1
|
Pirozzi A, Hoyek C, Okano N, Abidoye O, Rimassa L, Sonbol MB, Uson Junior PLS, Bekaii-Saab T, Borad MJ. Pharmacologic features, clinical applications, and drug safety evaluation of futibatinib in the treatment of biliary tract cancer (BTC). Expert Opin Drug Saf 2025:1-8. [PMID: 40307985 DOI: 10.1080/14740338.2025.2495178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Futibatinib is a small, potent, covalent, irreversible fibroblast growth factor receptor (FGFR) 1-4 inhibitor that has been added as a new standard of care for previously treated unresectable and/or advanced FGFR2 fusion/rearrangement-positive BTC. FGFR2 fusions/rearrangements play a key role in BTC survival, proliferation, invasion, and development of distant metastasis. The inhibition of this pathway is an important target in the treatment of BTC. AREAS COVERED The article covers the development of futibatinib for the treatment of refractory unresectable/advanced BTC, its mechanism of action, and key pharmacodynamic/pharmacokinetic data with a focus on the safety profile. Data are based on published clinical trials, pooled analysis, and retrospective studies indexed in PubMed (2010-2024). EXPERT OPINION Futibatinib is an FDA and EMA approved FGFR2 inhibitor for the treatment of patients with refractory BTC with FGFR2 fusions/rearrangements. Ongoing drug development strategies are centered on designing new FGFR2 fusion inhibitors able to overcome on-target and off-target resistances coupled with a high target selectivity to spare the most common treatment-related adverse events (hyperphosphatemia, stomatitis, alopecia, nail toxicity, skin reactions, eye toxicity).
Collapse
Affiliation(s)
- Angelo Pirozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Celine Hoyek
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Naohiro Okano
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Oluseyi Abidoye
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mohamad Bassam Sonbol
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | | | - Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| |
Collapse
|
2
|
Grivas P, Garralda E, Meric-Bernstam F, Mellinghoff IK, Goyal L, Harding JJ, Dees EC, Bahleda R, Azad NS, Karippot A, Kurzrock R, Tabernero J, Kononen J, Ng MC, Mehta R, Uboha NV, Bigot F, Boni V, Bowyer SE, Breder V, Cervantes A, Chan N, Cleary JM, Dhawan M, Eefsen RL, Ewing J, Graham DM, Guren TK, Kim JW, Koynov K, Oh DY, Redman R, Yen CJ, Spetzler D, Roubaudi-Fraschini MC, Nicolas-Metral V, Ait-Sarkouh R, Zanna C, Ennaji A, Pokorska-Bocci A, Flaherty KT. Evaluating Debio 1347 in Patients with FGFR Fusion-Positive Advanced Solid Tumors from the FUZE Multicenter, Open-Label, Phase II Basket Trial. Clin Cancer Res 2024; 30:4572-4583. [PMID: 38771739 PMCID: PMC11707795 DOI: 10.1158/1078-0432.ccr-24-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE This multicenter phase II basket trial investigated the efficacy, safety, and pharmacokinetics of Debio 1347, an investigational, oral, highly selective, ATP-competitive, small molecule inhibitor of FGFR1-3, in patients with solid tumors harboring a functional FGFR1-3 fusion. PATIENTS AND METHODS Eligible adults had a previously treated locally advanced (unresectable) or metastatic biliary tract (cohort 1), urothelial (cohort 2), or another histologic cancer type (cohort 3). Debio 1347 was administered at 80 mg once daily, continuously, in 28-day cycles. The primary endpoint was the objective response rate. Secondary endpoints included duration of response, progression-free survival, overall survival, pharmacokinetics, and incidence of adverse events. RESULTS Between March 22, 2019, and January 8, 2020, 63 patients were enrolled and treated, 30 in cohort 1, 4 in cohort 2, and 29 in cohort 3. An unplanned preliminary statistical review showed that the efficacy of Debio 1347 was lower than predicted, and the trial was terminated. In total, 3 of 58 evaluable patients had partial responses, representing an objective response rate of 5%, with a further 26 (45%) having stable disease (≥6 weeks duration). Grade ≥3 treatment-related adverse events occurred in 22 (35%) of 63 patients, with the most common being hyperphosphatemia (13%) and stomatitis (5%). Two patients (3%) discontinued treatment due to adverse events. CONCLUSIONS Debio 1347 had manageable toxicity; however, the efficacy in patients with tumors harboring FGFR fusions did not support further clinical evaluation in this setting. Our transcriptomic-based analysis characterized in detail the incidence and nature of FGFR fusions across solid tumors. See related commentary by Hage Chehade et al., p. 4549.
