1
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
2
|
Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieroń AL. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 2023; 11:1205122. [PMID: 37456734 PMCID: PMC10348904 DOI: 10.3389/fbioe.2023.1205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Diak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Gutmajster
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Trybus
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Rozwadowska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L. Sieroń
- Formerly Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Wang N, Li X, Zhong Z, Qiu Y, Liu S, Wu H, Tang X, Chen C, Fu Y, Chen Q, Guo T, Li J, Zhang S, Zern MA, Ma K, Wang B, Ou Y, Gu W, Cao J, Chen H, Duan Y. 3D hESC exosomes enriched with miR-6766-3p ameliorates liver fibrosis by attenuating activated stellate cells through targeting the TGFβRII-SMADS pathway. J Nanobiotechnology 2021; 19:437. [PMID: 34930304 PMCID: PMC8686281 DOI: 10.1186/s12951-021-01138-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Exosomes secreted from stem cells exerted salutary effects on the fibrotic liver. Herein, the roles of exosomes derived from human embryonic stem cell (hESC) in anti-fibrosis were extensively investigated. Compared with two-dimensional (2D) culture, the clinical and biological relevance of three-dimensional (3D) cell spheroids were greater because of their higher regeneration potential since they behave more like cells in vivo. In our study, exosomes derived from 3D human embryonic stem cells (hESC) spheroids and the monolayer (2D) hESCs were collected and compared the therapeutic potential for fibrotic liver in vitro and in vivo. RESULTS In vitro, PKH26 labeled-hESC-Exosomes were shown to be internalized and integrated into TGFβ-activated-LX2 cells, and reduced the expression of profibrogenic markers, thereby regulating cellular phenotypes. TPEF imaging indicated that PKH26-labeled-3D-hESC-Exsomes possessed an enhanced capacity to accumulate in the livers and exhibited more dramatic therapeutic potential in the injured livers of fibrosis mouse model. 3D-hESC-Exosomes decreased profibrogenic markers and liver injury markers, and improved the level of liver functioning proteins, eventually restoring liver function of fibrosis mice. miRNA array revealed a significant enrichment of miR-6766-3p in 3D-hESC-Exosomes, moreover, bioinformatics and dual luciferase reporter assay identified and confirmed the TGFβRII gene as the target of miR-6766-3p. Furthermore, the delivery of miR-6766-3p into activated-LX2 cells decreased cell proliferation, chemotaxis and profibrotic effects, and further investigation demonstrated that the expression of target gene TGFβRII and its downstream SMADs proteins, especially phosphorylated protein p-SMAD2/3 was also notably down-regulated by miR-6766-3p. These findings unveiled that miR-6766-3p in 3D-hESC-Exosomes inactivated SMADs signaling by inhibiting TGFβRII expression, consequently attenuating stellate cell activation and suppressing liver fibrosis. CONCLUSIONS Our results showed that miR-6766-3p in the 3D-hESC-Exosomes inactivates smads signaling by restraining TGFβRII expression, attenuated LX2 cell activation and suppressed liver fibrosis, suggesting that 3D-hESC-Exosome enriched-miR-6766-3p is a novel anti-fibrotic therapeutics for treating chronic liver disease. These results also proposed a significant strategy that 3D-Exo could be used as natural nanoparticles to rescue liver injury via delivering antifibrotic miR-6766-3p.
Collapse
Affiliation(s)
- Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xiajing Li
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Chuxin Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yingjie Fu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Qicong Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, 95817, USA
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People's Hospital of Guangzhou, Guangzhou, 510800, People's Republic of China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, People's Republic of China
| | - Yimeng Ou
- Department of General Surgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, No.382 Waihuan East Road, Suite 406, Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
4
|
Ramakrishna RR, Abd Hamid Z, Wan Zaki WMD, Huddin AB, Mathialagan R. Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology. PeerJ 2020; 8:e10346. [PMID: 33240655 PMCID: PMC7680049 DOI: 10.7717/peerj.10346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stem cells are primitive and precursor cells with the potential to reproduce into diverse mature and functional cell types in the body throughout the developmental stages of life. Their remarkable potential has led to numerous medical discoveries and breakthroughs in science. As a result, stem cell-based therapy has emerged as a new subspecialty in medicine. One promising stem cell being investigated is the induced pluripotent stem cell (iPSC), which is obtained by genetically reprogramming mature cells to convert them into embryonic-like stem cells. These iPSCs are used to study the onset of disease, drug development, and medical therapies. However, functional studies on iPSCs involve the analysis of iPSC-derived colonies through manual identification, which is time-consuming, error-prone, and training-dependent. Thus, an automated instrument for the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged as a novel technology to tackle this challenge. In particular, deep learning, a subfield of AI, offers an automated platform for analyzing iPSC colonies and other colony-forming stem cells. Deep learning rectifies data features using a convolutional neural network (CNN), a type of multi-layered neural network that can play an innovative role in image recognition. CNNs are able to distinguish cells with high accuracy based on morphologic and textural changes. Therefore, CNNs have the potential to create a future field of deep learning tasks aimed at solving various challenges in stem cell studies. This review discusses the progress and future of CNNs in stem cell imaging for therapy and research.
