1
|
Geng Q, Xu J, Du C, Zhang D, Jin Y, Song J, Qu W, Zhang C, Su G, Jiao P. Small molecules targeting immune checkpoint proteins for cancer immunotherapy: a patent and literature review (2020-2024). Expert Opin Ther Pat 2025; 35:409-440. [PMID: 39907457 DOI: 10.1080/13543776.2025.2462849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Targeting immune checkpoint proteins (ICPs) via small molecules open a new window for cancer immunotherapy. Herein, we summarize recent advances of small molecules with novel chemical structures targeting ICPs, discusses their anti-tumor efficacies, which are important for the development of novel small molecules for cancer immunotherapy. AREAS COVERED In this review, the latest patents and literature were gathered through the comprehensive searches in the databases of European Patent Office (EPO), Cortellis Drug Discovery Intelligence (CDDI), PubMed and Web of Science using ICPs and compounds as key words. EXPERT OPINION To develop novel weapons to fight against cancer, small molecules targeting ICPs including CTLA-4, LAG-3, PD-L1, Siglec-9, TIM-3, TIGIT, and VISTA have been synthesized and evaluated in succession. Chief among them are the small molecules targeting PD-L1, which have been intensively investigated in recent years. Various in vitro assays such as ALPHA, HTRF binding assay, NFAT assay have been successfully developed to screen novel IPCs inhibitors. However, the in vivo assay, for example, using double-humanized PD-1/PD-L1 (hPD-1/hPD-L1) mouse as evaluation model, are seldom reported. Novel pharmacophores with new working mechanisms such as proteolysis targeting chimeras (PROTACs) and peptides are needed to enhance the therapeutic efficacy.
Collapse
Affiliation(s)
- Qiaohong Geng
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Juanjuan Xu
- Department of Neurology, Changyi People's Hospital, Weifang, Shandong, China
| | - Chunsheng Du
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Deheng Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Yanrui Jin
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Jiatong Song
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Wenjing Qu
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Changnan Zhang
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Peifu Jiao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
2
|
Yang P, Jiang Y, Chen R, Yang J, Liu M, Huang X, Xu G, Hao R. Prognostic and immune infiltration implications of SIGLEC9 in SKCM. Diagn Pathol 2024; 19:112. [PMID: 39153970 PMCID: PMC11330613 DOI: 10.1186/s13000-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
The occurrence and progression of skin cutaneous melanoma (SKCM) is strongly associated with immune cells infiltrating the tumor microenvironment (TME). This study examined the expression, prognosis, and immune relevance of SIGLEC9 in SKCM using multiple online databases. Analysis of the GEPIA2 and Ualcan databases revealed that SIGLEC9 is highly expressed in SKCM, and patients with high SIGLEC9 expression had improved overall survival (OS). Furthermore, the mutation rate of SIGLEC9 in SKCM patients was found to be 5.41%, the highest observed. The expression of SIGLEC9 was positively correlated with macrophages, neutrophils and B cells, CD8 + T cells, CD4 + T cells, and dendritic cells, according to TIMER. Based on TCGA-SKCM data, we verified that high SIGLEC9 expression is closely associated with a good prognosis for SKCM patients, including overall survival, progression-free interval, and disease-specific survival. This positive prognosis could be due to the infiltration of immune cells into the TME. Additionally, our analysis of single-cell transcriptome data revealed that SIGLEC9 not only played a role in the normal skin immune microenvironment, but is also highly expressed in immune cell subpopulations of SKCM patients, regulating the immune response to tumors. Our findings suggest that the close association between SIGLEC9 and SKCM prognosis is primarily mediated by its effect on the tumor immune microenvironment.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Rong Chen
- Department of Clinical Laboratory, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Junhan Yang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Mengting Liu
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Xieping Huang
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China
| | - Ganglin Xu
- Department of Dermatology, Jingmen People'S Hospital &, Jingchu University of Technology Affiliated Central Hospital, Jingmen, 448000, China.
