitors has previously been reported to be rare, though it has most likely been underreported owing to misdiagnosis in the absence of overt clinical presentation. Early detection and characterization of this potentially life-threatening immune-related adverse event is of major importance. Herein we report a case of early-onset myocarditis in an asymptomatic patient treated with dual checkpoint inhibition for metastatic cholangiocarcinoma. CASE PRESENTATION A 69-year-old male Caucasian patient with metastatic cholangiocarcinoma presented with mild epigastric pain and troponinemia prior to the third dose of dual checkpoint inhibition (ipilimumab 1 mg/kg body weight and nivolumab 3 mg/kg body weight). Initial workup showed no significant abnormalities (physical/neurological examination, electrocardiogram, 72-hour Holter monitoring, and a transthoracic echocardiogram). However, cardiac magnetic resonance imaging revealed a zone of contrast enhancement in the inferior segment of the left ventricular wall indicating a recent episode of myocarditis. Despite steroid initiation (0.5 mg/kg oral prednisolone per day), troponin levels kept increasing, in the absence of coronary disease, for which steroids were increased to 1.5 mg/kg/day. Fluorodeoxyglucose positron emission tomography/computed tomography, 28 days after detecting elevated troponin levels, depicted multiple zones of active myocardial inflammation (basal septal, mid-anterior, and apical inferior). The patient is currently stable, and troponinemia is slowly decreasing while steroids are steadily being tapered. CONCLUSION As the number of cancers treated with immune checkpoint inhibitors is expanding, the incidence of immune checkpoint inhibitor-induced myocarditis is likely to increase. Moreover, the emerging combination of immune checkpoint inhibitors with non-immune checkpoint inhibitor therapies with potential synergistic cardiotoxic side effects (for example, tyrosine kinase inhibitors) will further complicate the diagnosis of immune-related cardiotoxicity. This case highlights the urgent need for predictive biomarkers to stratify patients at risk and to develop a standardized and multidisciplinary management approach for early diagnosis and treatment of this severe immune-related adverse event.
Collapse
Affiliation(s)
- Danielle Delombaerde
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium.
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Delphine Vervloet
- Department of Cardiology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
| | - Dieter Berwouts
- Department of Nuclear Medicine, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
| | - Roel Beckers
- Department of Radiology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, 2650, Edegem, Belgium
| | - Félix Gremonprez
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
| | - Lieselot Croes
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Christof Vulsteke
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000, Ghent, Belgium
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
13
|
Cartas‐Espinel I, Telechea‐Fernández M, Manterola Delgado C, Ávila Barrera A, Saavedra Cuevas N, Riffo‐Campos AL. Novel molecular biomarkers of cancer therapy-induced cardiotoxicity in adult population: a scoping review. ESC Heart Fail 2022; 9:1651-1665. [PMID: 35261178 PMCID: PMC9065865 DOI: 10.1002/ehf2.13735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
AIM Cancer treatments are associated with cardiotoxic events that predispose to cardiac pathology and compromise the survival of patients, making necessary the identification of new molecular biomarkers to detect cardiotoxicity. This scoping review aims to identify the available evidence on novel molecular biomarkers associated with cardiotoxicity in the adult population undergoing cancer therapy. METHODS AND RESULTS The databases Medline, Web of Science, Scopus, and Embase were screened for the identification of published studies until 23 August 2020, searching for novel molecular biomarkers reported in cancer therapy-related cardiac dysfunction in adult patients. A total of 42 studies that met the eligibility criteria were included. Fourteen studies reported 44 new protein biomarkers, 18 studies reported 57 new single nucleotide polymorphism biomarkers, and 11 studies reported 171 new gene expression profiles associated with cardiotoxicity. Data were extracted for 272 novel molecular biomarkers reported and evaluated in 7084 cancer patients, of which only 13 were identified in more than one study (MPO, sST2, GDF-15, TGF-B1, rs1056892, rs1883112, rs4673, rs13058338, rs1695, miR-1, miR-25-3p, miR-34a-5p, and miR-423-5p), showing values for area under the curve > 0.73 (range 0.74-0.85), odds ratio 0.26-7.17, and hazard ratio 1.28-1.80. CONCLUSIONS Multiple studies presented a significant number of novel molecular biomarkers as promising predictors for risk assessment of cardiac dysfunction related to cancer therapy, but the characteristics of the studies carried out and the determinations applied do not allow suggesting the clinical use of these molecular biomarkers in the assessment of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Irene Cartas‐Espinel