Collapse
MESH Headings
- Humans
- Female
- Male
- Middle Aged
- Aged
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Adult
- Oncogene Proteins, Fusion/genetics
- Aged, 80 and over
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Treatment Outcome
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/administration & dosage
Collapse
Affiliation(s)
- Petros Grivas
- Department of Medicine, Division of Hematology/Oncology, University of Washington, Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elena Garralda
- Medical Oncology Department, Vall d’Hebron Hospital Campus and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ingo K. Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - James J. Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - E. Claire Dees
- Lineberger Comprehensive Cancer Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rastislav Bahleda
- Drug Development Department, Institut Gustave Roussy, Villejuif, France
| | - Nilo S. Azad
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| | - Josep Tabernero
- Medical Oncology Department, Vall d’Hebron Hospital Campus and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Matthew C.H. Ng
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Rutika Mehta
- GI Medical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nataliya V. Uboha
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Frédéric Bigot
- Medical Oncology Department, Institut de Cancérologie de l’Ouest, Angers, France
| | - Valentina Boni
- START Madrid, Centro Integral Oncológico Clara Campal (CIOCC), Madrid, Spain
| | | | - Valeriy Breder
- NN Blokhin National Medical Research Center of Oncology, Ministry of Health, Moscow, Russian Federation
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nancy Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mallika Dhawan
- Division of Hematology and Oncology, University of California, San Francisco, CA, USA
| | - Rikke L. Eefsen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - James Ewing
- Ironwood Cancer and Research Centers, Scottsdale, AZ, USA
| | - Donna M. Graham
- The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Tormod K. Guren
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Jin Won Kim
- Division of Hematology/Medical Oncology, Department, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | | | - Do-Youn Oh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, South Korea
| | - Rebecca Redman
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Chia-Jui Yen
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | - Keith T. Flaherty
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Salem H, Emad N, El-Araby M, Samir B, Abdelaziz A. Analysis of Two Oncological Drugs Futibatinib and Capivasertib via Ion-Pairing With Eosin Y as a Spectrofluorimetric and Spectrophotometric Probe. LUMINESCENCE 2024; 39:e4919. [PMID: 39400514 DOI: 10.1002/bio.4919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Using spectroscopy, two quick and sensitive analytical methods based on eosin Y ion pairing were developed and assessed in order to determine capivasertib and futibatinib with high selectivity and sensitivity. The quenching impact of futibatinib or capivasertib on the eosin Y's fluorescence at a pH 3.8 and 3.3 for futibatinib and capivasertib, respectively, in 0.1-M acetate buffer solution was observed using two spectrofluorometric techniques. These techniques are regarded as the original spectrofluorometric techniques for the assay of futibatinib and capivasertib. For futibatinib and capivasertib, the quenching effect on fluorescence was ranged from 100 to 1000 and 150 to 1500 ng mL-1, respectively. The absorbance of the generated ion-pair was measured using two different spectrophotometric methods at 550 nm in aqueous buffered solutions with pH values of 3.8 and 3.3 for futibatinib and capivasertib, respectively. In the concentration range of 1.0-10.0 and 2.0-10.0 μg mL-1, Beer's law was followed. The four approaches were applied to the analysis of dosage forms with a high percent recovery successfully, and they were assessed in compliance with ICH guidelines.
Collapse
Affiliation(s)
- Hesham Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Nadeen Emad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Manar El-Araby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Basmala Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| | - Amany Abdelaziz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia, Egypt
| |
Collapse
|
4
|
Balasooriya ER, Wu Q, Ellis H, Zhen Y, Norden BL, Corcoran RB, Mohan A, Martin E, Franovic A, Tyhonas J, Lardy M, Grandinetti KB, Pelham R, Soroceanu L, Silveira VS, Bardeesy N. The Irreversible FGFR Inhibitor KIN-3248 Overcomes FGFR2 Kinase Domain Mutations. Clin Cancer Res 2024; 30:2181-2192. [PMID: 38437671 PMCID: PMC11229173 DOI: 10.1158/1078-0432.ccr-23-3588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE FGFR2 and FGFR3 show oncogenic activation in many cancer types, often through chromosomal fusion or extracellular domain mutation. FGFR2 and FGFR3 alterations are most prevalent in intrahepatic cholangiocarcinoma (ICC) and bladder cancers, respectively, and multiple selective reversible and covalent pan-FGFR tyrosine kinase inhibitors (TKI) have been approved in these contexts. However, resistance, often due to acquired secondary mutations in the FGFR2/3 kinase domain, limits efficacy. Resistance is typically polyclonal, involving a spectrum of different mutations that most frequently affect the molecular brake and gatekeeper residues (N550 and V565 in FGFR2). EXPERIMENTAL DESIGN Here, we characterize the activity of the next-generation covalent FGFR inhibitor, KIN-3248, in preclinical models of FGFR2 fusion+ ICC harboring a series of secondary kinase domain mutations, in vitro and in vivo. We also test select FGFR3 alleles in bladder cancer models. RESULTS KIN-3248 exhibits potent selectivity for FGFR1-3 and retains activity against various FGFR2 kinase domain mutations, in addition to being effective against FGFR3 V555M and N540K mutations. Notably, KIN-3248 activity extends to the FGFR2 V565F gatekeeper mutation, which causes profound resistance to currently approved FGFR inhibitors. Combination treatment with EGFR or MEK inhibitors potentiates KIN-3248 efficacy in vivo, including in models harboring FGFR2 kinase domain mutations. CONCLUSIONS Thus, KIN-3248 is a novel FGFR1-4 inhibitor whose distinct activity profile against FGFR kinase domain mutations highlights its potential for the treatment of ICC and other FGFR-driven cancers.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cholangiocarcinoma/drug therapy
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/pathology
- Drug Resistance, Neoplasm/genetics
- Mutation
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors
- Urinary Bladder Neoplasms/drug therapy
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/pathology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Qibiao Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Haley Ellis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Yuanli Zhen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Bryanna L. Norden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ryan B. Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | - Vanessa S. Silveira
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- The Cancer Program, Broad Institute, Cambridge, MA, USA
| |
Collapse
|
5
|
Montero V, Montana M, Carré M, Vanelle P. Quinoxaline derivatives: Recent discoveries and development strategies towards anticancer agents. Eur J Med Chem 2024; 271:116360. [PMID: 38614060 DOI: 10.1016/j.ejmech.2024.116360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Cancer is a leading cause of death and a major health problem worldwide. While many effective anticancer agents are available, most drugs currently on the market are not specific, raising issues like the common side effects of chemotherapy. However, recent research hold promises for the development of more efficient and safer anticancer drugs. Quinoxaline and its derivatives are becoming recognized as a novel class of chemotherapeutic agents with activity against different tumors. The present review compiles and discusses studies concerning the therapeutic potential of the anticancer activity of quinoxaline derivatives, covering articles published between January 2018 and January 2023.