| | - Rui Hao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| |
Collapse
|
3
|
Ayyalasomayajula R, Cudic M. Targeting Siglec-Sialylated MUC1 Immune Axis in Cancer. Cancers (Basel) 2024; 16:1334. [PMID: 38611013 PMCID: PMC11011055 DOI: 10.3390/cancers16071334] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Siglecs play a key role in mediating cell-cell interactions via the recognition of different sialylated glycoconjugates, including tumor-associated MUC1, which can lead to the activation or inhibition of the immune response. The activation occurs through the signaling of Siglecs with the cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins, while the inhibition signal is a result of the interaction of intracellular immunoreceptor tyrosine-based inhibition motif (ITIM)-bearing receptors. The interaction of tumor-associated MUC1 sialylated glycans with Siglecs via ITIM motifs decreases antitumor immunity. Consequently, these interactions are expected to play a key role in tumor evasion. Efforts to modulate the response of immune cells by blocking the immune-suppressive effects of inhibitory Siglecs, driving immune-activating Siglecs, and/or altering the synthesis and expression of the sialic acid glycocalyx are new therapeutic strategies deserving further investigation. We will highlight the role of Siglec's family receptors in immune evasion through interactions with glycan ligands in their natural context, presented on the protein such as MUC1, factors affecting their fine binding specificities, such as the role of multivalency either at the ligand or receptor side, their spatial organization, and finally the current and future therapeutic interventions targeting the Siglec-sialylated MUC1 immune axis in cancer.
Collapse
Affiliation(s)
| | - Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431, USA;
| |
Collapse
|
4
|
Atxabal U, Nycholat C, Pröpster JM, Fernández A, Oyenarte I, Lenza MP, Franconetti A, Soares CO, Coelho H, Marcelo F, Schubert M, Paulson JC, Jiménez-Barbero J, Ereño-Orbea J. Unraveling Molecular Recognition of Glycan Ligands by Siglec-9 via NMR Spectroscopy and Molecular Dynamics Modeling. ACS Chem Biol 2024; 19:483-496. [PMID: 38321945 PMCID: PMC10877568 DOI: 10.1021/acschembio.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Human sialic-acid-binding immunoglobulin-like lectin-9 (Siglec-9) is a glycoimmune checkpoint receptor expressed on several immune cells. Binding of Siglec-9 to sialic acid containing glycans (sialoglycans) is well documented to modulate its functions as an inhibitory receptor. Here, we first assigned the amino acid backbone of the Siglec-9 V-set domain (Siglec-9d1), using well-established triple resonance three-dimensional nuclear magnetic resonance (NMR) methods. Then, we combined solution NMR and molecular dynamic simulation methods to decipher the molecular details of the interaction of Siglec-9 with the natural ligands α2,3 and α2,6 sialyl lactosamines (SLN), sialyl Lewis X (sLeX), and 6-O sulfated sLeX and with two synthetically modified sialoglycans that bind with high affinity. As expected, Neu5Ac is accommodated between the F and G β-strands at the canonical sialic acid binding site. Addition of a heteroaromatic scaffold 9N-5-(2-methylthiazol-4-yl)thiophene sulfonamide (MTTS) at the C9 position of Neu5Ac generates new interactions with the hydrophobic residues located at the G-G' loop and the N-terminal region of Siglec-9. Similarly, the addition of the aromatic substituent (5-N-(1-benzhydryl-1H-1,2,3-triazol-4-yl)methyl (BTC)) at the C5 position of Neu5Ac stabilizes the conformation of the long and flexible B'-C loop present in Siglec-9. These results expose the underlying mechanism responsible for the enhanced affinity and specificity for Siglec-9 for these two modified sialoglycans and sheds light on the rational design of the next generation of modified sialoglycans targeting Siglec-9.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Corwin Nycholat
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Johannes M. Pröpster
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Fernández
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Iker Oyenarte
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Maria Pia Lenza
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Antonio Franconetti
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Cátia O. Soares
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Helena Coelho
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Filipa Marcelo
- Associate
Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Mario Schubert
- Institute
of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Department
of Biosciences and Molecular Biology, University
of Salzburg, Hellbrunnerstrasse
34, 5020 Salzburg, Austria
| | - James C. Paulson
- Departments
of Molecular Medicine and Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jesús Jiménez-Barbero
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
- Department
of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- Centro
de Investigacion Biomedica en Red de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5, Pabellón
11, Planta 0, 28029 Madrid, Spain
| | - June Ereño-Orbea
- Chemical
Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC
bioGUNE), Basque Research and Technology
Alliance (BRTA), 48160 Derio, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Euskadi Pl., 5, 48009 Bilbao, Biscay, Spain
| |
Collapse
|
5
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|