- Programa de Doctorado en Ciencias mención Biología Celular y Molecular AplicadaUniversidad de La FronteraTemucoChile
| | | | - Carlos Manterola Delgado
- Departamento de CirugíaUniversidad de La FronteraTemucoChile
- Centro de Excelencia en Estudios Morfológicos y Quirúrgicos (CEMyQ)Universidad de La FronteraTemucoChile
- Programa de Doctorado en Ciencias MédicasUniversidad de La FronteraTemucoChile
| | - Andrés Ávila Barrera
- Centro de Excelencia de Modelación y Computación CientíficaUniversidad de La FronteraTemucoChile
| | | | - Angela L. Riffo‐Campos
- Programa de Doctorado en Ciencias MédicasUniversidad de La FronteraTemucoChile
- Vicerrectoría AcadémicaUniversidad de La FronteraTemucoChile
| |
Collapse
|
14
|
Koelwyn GJ, Aboumsallem JP, Moore KJ, de Boer RA. Reverse cardio-oncology: Exploring the effects of cardiovascular disease on cancer pathogenesis. J Mol Cell Cardiol 2022; 163:1-8. [PMID: 34582824 PMCID: PMC8816816 DOI: 10.1016/j.yjmcc.2021.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 02/09/2023]
Abstract
The field of cardio-oncology has emerged in response to the increased risk of cardiovascular disease (CVD) in patients with cancer. However, recent studies suggest a more complicated CVD-cancer relationship, wherein development of CVD, either prior to or following a cancer diagnosis, can also lead to increased risk of cancer and worse outcomes for patients. In this review, we describe the current evidence base, across epidemiological as well as preclinical studies, which supports the emerging concept of 'reverse-cardio oncology', or CVD-induced acceleration of cancer pathogenesis.
Collapse
Affiliation(s)
- Graeme J. Koelwyn
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada,Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver Canada
| | - Joseph Pierre Aboumsallem
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Kathryn J. Moore
- NYU Cardiovascular Research Center, The Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| | - Rudolf A. de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands.,Corresponding authors: Rudolf A de Boer, MD, University Medical Center Groningen, Department of Cardiology, AB 31, PO Box 30.001, 9700 RB, Groningen, The Netherlands. Tel: +31 50 3612355, , Kathryn J. Moore, PhD, New York University Langone Health, 435 East 30th Street, Science Bldg 706, New York, NY, 10016, Tel: 212-263-9259,
| |
Collapse
|
15
|
Evaluation of Ibrutinib Cardiotoxicity By Comparative Use of Speckle-Tracking Technique and Biomarkers. Am J Ther 2022; 29:e50-e55. [PMID: 34994349 DOI: 10.1097/mjt.0000000000001463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ibrutinib, a relatively new antineoplastic agent, has multiple cardiovascular effects that are still insufficiently known and evaluated, including subclinical myocardial damage. STUDY QUESTION The present study aims to assess the role of the myocardial strain, alone and in combination with cardiac biomarkers, in the early detection of ibrutinib-induced cardiotoxicity. STUDY DESIGN We included 31 outpatients with normal left ventricular ejection fraction (LVEF) on ibrutinib, in a tertiary University Hospital between 2019 and 2020, and evaluated them at inclusion and after 3 months. MEASURES AND OUTCOMES Data on myocardial strain, cardiac biomarkers [high-sensitive troponin T (hs TnT) and N-terminal probrain natriuretic peptide (NT-proBNP)], and ambulatory electrocardiographic monitoring were collected. RESULTS Myocardial deformation decreased significantly (P < 0.001) at later evaluation and hs TnT and NT-proBNP increased significantly (P = 0.019 and P = 0.03, respectively). The increase in hs TnT correlated with the increase in the left ventricle global longitudinal strain (LVGLS); in other words, it correlated with the decrease in myocardial deformation. No association was found between LVGLS increase and the increase in NT-proBNP. LVGLS modification was not significantly influenced by age, anemia, or arrhythmia burden quantified by 24-hour Holter monitoring (P = 0.747, P = 0.072, respectively; P = 0.812). LVEF did not change significantly during follow-up. CONCLUSIONS In patients on ibrutinib, evaluation of myocardial strain is useful in identifying early cardiac drug toxicity, surpassing the sensitivity and specificity limits of LVEF. In these patients, concomitant assessment of hs TnT increases the predictive power for subclinical myocardial involvement.