Collapse
Affiliation(s)
- Vincent Montero
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Marseille CEDEX 05, 13385, France.
| | - Marc Montana
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Oncopharma, Hôpital Nord, Marseille, France
| | - Manon Carré
- Centre de Recherche en Cancérologie de Marseille (CRCM), Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université UM105, Institut Paoli Calmettes - Faculté de Pharmacie, Marseille, France
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, CEDEX 05, 13385, Marseille, France; AP-HM, Service Central de la Qualité et de l'Information Pharmaceutiques, Hôpital Conception, Marseille, 13005, France
| |
Collapse
|
6
|
Spahn S, Kleinhenz F, Shevchenko E, Stahl A, Rasen Y, Geisler C, Ruhm K, Klaumuenzer M, Kronenberger T, Laufer SA, Sundberg-Malek H, Bui KC, Horger M, Biskup S, Schulze-Osthoff K, Templin M, Malek NP, Poso A, Bitzer M. The molecular interaction pattern of lenvatinib enables inhibition of wild-type or kinase-mutated FGFR2-driven cholangiocarcinoma. Nat Commun 2024; 15:1287. [PMID: 38346946 PMCID: PMC10861557 DOI: 10.1038/s41467-024-45247-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
Fibroblast growth factor receptor (FGFR)-2 can be inhibited by FGFR-selective or non-selective tyrosine kinase inhibitors (TKIs). Selective TKIs are approved for cholangiocarcinoma (CCA) with FGFR2 fusions; however, their application is limited by a characteristic pattern of adverse events or evocation of kinase domain mutations. A comprehensive characterization of a patient cohort treated with the non-selective TKI lenvatinib reveals promising efficacy in FGFR2-driven CCA. In a bed-to-bench approach, we investigate FGFR2 fusion proteins bearing critical tumor-relevant point mutations. These mutations confer growth advantage of tumor cells and increased resistance to selective TKIs but remain intriguingly sensitive to lenvatinib. In line with clinical observations, in-silico analyses reveal a more favorable interaction pattern of lenvatinib with FGFR2, including an increased flexibility and ligand efficacy, compared to FGFR-selective TKIs. Finally, the treatment of a patient with progressive disease and a newly developed kinase mutation during therapy with a selective inhibitor results in a striking response to lenvatinib. Our in vitro, in silico, and clinical data suggest that lenvatinib is a promising treatment option for FGFR2-driven CCA, especially when insurmountable adverse reactions of selective TKIs or acquired kinase mutations occur.
Collapse
Affiliation(s)
- Stephan Spahn
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
| | - Fabian Kleinhenz
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Aaron Stahl
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Yvonne Rasen
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Christine Geisler
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Kristina Ruhm
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | | | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Holly Sundberg-Malek
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Khac Cuong Bui
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik, 72076, Tuebingen, Germany
| | - Klaus Schulze-Osthoff
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Nisar P Malek
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-University, 72076, Tuebingen, Germany
- Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tuebingen, Germany
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tuebingen, 72076, Tuebingen, Germany.
- Center for Personalized Medicine, Eberhard-Karls University, 72076, Tuebingen, Germany.
- Cluster of Excellence, Image Guided and Functionally Instructed Tumor Therapies, Eberhard-Karls University, 72076, Tuebingen, Germany.
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, 72076, Tuebingen, Germany.
| |
Collapse
|
7
|
DiPeri TP, Zhao M, Evans KW, Varadarajan K, Moss T, Scott S, Kahle MP, Byrnes CC, Chen H, Lee SS, Halim AB, Hirai H, Wacheck V, Kwong LN, Rodon J, Javle M, Meric-Bernstam F. Convergent MAPK pathway alterations mediate acquired resistance to FGFR inhibitors in FGFR2 fusion-positive cholangiocarcinoma. J Hepatol 2024; 80:322-334. [PMID: 37972659 PMCID: PMC11900356 DOI: 10.1016/j.jhep.2023.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/29/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND & AIMS There is a knowledge gap in understanding mechanisms of resistance to fibroblast growth factor receptor (FGFR) inhibitors (FGFRi) and a need for novel therapeutic strategies to overcome it. We investigated mechanisms of acquired resistance to FGFRi in patients with FGFR2-fusion-positive cholangiocarcinoma (CCA). METHODS A retrospective analysis of patients who received FGFRi therapy and underwent tumor and/or cell-free DNA analysis, before and after treatment, was performed. Longitudinal circulating tumor DNA samples from a cohort of patients in the phase I trial of futibatinib (NCT02052778) were assessed. FGFR2-BICC1 fusion cell lines were developed and secondary acquired resistance mutations in the mitogen-activated protein kinase (MAPK) pathway were introduced to assess their effect on sensitivity to FGFRi in vitro. RESULTS On retrospective analysis of 17 patients with repeat sequencing following FGFRi treatment, new FGFR2 mutations were detected in 11 (64.7%) and new alterations in MAPK pathway genes in nine (52.9%) patients, with seven (41.2%) patients developing new alterations in both the FGFR2 and MAPK pathways. In serially collected plasma samples, a patient treated with an irreversible FGFRi tested positive for previously undetected BRAF V600E, NRAS Q61K, NRAS G12C, NRAS G13D and KRAS G12K mutations upon progression. Introduction of a FGFR2-BICC1 fusion into biliary tract cells in vitro sensitized the cells to FGFRi, while concomitant KRAS G12D or BRAF V600E conferred resistance. MEK inhibition was synergistic with FGFRi in vitro. In an in vivo animal model, the combination had antitumor activity in FGFR2 fusions but was not able to overcome KRAS-mediated FGFRi resistance. CONCLUSIONS These findings suggest convergent genomic evolution in the MAPK pathway may be a potential mechanism of acquired resistance to FGFRi. CLINICAL TRIAL NUMBER NCT02052778. IMPACT AND IMPLICATIONS We evaluated tumors and plasma from patients who previously received inhibitors of fibroblast growth factor receptor (FGFR), an important receptor that plays a role in cancer cell growth, especially in tumors with abnormalities in this gene, such as FGFR fusions, where the FGFR gene is fused to another gene, leading to activation of cancer cell growth. We found that patients treated with FGFR inhibitors may develop mutations in other genes such as KRAS, and this can confer resistance to FGFR inhibitors. These findings have several implications for patients with FGFR2 fusion-positive tumors and provide mechanistic insight into emerging MAPK pathway alterations which may serve as a therapeutic vulnerability in the setting of acquired resistance to FGFRi.