Collapse
Affiliation(s)
- Ramanaesh Rao Ramakrishna
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Aqilah Baseri Huddin
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ramya Mathialagan
- Biomedical Science Programme and Centre for Diagnostic, Therapeutic and Investigative Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Induction of Osteoblasts by Direct Reprogramming of Mouse Fibroblasts. Methods Mol Biol 2020. [PMID: 32474879 DOI: 10.1007/978-1-0716-0655-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In the tissue culture dish, osteoblast cells can be derived from mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). However, differentiation of osteoblasts from PSCs is time-consuming and low yield. In contrast, we identified four osteogenic transcription factors, Runx2, Osx, Dlx5, and ATF4, that rapidly and efficiently reprogram mouse fibroblasts derived from 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP) transgenic mice into induced osteoblast cells (iOBs). iOBs exhibit osteoblast morphology, form mineralized nodules, and express Col2.3GFP and gene markers of osteoblast differentiation. Our method provides a robust system to rapidly generate appropriate and abundant osteoblast cells for osteogenesis and bone regeneration study.
Collapse
|
6
|
Zhu H, Swami S, Yang P, Shapiro F, Wu JY. Direct Reprogramming of Mouse Fibroblasts into Functional Osteoblasts. J Bone Miner Res 2020; 35:698-713. [PMID: 31793059 PMCID: PMC11376108 DOI: 10.1002/jbmr.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 01/20/2023]
Abstract
Although induced pluripotent stem cells hold promise as a potential source of osteoblasts for skeletal regeneration, the induction of pluripotency followed by directed differentiation into osteoblasts is time consuming and low yield. In contrast, direct lineage reprogramming without an intervening stem/progenitor cell stage would be a more efficient approach to generate osteoblasts. We screened combinations of osteogenic transcription factors and identified four factors, Runx2, Osx, Dlx5, and ATF4, that rapidly and efficiently reprogram mouse fibroblasts derived from 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP) transgenic mice into induced osteoblast cells (iOBs). iOBs exhibit osteoblast morphology, form mineralized nodules, and express Col2.3GFP and gene markers of osteoblast differentiation. The global transcriptome profiles validated that iOBs resemble primary osteoblasts. Genomewide DNA methylation analysis demonstrates that within differentially methylated loci, the methylation status of iOBs more closely resembles primary osteoblasts than mouse fibroblasts. We further demonstrate that Col2.3GFP+ iOBs have transcriptome profiles similar to GFP+ cells harvested from Col2.3GFP mouse bone chips. Functionally, Col2.3GFP+ iOBs form mineralized bone structures after subcutaneous implantation in immunodeficient mice and contribute to bone healing in a tibia bone fracture model. These findings provide an approach to derive and study osteoblasts for skeletal regeneration. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hui Zhu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Srilatha Swami
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pinglin Yang
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Geriatric Research Education and Clinical Center, Palo Alto, CA, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Frederic Shapiro
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Abstract
Current osteoporosis medications reduce fractures significantly but have rare and serious adverse effects (osteonecrosis of the jaw, atypical femoral fractures) that may limit their safety for long-term use. Insights from basic bone biology and genetic disorders have led to recent advances in therapeutics for osteoporosis. New approaches now in clinical use include the antisclerostin monoclonal antibody romosozumab, as well as the parathyroid hormone-related peptide analog abaloparatide. Clinical trial data show significant antifracture benefits with recently approved romosozumab. Studies using abaloparatide build on our longstanding experience with teriparatide and the importance of consolidating the bone mineral density gains achieved from an anabolic agent by following it with an antiresorptive. Combination and sequential treatments using osteoporosis medications with different mechanisms of action have also been tested with promising results. On the horizon is the potential for cell-based therapies (e.g., mesenchymal stem cells) and drugs that target the elimination of senescent cells in the bone microenvironment.