Collapse
|
16
|
Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation. Int J Mol Sci 2021; 22:ijms221810126. [PMID: 34576287 PMCID: PMC8465322 DOI: 10.3390/ijms221810126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is one of the most undesirable side effects of cancer therapy and leads to limitations to cancer treatment. Chemoradiation therapy or immunotherapy promote acute and chronic cardiopulmonary damage by inducing reactive oxygen species, DNA damage, inflammation, fibrosis, deregulation of cellular immunity, cardiopulmonary failure, and non-malignant related deaths among cancer-free patients who received cancer therapy. CTRCPD is a complex entity with multiple factors involved in this pathogenesis. Although the mechanisms of cancer therapy-induced toxicities are multifactorial, damage to the cardiac and pulmonary tissue as well as subsequent fibrosis and organ failure seem to be the underlying events. The available biomarkers and treatment options are not sufficient and efficient to detect cancer therapy-induced early asymptomatic cell fate cardiopulmonary toxicity. Therefore, application of cutting-edge multi-omics technology, such us whole-exome sequencing, DNA methylation, whole-genome sequencing, metabolomics, protein mass spectrometry and single cell transcriptomics, and 10 X spatial genomics, are warranted to identify early and late toxicity, inflammation-induced carcinogenesis response biomarkers, and cancer relapse response biomarkers. In this review, we summarize the current state of knowledge on cancer therapy-induced cardiopulmonary complications and our current understanding of the pathological and molecular consequences of cancer therapy-induced cardiopulmonary fibrosis, inflammation, immune suppression, and tumor recurrence, and possible treatment options for cancer therapy-induced cardiopulmonary toxicity.
Collapse
|
17
|
de Boer RA, Aboumsallem JP, Bracun V, Leedy D, Cheng R, Patel S, Rayan D, Zaharova S, Rymer J, Kwan JM, Levenson J, Ronco C, Thavendiranathan P, Brown SA. A new classification of cardio-oncology syndromes. CARDIO-ONCOLOGY 2021; 7:24. [PMID: 34154667 PMCID: PMC8218489 DOI: 10.1186/s40959-021-00110-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests a multifaceted relationship exists between cancer and cardiovascular disease (CVD). Here, we introduce a 5-tier classification system to categorize cardio-oncology syndromes (COS) that represent the aspects of the relationship between cancer and CVD. COS Type I is characterized by mechanisms whereby the abrupt onset or progression of cancer can lead to cardiovascular dysfunction. COS Type II includes the mechanisms by which cancer therapies can result in acute or chronic CVD. COS Type III is characterized by the pro-oncogenic environment created by the release of cardiokines and high oxidative stress in patients with cardiovascular dysfunction. COS Type IV is comprised of CVD therapies and diagnostic procedures which have been associated with promoting or unmasking cancer. COS Type V is characterized by factors causing systemic and genetic predisposition to both CVD and cancer. The development of this framework may allow for an increased facilitation of cancer care while optimizing cardiovascular health through focused treatment targeting the COS type.
Collapse
Affiliation(s)
- Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Douglas Leedy
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Richard Cheng
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sahishnu Patel
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Rayan
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Svetlana Zaharova
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | | | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Levenson
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Claudio Ronco
- Department of Medicine, University of Padova, Padova, Italy.,International Renal Research Institute of Vicenza, Vicenza, Italy.,Department of Nephrology, San Bortolo Hospital, Vicenza, Italy
| | | | - Sherry-Ann Brown
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
18
|
Kugener VF, Freedland ES, Maynard KI, Aimer O, Webster PS, Salas M, Gossell-Williams M. Enhancing Pharmacovigilance from the US Experience: Current Practices and Future Opportunities. Drug Saf 2021; 44:843-852. [PMID: 33993430 PMCID: PMC8123099 DOI: 10.1007/s40264-021-01078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
This review is intended to present perspectives from the US experience in enhancing pharmacovigilance on current practices and future opportunities. Best practices concepts could be applied worldwide through the presentation of how three pillars of pharmacovigilance: (1) medical and scientific excellence, (2) operational and compliance excellence, and (3) knowledge sharing and experts development in the field could serve as a framework for the establishment of an efficient and successful global pharmacovigilance system.