Collapse
Affiliation(s)
- Timothy P DiPeri
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Ming Zhao
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Kurt W Evans
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Kaushik Varadarajan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Tyler Moss
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Stephen Scott
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Michael P Kahle
- Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Charnel C Byrnes
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Huiqin Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | | | | | | | - Lawrence N Kwong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston TX, United States; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States
| | | | - Funda Meric-Bernstam
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston TX, United States; Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston TX, United States.
| |
Collapse
|
8
|
Liu YN, Chen J, Xu X, Hu Y, Hu JY, Xu RA, Lin G. Lack of pharmacokinetic interaction between derazantinib and naringin in rats. PHARMACEUTICAL BIOLOGY 2023; 61:514-519. [PMID: 36891628 PMCID: PMC10013357 DOI: 10.1080/13880209.2023.2185641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Derazantinib-an orally bioavailable, ATP competitive, multikinase inhibitor-has strong activity against fibroblast growth factor receptors (FGFR)2, FGFR1, and FGFR3 kinases. It has preliminary antitumor activity in patients with unresectable or metastatic FGFR2 fusion-positive intrahepatic cholangiocarcinoma (iCCA). OBJECTIVE This experiment validates a novel sensitive and rapid method for the determination of derazantinib concentration in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and applies it to the study of drug-drug interaction between derazantinib and naringin in vivo. MATERIALS AND METHODS A Xevo TQ-S triple quadrupole tandem mass spectrometer was used for mass spectrometry monitoring in selective reaction monitoring (SRM) mode with transitions of m/z 468 96 → 382.00 for derazantinib and m/z 488.01 → 400.98 for pemigatinib, respectively. The pharmacokinetics of derazantinib (30 mg/kg) was investigated in Sprague-Dawley (SD) rats divided into two groups (with the oral pretreatment of 50 mg/kg naringin or not). RESULTS The newly optimized UPLC-MS/MS method was suitable for the determination of derazantinib in rat plasma. It was also successfully employed to evaluate the effect of naringin on derazantinib metabolism in rats. After pretreatment with naringin, there was no significant difference in the pharmacokinetic parameters (AUC0→t, AUC0→∞, t1/2, CLz/F, and Cmax) of derazantinib when compared with derazantinib alone. CONCLUSION Co-administration of naringin with derazantinib was not associated with significant changes in pharmacokinetic parameters. Thus, this study suggests that the combination of derazantinib with naringin can safely be administered concomitantly without dose adjustment.
Collapse
Affiliation(s)
- Ya-nan Liu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Xinhao Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| | - Yingying Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jin-yu Hu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ren-ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Guanyang Lin
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
9
|
Javle M, King G, Spencer K, Borad MJ. Futibatinib, an Irreversible FGFR1-4 Inhibitor for the Treatment of FGFR-Aberrant Tumors. Oncologist 2023; 28:928-943. [PMID: 37390492 PMCID: PMC10628593 DOI: 10.1093/oncolo/oyad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 07/02/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) are emerging as an important therapeutic target for patients with advanced, refractory cancers. Most selective FGFR inhibitors under investigation show reversible binding, and their activity is limited by acquired drug resistance. This review summarizes the preclinical and clinical development of futibatinib, an irreversible FGFR1-4 inhibitor. Futibatinib stands out among FGFR inhibitors because of its covalent binding mechanism and low susceptibility to acquired resistance. Preclinical data indicated robust activity of futibatinib against acquired resistance mutations in the FGFR kinase domain. In early-phase studies, futibatinib showed activity in cholangiocarcinoma, and gastric, urothelial, breast, central nervous system, and head and neck cancers harboring various FGFR aberrations. Exploratory analyses indicated clinical benefit with futibatinib after prior FGFR inhibitor use. In a pivotal phase II trial, futibatinib demonstrated durable objective responses (42% objective response rate) and tolerability in previously treated patients with advanced intrahepatic cholangiocarcinoma harboring FGFR2 fusions or rearrangements. A manageable safety profile was observed across studies, and patient quality of life was maintained with futibatinib treatment in patients with cholangiocarcinoma. Hyperphosphatemia, the most common adverse event with futibatinib, was well managed and did not lead to treatment discontinuation. These data show clinically meaningful benefit with futibatinib in FGFR2-rearrangement-positive cholangiocarcinoma and provide support for further investigation of futibatinib across other indications. Future directions for this agent include elucidating mechanisms of resistance and exploration of combination therapy approaches.