Collapse
Affiliation(s)
- Cheng Cheng
- Endocrine Research Unit, Endocrine-Metabolism Section, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA; .,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94143, USA
| | - Kelly Wentworth
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94143, USA.,Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, California 94110, USA
| | - Dolores M Shoback
- Endocrine Research Unit, Endocrine-Metabolism Section, Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, California 94121, USA; .,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Francisco, California 94143, USA
| |
Collapse
|
8
|
Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials 2018; 196:31-45. [PMID: 29456164 DOI: 10.1016/j.biomaterials.2018.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Appropriate and abundant sources of bone-forming osteoblasts are essential for bone tissue engineering. Pluripotent stem cells can self-renew and thereby offer a potentially unlimited supply of osteoblasts, a significant advantage over other cell sources. We generated mouse embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) from transgenic mice expressing rat 2.3 kb type I collagen promoter-driven green fluorescent protein (Col2.3GFP), a reporter of the osteoblast lineage. We demonstrated that Col2.3GFP ESCs and iPSCs can be successfully differentiated to osteoblast lineage cells that express Col2.3GFP in vitro. We harvested GFP+ osteoblasts differentiated from ESCs. Genome wide gene expression profiles validated that ESC- and iPSC-derived osteoblasts resemble calvarial osteoblasts, and that Col2.3GFP expression serves as a marker for mature osteoblasts. Our results confirm the cell identity of ESC- and iPSC-derived osteoblasts and highlight the potential of pluripotent stem cells as a source of osteoblasts for regenerative medicine.
Collapse
|
9
|
Chubb R, Oh J, Riley AK, Kimura T, Wu SM, Wu JY. In Vivo Rescue of the Hematopoietic Niche By Pluripotent Stem Cell Complementation of Defective Osteoblast Compartments. Stem Cells 2017; 35:2150-2159. [PMID: 28741855 DOI: 10.1002/stem.2670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/25/2017] [Indexed: 12/11/2022]
Abstract
Bone-forming osteoblasts play critical roles in supporting bone marrow hematopoiesis. Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSC), are capable of differentiating into osteoblasts. To determine the capacity of stem cells needed to rescue aberrant skeletal development and bone marrow hematopoiesis in vivo, we used a skeletal complementation model. Mice deficient in Runx2, a master transcription factor for osteoblastogenesis, fail to form a mineralized skeleton and bone marrow. Wild-type (WT) green fluorescent protein (GFP)+ ESCs and yellow fluorescent protein (YFP)+ iPSCs were introduced into Runx2-null blastocyst-stage embryos. We assessed GFP/YFP+ cell contribution by whole-mount fluorescence and histological analysis and found that the proportion of PSCs in the resulting chimeric embryos is directly correlated with the degree of mineralization in the skull. Moreover, PSC contribution to long bones successfully restored bone marrow hematopoiesis. We validated this finding in a separate model with diphtheria toxin A-mediated ablation of hypertrophic chondrocytes and osteoblasts. Remarkably, chimeric embryos harboring as little as 37.5% WT PSCs revealed grossly normal skeletal morphology, suggesting a near-complete rescue of skeletogenesis. In summary, we demonstrate that fractional contribution of PSCs in vivo is sufficient to complement and reconstitute an osteoblast-deficient skeleton and hematopoietic marrow. Further investigation using genetically modified PSCs with conditional loss of gene function in osteoblasts will enable us to address the specific roles of signaling mediators to regulate bone formation and hematopoietic niches in vivo. Stem Cells 2017;35:2150-2159.
Collapse
Affiliation(s)
- Rhiannon Chubb
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James Oh
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alyssa K Riley
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takaharu Kimura
- Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA
| | - Sean M Wu
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Joy Y Wu
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Endocrinology, Stanford University School of Medicine, Stanford, California, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|