Collapse
Affiliation(s)
- Veronique F. Kugener
- Global Patient Safety Evaluation, Research & Development, Takeda Pharmaceuticals International Co., 300 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Eric S. Freedland
- Global Patient Safety Evaluation, Research & Development, Takeda Pharmaceuticals International Co., 300 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Kenneth I. Maynard
- Global Patient Safety Evaluation, Research & Development, Takeda Pharmaceuticals International Co., 300 Massachusetts Avenue, Cambridge, MA 02139 USA
| | | | | | - Maribel Salas
- Daiichi Sankyo, Inc. and CCEB/CPeRT, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Maxine Gossell-Williams
- Section of Pharmacology and Pharmacy, Faculty of Medical Sciences Teaching and Research Complex, University of The West Indies, Kingston, Jamaica
| |
Collapse
|
19
|
de Boer RA, Hulot J, Tocchetti CG, Aboumsallem JP, Ameri P, Anker SD, Bauersachs J, Bertero E, Coats AJ, Čelutkienė J, Chioncel O, Dodion P, Eschenhagen T, Farmakis D, Bayes‐Genis A, Jäger D, Jankowska EA, Kitsis RN, Konety SH, Larkin J, Lehmann L, Lenihan DJ, Maack C, Moslehi JJ, Müller OJ, Nowak‐Sliwinska P, Piepoli MF, Ponikowski P, Pudil R, Rainer PP, Ruschitzka F, Sawyer D, Seferovic PM, Suter T, Thum T, van der Meer P, Van Laake LW, von Haehling S, Heymans S, Lyon AR, Backs J. Common mechanistic pathways in cancer and heart failure. A scientific roadmap on behalf of the Translational Research Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2020; 22:2272-2289. [PMID: 33094495 PMCID: PMC7894564 DOI: 10.1002/ejhf.2029] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022] Open
Abstract
The co-occurrence of cancer and heart failure (HF) represents a significant clinical drawback as each disease interferes with the treatment of the other. In addition to shared risk factors, a growing body of experimental and clinical evidence reveals numerous commonalities in the biology underlying both pathologies. Inflammation emerges as a common hallmark for both diseases as it contributes to the initiation and progression of both HF and cancer. Under stress, malignant and cardiac cells change their metabolic preferences to survive, which makes these metabolic derangements a great basis to develop intersection strategies and therapies to combat both diseases. Furthermore, genetic predisposition and clonal haematopoiesis are common drivers for both conditions and they hold great clinical relevance in the context of personalized medicine. Additionally, altered angiogenesis is a common hallmark for failing hearts and tumours and represents a promising substrate to target in both diseases. Cardiac cells and malignant cells interact with their surrounding environment called stroma. This interaction mediates the progression of the two pathologies and understanding the structure and function of each stromal component may pave the way for innovative therapeutic strategies and improved outcomes in patients. The interdisciplinary collaboration between cardiologists and oncologists is essential to establish unified guidelines. To this aim, pre-clinical models that mimic the human situation, where both pathologies coexist, are needed to understand all the aspects of the bidirectional relationship between cancer and HF. Finally, adequately powered clinical studies, including patients from all ages, and men and women, with proper adjudication of both cancer and cardiovascular endpoints, are essential to accurately study these two pathologies at the same time.