Collapse
Affiliation(s)
- Milind Javle
- Department of Gastrointestinal Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gentry King
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Kristen Spencer
- Perlmutter Cancer Center of NYU Langone Health, New York, NY, USA
- NYU Grossman School of Medicine, New York University, New York, NY,USA
| | - Mitesh J Borad
- Department of Oncology, Mayo Clinic Cancer Center, Phoenix, AZ,USA
| |
Collapse
|
10
|
Pace A, Scirocchi F, Napoletano C, Zizzari IG, Po A, Megiorni F, Asquino A, Pontecorvi P, Rahimi H, Marchese C, Ferretti E, Nuti M, Rughetti A. Targeting FGFRs by pemigatinib induces G1 phase cell cycle arrest, cellular stress and upregulation of tumor suppressor microRNAs. J Transl Med 2023; 21:626. [PMID: 37715207 PMCID: PMC10504800 DOI: 10.1186/s12967-023-04450-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/18/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR) gene family alterations are found in several cancers, indicating their importance as potential therapeutic targets. The FGFR-tyrosine kinase inhibitor (TKI) pemigatinib has been introduced in the treatment of advanced cholangiocarcinoma and more recently for relapsed or refractory myeloid/lymphoid neoplasms with FGFR2 and FGFR1 rearrangements, respectively. Several clinical trials are currently investigating the possible combination of pemigatinib with immunotherapy. In this study, we analyzed the biological and molecular effects of pemigatinib on different cancer cell models (lung, bladder, and gastric), which are currently objective of clinical trial investigations. METHODS NCI-H1581 lung, KATO III gastric and RT-112 bladder cancer cell lines were evaluated for FGFR expression by qRT-PCR and Western blot. Cell lines were treated with Pem and then characterized for cell proliferation, apoptosis, production of intracellular reactive oxygen species (ROS), and induction of senescence. The expression of microRNAs with tumor suppressor functions was analyzed by qRT-PCR, while modulation of the proteins coded by their target genes was evaluated by Western blot and mRNA. Descriptive statistics was used to analyze the various data and student's t test to compare the analysis of two groups. RESULTS Pemigatinib exposure triggered distinct signaling pathways and reduced the proliferative ability of all cancer cells, inducing G1 phase cell cycle arrest and strong intracellular stress resulting in ROS production, senescence and apoptosis. Pemigatinib treatment also caused the upregulation of microRNAs (miR-133b, miR-139, miR-186, miR-195) with tumor suppressor functions, along with the downregulation of validated protein targets with oncogenic roles (c-Myc, c-MET, CDK6, EGFR). CONCLUSIONS These results contribute to clarifying the biological effects and molecular mechanisms mediated by the anti-FGFR TKI pemigatinib in distinct tumor settings and support its exploitation for combined therapies.
Collapse
Affiliation(s)
- Angelica Pace
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Fabio Scirocchi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| | | | - Agnese Po
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Angela Asquino
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Hassan Rahimi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
11
|
Kayki-Mutlu G, Aksoyalp ZS, Wojnowski L, Michel MC. A year in pharmacology: new drugs approved by the US Food and Drug Administration in 2022. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1619-1632. [PMID: 36951997 PMCID: PMC10034907 DOI: 10.1007/s00210-023-02465-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
While new drug approvals by the U.S. Food and Drug Administration (FDA) had remained stable or even increased in the first 2 years of the COVID-19 pandemic, the 37 newly approved drugs in 2022 are considerably less than the 53 and 50 new drugs approved in 2020 and 2021, respectively, and less than the rolling 10-year average of 43. As in previous years of this annual review, we assign these new drugs to one of three levels of innovation: first drug against a condition ("first-in-indication"), first drug using a novel molecular mechanism ("first-in-class"), and "next-in-class," i.e., a drug using an already exploited molecular mechanism. We identify two "first-in-indication" (ganaxolon and teplizumab), 20 (54%) "first-in-class," and 17 (46%) "next-in-class" drugs. By treatment area, rare diseases and cancer drugs were once again the most prevalent (partly overlapping) therapeutic areas. Other continuing trends were the use of accelerated regulatory approval pathways and the reliance on biopharmaceuticals (biologics).
Collapse
Affiliation(s)
- Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zinnet Sevval Aksoyalp
- Department of Pharmacology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| | - Martin C. Michel
- Department of Pharmacology, University Medical Center, Universitätsmedizin Mainz, Johannes Gutenberg University, Langenbeckstr. 1, 55118 Mainz, Germany
| |
Collapse
|
12
|
Sheth H, Limaye S, Kumar P, Shreenivas A. Sustained response on sequential anti-FGFR therapy in metastatic gall bladder cancer: a case report and literature review. J Cancer Res Clin Oncol 2023; 149:4915-4923. [PMID: 36307559 DOI: 10.1007/s00432-022-04428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 10/31/2022]
Abstract
PURPOSE Advanced gall bladder cancer (GBC) is an aggressive disease, and there is no consensus on treatment options beyond first-line chemotherapy. We report a case of an elderly male with FGFR2-altered advanced adenocarcinoma of the gallbladder who failed two prior lines of chemotherapy but had sustained response and stable disease on sequential FGFR-directed targeted therapy. DESIGN We describe a case of FGFR2-altered metastatic adenocarcinoma of the gallbladder who failed two prior lines of chemotherapy. The treatment was based on comprehensive genomic profiling when the patient was found to have FGFR2 single amino acid mutation (S252W) in one of his tissue samples. A novel therapeutic regimen with sequential anti-FGFR tyrosine kinase inhibitors was later initiated. RESULT The patient tolerated the sequential targeted therapy very well and had a sustained response and stable disease. He had an overall survival of nearly five years. Unfortunately, GBC is an aggressive disease, and there is no consensus on treatment options beyond first-line chemotherapy. CONCLUSION Through this patient, we demonstrate that advanced-metastatic GBC with FGFR alterations can be maintained on anti-FGFR therapy for prolonged periods of time, with improved survival. Therefore, we endorse the need for comprehensive genomic profiling in advanced-metastatic GBC and the need to study the role of FGFR inhibitors as a viable treatment option in these patients.
Collapse
Affiliation(s)
- Hardik Sheth
- Department of General Medicine, D Y Patil University School of Medicine, Mumbai, Maharashtra, India
| | - Sewanti Limaye
- Department of Medical Oncology, Sir HN Reliance Foundation Hospital and Research Center, Mumbai, Maharashtra, India
| | | | - Aditya Shreenivas
- Department of Medical Oncology, Cancer Center Froedtert Hospital, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Uson PLS, Bearss J, Babiker HM, Borad M. A drug safety evaluation of pemigatinib for advanced cholangiocarcinoma. Expert Opin Drug Saf 2023; 22:637-641. [PMID: 37363820 DOI: 10.1080/14740338.2023.2227561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Pemigatinib is a selective small-molecule inhibitor of the fibroblast growth factor receptor (FGFR) 1-3. FGFR is associated with increased cell division, proliferation, and survival. Inhibition of this receptor is an effective treatment against tumors driven by activated fusions in FGFR2. AREAS COVERED The drug was first evaluated in patients with advanced solid tumors and demonstrated a manageable safety profile, with the most common adverse events being oscillations in blood phosphate levels, fatigue, gastrointestinal symptoms, and skin and ocular toxicities. Pemigatinib was further evaluated in a phase II cohort study of patients with previously treated locally advanced or metastatic cholangiocarcinoma harboring FGFR2 genomic alterations. After a median follow-up of 17.8 months, the objective response rate in patients with tumors harboring FGFR2 fusions or rearrangements was 35.5% (95% CI, 26.5-45.4). Based on these results, the FDA granted accelerated approval on 17 April 2020, to pemigatinib, for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with an FGFR2 fusion or another rearrangement. Articles selected for this review were based on reported studies indexed in PubMed (2010-2023). EXPERT OPINION Future perspectives in the treatment of FGFR2 fused cholangiocarcinoma include the evaluation of pemigatinib in previously untreated patients and possible active combinations or sequencing strategies with other drugs.
Collapse
Affiliation(s)
- Pedro Luiz Serrano Uson
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
- Center for Personalized Medicine, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
| | | | - Hani M Babiker
- Department of Oncology, Mayo Clinic Jacksonville, Florida, USA
| | - Mitesh Borad
- Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
14
|
Gamallat Y, Afsharpad M, El Hallani S, Maher CA, Alimohamed N, Hyndman E, Bismar TA. Large, Nested Variant of Urothelial Carcinoma Is Enriched with Activating Mutations in Fibroblast Growth Factor Receptor-3 among Other Targetable Mutations. Cancers (Basel) 2023; 15:3167. [PMID: 37370778 DOI: 10.3390/cancers15123167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The large, nested variant of urothelial carcinoma (LNVUC) is characterized by bland histomorphology mimicking that of benign von Brunn nests. In the current study, we aimed to investigate the Fibroblast Growth Factor Receptor-3 (FGFR-3) activation and missense mutation in 38 cases, including 6 cases diagnosed with LNVUC and 32 with metastatic invasive urothelial carcinoma (UC). Initially, six formalin-fixed paraffin-embedded (FFPE) tissue samples of the LNVUC were subjected to whole-exome sequencing (WES), and then we performed targeted sequencing on 32 cases of metastatic invasive UC of various morphological subtypes, which were interrogated for the FGFR3. Our results revealed 3/6 (50%) LNVUC cases evaluated by WES in our study showed an activating mutation in FGFR-3, 33% showed an activating mutation in PIK3CA, and 17% showed activating mutation in GNAS or MRE11. Additionally, 33% of cases showed a truncating mutation in CDKN1B. All LNVUC in our study that harbored the FGFR-3 mutation showed additional activating or truncating mutations in other genes. Overall, 6/32 (18.75%) cases of random metastatic invasive UC showed missense mutations of the FGFR-3 gene. The LNVUC variant showed the higher incidence of FGFR-3 mutations compared to other types of mutations. Additionally, all LNVUC cases show additional activating or truncating mutations in other genes, thus being amenable to novel targeted therapy.
Collapse
Affiliation(s)
- Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mitra Afsharpad
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Soufiane El Hallani
- Alberta Precision Laboratory, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nimira Alimohamed
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Eric Hyndman
- Department of Surgery and Urology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2T9, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB T2N 4N2, Canada
- Alberta Precision Laboratory, Rockyview General Hospital, Departments of Pathology and Laboratory Medicine, Calgary, AB T2V 1P9, Canada
| |
Collapse
|
15
|
Liu J, Liu M, Gong Y, Su S, Li M, Shu J. Prediction of angiogenesis in extrahepatic cholangiocarcinoma using MRI-based machine learning. Front Oncol 2023; 13:1048311. [PMID: 37274267 PMCID: PMC10233135 DOI: 10.3389/fonc.2023.1048311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose Reliable noninvasive method to preoperative prediction of extrahepatic cholangiocarcinoma (eCCA) angiogenesis are needed. This study aims to develop and validate machine learning models based on magnetic resonance imaging (MRI) for predicting vascular endothelial growth factor (VEGF) expression and the microvessel density (MVD) of eCCA. Materials and methods In this retrospective study from August 2011 to May 2020, eCCA patients with pathological confirmation were selected. Features were extracted from T1-weighted, T2-weighted, and diffusion-weighted images using the MaZda software. After reliability testing and feature screening, retained features were used to establish classification models for predicting VEGF expression and regression models for predicting MVD. The performance of both models was evaluated respectively using area under the curve (AUC) and Adjusted R-Squared (Adjusted R2). Results The machine learning models were developed in 100 patients. A total of 900 features were extracted and 77 features with intraclass correlation coefficient (ICC) < 0.75 were eliminated. Among all the combinations of data preprocessing methods and classification algorithms, Z-score standardization + logistic regression exhibited excellent ability both in the training cohort (average AUC = 0.912) and the testing cohort (average AUC = 0.884). For regression model, Z-score standardization + stochastic gradient descent-based linear regression performed well in the training cohort (average Adjusted R2 = 0.975), and was also better than the mean model in the test cohort (average Adjusted R2 = 0.781). Conclusion Two machine learning models based on MRI can accurately predict VEGF expression and the MVD of eCCA respectively.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mali Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yaolin Gong
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Shanghai, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Lodl E, Ramnaraign B, Sahin I, Wheeler S. Updates in the use of targeted therapies for the treatment of cholangiocarcinoma. J Oncol Pharm Pract 2023:10781552231171079. [PMID: 37097888 DOI: 10.1177/10781552231171079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Many patients with cholangiocarcinoma (CCA) are not surgical candidates, and the survival benefit of chemotherapy is less than 12 months. Several mutations and mutational clusters have recently been identified in CCA, some of which are pharmacologically targetable. The emergence of targeted therapies has significantly altered the treatment landscape of CCA and improved the prognosis for advanced or metastatic CCA. The purpose of this review is to describe past and current treatment strategies of CCA with a focus on FDA-approved targeted therapies. DATA SOURCES A systematic evaluation of all FDA-approved targeted treatments for CCA through October 2022 was conducted. Information related to pharmacology, clinical efficacy, and safety was gathered from the package insert, and clinical trial data. DATA SUMMARY As of the writing of this review, four targeted agents are FDA approved for the treatment of locally advanced or metastatic CCA. These agents include the IDH1 inhibitor ivosidenib and the FGFR2 inhibitors pemigatinib, infigratinib, and futibatinib. Collectively, these agents have provided additional treatment options for select patients with previously treated locally advanced or unresectable CCA. These agents have also contributed to the development of other targeted therapies for the treatment of CCA and have opened the door for the exploration of novel treatment combinations such as chemotherapy and immunotherapy, which have recently become a front-line treatment option. CONCLUSIONS Four targeted small molecule agents have emerged as effective therapies in the second-line setting for CCA, which has immensely changed the treatment landscape and directly led to further investigation of targeted agents and immunotherapy as treatment for CCA.