Collapse
Affiliation(s)
- Rudolf A. de Boer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jean‐Sébastien Hulot
- Université de Paris, PARCC, INSERMParisFrance
- CIC1418 and DMU CARTE, AP‐HP, Hôpital Européen Georges‐PompidouParisFrance
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational ResearchFederico II UniversityNaplesItaly
| | | | - Pietro Ameri
- Department of Internal Medicine and Center of Excellence for Biomedical ResearchUniversity of GenovaGenoaItaly
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Stefan D. Anker
- Department of Cardiology & Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Center for Cardiovascular Research (DZHK), Partner Site BerlinCharité‐Universitätsmedizin Berlin (Campus CVK)BerlinGermany
| | - Johann Bauersachs
- Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany
| | - Edoardo Bertero
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | | | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of MedicineVilnius UniversityVilniusLithuania
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases ‘Prof. C.C. Iliescu’University of Medicine Carol DavilaBucharestRomania
| | | | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Partner Site Hamburg/Kiel/Lübeck, DZHK (German Centre for Cardiovascular Research)HamburgGermany
| | - Dimitrios Farmakis
- University of Cyprus Medical SchoolNicosiaCyprus
- Cardio‐Oncology Clinic, Heart Failure Unit, Department of CardiologyAthens University Hospital ‘Attikon’, National and Kapodistrian University of Athens Medical SchoolAthensGreece
| | - Antoni Bayes‐Genis
- Heart Failure Unit and Cardiology DepartmentHospital Universitari Germans Trias i Pujol, CIBERCVBadalonaSpain
- Department of MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- CIBER CardiovascularInstituto de Salud Carlos IIIMadridSpain
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT)University Hospital HeidelbergHeidelbergGermany
| | - Ewa A. Jankowska
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Richard N. Kitsis
- Departments of Medicine (Cardiology) and Cell BiologyWilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, Albert Einstein College of MedicineNew YorkNYUSA
| | - Suma H. Konety
- Cardiovascular Division, Cardio‐Oncology Program, Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMNUSA
| | | | - Lorenz Lehmann
- Cardio‐Oncology Unit, Department of CardiologyUniversity of HeidelbergHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
- DKFZ (German Cancer Research Center)HeidelbergGermany
| | - Daniel J. Lenihan
- Cardio‐Oncology Center of Excellence, Cardiovascular DivisionWashington University in St. LouisSt. LouisMOUSA
| | - Christoph Maack
- Comprehensive Heart Failure CenterUniversity Clinic WürzburgWürzburgGermany
| | - Javid J. Moslehi
- Division of Cardiovascular Medicine and OncologyCardio‐Oncology Program, Vanderbilt University Medical Center and Vanderbilt‐Ingram Cancer CenterNashvilleTNUSA
| | - Oliver J. Müller
- Department of Internal Medicine IIIUniversity of KielKielGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHamburg/Kiel/LübeckGermany
| | - Patrycja Nowak‐Sliwinska
- School of Pharmaceutical SciencesUniversity of Geneva, Institute of Pharmaceutical Sciences of Western Switzerland, University of GenevaGenevaSwitzerland
- Translational Research Center in OncohaematologyGenevaSwitzerland
| | | | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Centre for Heart DiseasesUniversity HospitalWroclawPoland
| | - Radek Pudil
- 1st Department Medicine‐CardioangiologyUniversity Hospital and Medical FacultyHradec KraloveCzech Republic
| | - Peter P. Rainer
- Medical University of GrazUniversity Heart Center – Division of CardiologyGrazAustria
| | - Frank Ruschitzka
- Department of CardiologyUniversity Hospital Zurich, University Heart CenterZurichSwitzerland
| | - Douglas Sawyer
- Center for Molecular Medicine, Maine Medical Center Research InstituteMaine Medical CenterScarboroughMEUSA
| | - Petar M. Seferovic
- University of Belgrade Faculty of Medicine, Serbian Academy of Sciences and ArtsBelgradeSerbia
| | - Thomas Suter
- Swiss Cardiovascular CentreBern UniversityBernSwitzerland
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical SchoolHannoverGermany
| | - Peter van der Meer
- Department of CardiologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Linda W. Van Laake
- Division Heart and Lungs and Regenerative Medicine CentreUniversity Medical Centre Utrecht and Utrecht UniversityUtrechtThe Netherlands
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Heart CenterUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
- Department of Cardiovascular SciencesCentre for Molecular and Vascular Biology, KU LeuvenLeuvenBelgium
| | - Alexander R. Lyon
- Cardio‐Oncology Service, Royal Brompton Hospital, and National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Johannes Backs
- Institute of Experimental CardiologyHeidelberg University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), partner siteHeidelberg/MannheimGermany
| |
Collapse
|