Collapse
Affiliation(s)
- Emma Lodl
- Division of Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Ramnaraign
- Department of Hematology/Oncology, UF Health Medical Oncology, Gainesville, FL, USA
| | - Ilyas Sahin
- Department of Hematology/Oncology, UF Health Medical Oncology, Gainesville, FL, USA
| | - Sarah Wheeler
- Department of Pharmacy, UF Health Shands Hospital, Gainesville, FL, USA
| |
Collapse
|
17
|
Queiroz MM, Lima NF, Biachi de Castria T. Immunotherapy and Targeted Therapy for Advanced Biliary Tract Cancer: Adding New Flavors to the Pizza. Cancers (Basel) 2023; 15:1970. [PMID: 37046631 PMCID: PMC10093144 DOI: 10.3390/cancers15071970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Biliary tract cancers (BTCs) are a rare pathology and can be divided into four major subgroups: intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, hilar cholangiocarcinoma, and gallbladder cancer. In the era of precision oncology, the development of next-generation sequencing (NGS) allowed a better understanding of molecular differences between these subgroups. Thus, the development of drugs that can target these alterations and inhibit the abnormal pathway activation has changed the prognosis of BTC patients. Additionally, the development of immune checkpoint inhibitors and a better understanding of tumor immunogenicity led to the development of clinical trials with immunotherapy for this scenario. The development of biomarkers that can predict how the immune system acts against the tumor cells, and which patients benefit from this activation, are urgently needed. Here, we review the most recent data regarding targeted treatment and immunotherapy in the scenario of BTC treatment, while also discussing the future perspectives for this challenging disease.
Collapse
Affiliation(s)
- Marcello Moro Queiroz
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Nildevande Firmino Lima
- Oncology Center, Hospital Sírio-Libanês, 115 Dona Adma Jafet Street, São Paulo 01308-050, SP, Brazil
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| |
Collapse
|
18
|
Roskoski R. Futibatinib (Lytgobi) for cholangiocarcinoma. Trends Pharmacol Sci 2023; 44:190-191. [PMID: 36702680 DOI: 10.1016/j.tips.2022.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Ste 106, Horse Shoe, NC, 28742, USA.
| |
Collapse
|
19
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
20
|
Tomczak A, Springfeld C, Dill MT, Chang DH, Kazdal D, Wagner U, Mehrabi A, Brockschmidt A, Luedde T, Naumann P, Stenzinger A, Schirmacher P, Longerich T. Precision oncology for intrahepatic cholangiocarcinoma in clinical practice. Br J Cancer 2022; 127:1701-1708. [PMID: 35986087 PMCID: PMC9390961 DOI: 10.1038/s41416-022-01932-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Advanced cholangiocarcinoma has a poor prognosis. Molecular targeted approaches have been proposed for patients after progression under first-line chemotherapy treatment. Here, molecular profiling of intrahepatic cholangiocarcinoma in combination with a comprehensive umbrella concept was applied in a real-world setting. METHODS In total, 101 patients received molecular profiling and matched treatment based on interdisciplinary tumour board decisions in a tertiary care setting. Parallel DNA and RNA sequencing of formalin-fixed paraffin-embedded tumour tissue was performed using large panels. RESULTS Genetic alterations were detected in 77% of patients and included gene fusions in 21 patients. The latter recurrently involved the FGFR2 and the NRG1 gene loci. The most commonly altered genes were BAP1, ARID1A, FGFR2, IDH1, CDKN2A, CDKN2B, PIK3CA, TP53, ATM, IDH2, BRAF, SMARCA4 and FGFR3. Molecular targets were detected in 59% of patients. Of these, 32% received targeted therapy. The most relevant reason for not initiating therapy was the deterioration of performance status. Patients receiving a molecular-matched therapy showed a significantly higher survival probability compared to patients receiving conventional chemotherapy only (HR: 2.059, 95% CI: 0.9817-4.320, P < 0.01). CONCLUSIONS Molecular profiling can be successfully translated into clinical treatment of intrahepatic cholangiocarcinoma patients and is associated with prolonged survival of patients receiving a molecular-matched treatment.
Collapse
Affiliation(s)
- Aurelie Tomczak
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Medical Oncology, National Centre for Tumor Diseases, Heidelberg, Germany
| | - Michael T Dill
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of Gastroenterology, Infectious Diseases, Intoxication, Heidelberg University Hospital, Heidelberg, Germany
- Experimental Hepatology, Inflammation and Cancer Research Group, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - De-Hua Chang
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ursula Wagner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Medical Oncology, National Centre for Tumor Diseases, Heidelberg, Germany
| | - Arianeb Mehrabi
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of General, Visceral & Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Brockschmidt
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Clinical Cancer Registry, National Centre for Tumor Diseases, Heidelberg, Germany
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectious Disease, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Patrick Naumann
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Centre Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Liver Cancer Centre Heidelberg, Heidelberg, Germany.
| |
Collapse
|
21
|
Pemigatinib in Intrahepatic Cholangiocarcinoma: A Work in Progress. Curr Oncol 2022; 29:7925-7931. [PMID: 36290903 PMCID: PMC9600707 DOI: 10.3390/curroncol29100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most frequent primary liver cancer, following hepatocellular carcinoma (HCC). Progress in the molecular understanding of CCA has led to the development of several agents, including FGFR inhibitors, such as pemigatinib, whose approval has marked a new era in this hepatobiliary malignancy. However, a number of questions remain unanswered, including the development of secondary resistance and the role of combination therapies, including FGFR inhibitors. Herein, we specifically focus on the current challenges and future research directions of pemigatinib use in CCA patients.
Collapse
|
22
|
Validated UPLC-MS/MS Method for Determination of Futibatinib and Its Pharmacokinetics in Beagle Dogs. J CHEM-NY 2022. [DOI: 10.1155/2022/8316403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Futibatinib, a highly selective, irreversible potent fibroblast growth factor receptor (FGFR) inhibitor, has been proved to be effective in clinical trials of intrahepatic cholangiocarcinoma (ICCA) patients. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine the concentration of futibatinib in beagle dog plasma was developed and validated for the study of pharmacokinetics. After the plasma protein was removed by acetonitrile precipitation, futibatinib was detected and derazantinib was used as the internal standard (IS). Futibatinib and IS were separated in an UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm) with acetonitrile and 0.1% formic acid as the mobile phase, and the flow rate was 0.3 mL/min. Under the positive ion condition of an electrospray spray ion (ESI+) source, multireaction detection was used, and the ion pairs for futibatinib and IS were m/z 418.99 ⟶ 295.97 and 468.96 ⟶ 382.00, respectively. Futibatinib had a good linear relationship in the linear range of 0.5∼100 ng/mL; the lower limit of quantification (LLOQ) was 0.5 ng/mL. The RSDs of the intraday and interday precision were all less than 10.70%, and the RE value of accuracy was between −3.87% and 3.28%. The extraction recovery of futibatinib was more than 80%, and the matrix effect was around 100%, and futibatinib was found to be stable under four experimental conditions. The new optimized and validated UPLC-MS/MS method was an effective tool to determine the concentration of futibatinib in plasma and has been successfully applied to the pharmacokinetics of futibatinib in beagle dogs. This method would also be used to study drug-drug interaction (DDI).
Collapse
|
23
|
Paolino G, Esposito I, Hong S, Basturk O, Mattiolo P, Kaneko T, Veronese N, Scarpa A, Adsay V, Luchini C. Intraductal tubulopapillary neoplasm (ITPN) of the pancreas: a distinct entity among pancreatic tumors. Histopathology 2022; 81:297-309. [PMID: 35583805 PMCID: PMC9544156 DOI: 10.1111/his.14698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
AIMS Intraductal tubulopapillary neoplasm (ITPN) of the pancreas is a recently recognized pancreatic tumor entity. Here we aimed to determine the most important features with a systematic review coupled with an integrated statistical approach. METHODS AND RESULTS PubMed, SCOPUS, and Embase were searched for studies reporting data on pancreatic ITPN. The clinicopathological, immunohistochemical, and molecular data were summarized. Then a comprehensive survival analysis and a comparative analysis of the molecular alterations of ITPN with those of pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasm (IPMN) from reference cohorts (including the International Cancer Genome Consortium- ICGC dataset and The Cancer Genome Atlas, TCGA program) were conducted. The core findings of 128 patients were as follows: (i) Clinicopathological parameters: pancreatic head is the most common site; presence of an associated adenocarcinoma was reported in 60% of cases, but with rare nodal metastasis. (ii) Immunohistochemistry: MUC1 (>90%) and MUC6 (70%) were the most frequently expressed mucins. ITPN lacked the intestinal marker MUC2; unlike IPMN, it did not express MUC5AC. (iii) Molecular landscape: Compared with PDAC/IPMN, the classic pancreatic drivers KRAS, TP53, CDKN2A, SMAD4, GNAS, and RNF43 were less altered in ITPN (P < 0.001), whereas MCL amplifications, FGFR2 fusions, and PI3KCA mutations were commonly altered (P < 0.001). (iv) Survival analysis: ITPN with a "pure" branch duct involvement showed the lowest risk of recurrence. CONCLUSION ITPN is a distinct pancreatic neoplasm with specific clinicopathological and molecular characteristics. Its recognition is fundamental for its clinical/prognostic implications and for the enrichment of potential targets for precision oncology.
Collapse
Affiliation(s)
- Gaetano Paolino
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Irene Esposito
- Institute of PathologyUniversity Hospital of DuesseldorfDuesseldorfGermany
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Olca Basturk
- Department of PathologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Takuma Kaneko
- Department of Hepato‐Biliary‐Pancreatic MedicineNTT Medical CenterTokyoJapan
| | - Nicola Veronese
- Department of Internal MedicineUniversity of PalermoPalermoItaly
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| | - Volkan Adsay
- Department of PathologyKoç University Hospital and Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of PathologyUniversity and Hospital Trust of VeronaVeronaItaly
- ARC‐Net Research CenterUniversity and Hospital Trust of VeronaVeronaItaly
| |
Collapse
|