1
|
Han W, He L, Wang F, Zhao X, Jin C. Oblique Lumbar Interbody Fusion Combined With Anterolateral Fixation and Cement Augmentation for the Treatment of Degenerative Lumbar Diseases in the Elderly Population: A Retrospective Study. Orthop Surg 2025; 17:446-459. [PMID: 39627870 PMCID: PMC11787981 DOI: 10.1111/os.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVES Cage subsidence is a common complication of oblique lumbar interbody fusion (OLIF), particularly in elderly patients with osteoporosis or osteopenia. While bilateral pedicle screw fixation (BPS) is effective in reducing subsidence, it is associated with longer operative times, increased blood loss, and greater tissue trauma. In contrast, anterolateral fixation (AF) is less invasive but linked to higher subsidence rates. Ensuring both minimal invasiveness and adequate stability in OLIF-assisted fixation remains a significant challenge. This study aimed to evaluate the efficacy of combining AF with cement augmentation (AF + CA) in reducing cage subsidence and improving clinical outcomes compared with AF and BPS. METHODS A retrospective analysis was conducted on 138 elderly patients with degenerative lumbar diseases treated with OLIF. Patients were divided into three groups: AF + CA (32 patients), AF (32 patients), and BPS (74 patients). Clinical and radiographic outcomes were compared among the groups, and logistic regression analyses were performed to identify risk factors for cage subsidence after OLIF. RESULTS At 1 year postoperatively, the disc height of the AF + CA group was significantly greater than that of the AF group. The cage subsidence rate in the AF + CA group was 24.3%, significantly lower than that in the AF group (48.8%, p < 0.05) and comparable to the BPS group (30.4%). Survivorship curve analysis showed better outcomes in reducing cage subsidence in the AF + CA group compared with the AF group, with no significant difference between the AF + CA and BPS groups. Compared with the AF + CA and BPS groups, the AF group had significantly higher grades and severity of cage subsidence. Fusion rates at 1 year were 91.9% in the AF + CA group, 90.2% in the AF group, and 95.1% in the BPS group, with no significant differences. The AF + CA group had significantly shorter operative times, less intraoperative blood loss, lower VAS scores at 3 days and 1 year postoperatively, and lower ODI scores at 3 days and 3 months compared with the BPS group. Multivariate regression analysis revealed that AF was a significant risk factor for cage subsidence, with an odds ratio of 3.399 compared with AF + CA. CONCLUSIONS AF + CA effectively reduces cage subsidence in OLIF surgeries, offering results comparable to BPS while providing advantages such as shorter surgical time, reduced blood loss, and improved early postoperative outcomes. AF + CA is a viable alternative, especially for elderly patients with comorbidities who may not tolerate the longer operative durations or greater blood loss associated with BPS.
Collapse
Affiliation(s)
- Weiqi Han
- Department of OrthopedicsShaoxing People's HospitalShaoxingChina
| | - Lei He
- Department of OrthopedicsShaoxing People's HospitalShaoxingChina
| | - Fei Wang
- Department of OrthopedicsShaoxing People's HospitalShaoxingChina
| | - Xiaofeng Zhao
- Department of OrthopedicsShaoxing People's HospitalShaoxingChina
| | - Cong Jin
- Department of OrthopedicsShaoxing People's HospitalShaoxingChina
| |
Collapse
|
2
|
Saadati S, Jansons P, Scott D, de Courten M, Mousa A, Feehan J, Mesinovic J, de Courten B. The Effect of Carnosine Supplementation on Musculoskeletal Health in Adults with Prediabetes and Type 2 Diabetes: A Secondary Analysis of a Randomized Controlled Trial. Nutrients 2024; 16:4328. [PMID: 39770949 PMCID: PMC11677094 DOI: 10.3390/nu16244328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is associated with an increased risk of adverse musculoskeletal outcomes likely due to heightened chronic inflammation, oxidative stress, and advanced glycation end-products (AGE). Carnosine has been shown to have anti-inflammatory, anti-oxidative, and anti-AGE properties. However, no clinical trials have examined the impact of carnosine on musculoskeletal health in adults with prediabetes or T2D. METHODS In a randomized, double-blind clinical trial, 49 participants with prediabetes or T2D and without existing musculoskeletal conditions were assigned to receive either 2 g/day carnosine or matching placebo for 14 weeks. Whole-body dual-energy X-ray absorptiometry (DXA) was used to assess body composition, and peripheral quantitative computed tomography (pQCT) was used to assess bone health at the distal and proximal tibia. RESULTS Forty-three participants completed this study. Carnosine supplementation had no effect on change in hand grip strength (HGS) or upper-limb relative strength (HGS/lean mass) versus placebo. Change in appendicular lean mass, percentage of body fat, visceral fat area, proximal tibial cortical volumetric bone mineral density (vBMD), distal tibial trabecular vBMD, and stress-strain index did not differ with carnosine compared to placebo. Fourteen weeks of carnosine supplementation did not improve muscle strength, body composition, or bone health in adults with prediabetes or T2D. CONCLUSIONS Carnosine supplementation may not be an effective approach for improving musculoskeletal health in adults with prediabetes and T2D without musculoskeletal conditions. However, appropriately powered trials with longer duration are warranted to confirm our findings. The trial was registered at clinicaltrials.gov (NCT02917928).
Collapse
Affiliation(s)
- Saeede Saadati
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Paul Jansons
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - David Scott
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Maximilian de Courten
- Australian Health Policy Collaboration, Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC 8001, Australia;
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (A.M.)
| | - Jack Feehan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Jakub Mesinovic
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (P.J.); (D.S.); (J.M.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
3
|
Yang L, Li D, Yan Y, Yang Q, Li L, Zha Y. Microvascular permeability and texture analysis of bone marrow in diabetic rabbits with critical limb ischemia based on dynamic contrast-enhanced magnetic resonance imaging. J Diabetes Investig 2024; 15:584-593. [PMID: 38240456 PMCID: PMC11060156 DOI: 10.1111/jdi.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Early on in the development of diabetes, skeletal muscles can exhibit microarchitectural changes that can be detected using texture analysis (TA) based on volume transfer constant (Ktrans) maps. Nevertheless, there have been few studies and thus we evaluated microvascular permeability and the TA of the bone marrow in diabetics with critical limb ischemia (CLI). METHODS Eighteen male rabbits were randomly assigned equally into an operation group with hindlimb ischemia and diabetes, a sham-operated group with diabetes only, and a control group. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) was performed on all rabbits at predetermined intervals (1, 5, 10, 15, 20, and 25 days post-surgery). The pharmacokinetic model was used to generate the permeability parameters, while the textural parameters were derived from the Ktrans map. Data analysis methods included the independent sample t-test, Mann-Whitney U test, repeated-measures analysis of variance, and Pearson correlation tests. RESULTS The Ktrans values reached a minimum on day 1 after ischemia induction, then gradually recovered, but remained lower than those of the sham-operated group. The volume fraction only showed a significant difference between the operation group and the sham-operated group on day 5 post-surgery, but not in the extravascular extracellular space volume fraction at all time points. A significantly reduced Ktrans on day 1, a decreased number of bone trabeculae (Tb.N), and the area of bone trabeculae (Tb.Ar), and an increased microvessel density on day 25 in the operation group compared with the sham-operated group were observed. At each time point, there was a discernible difference between the two groups in the mean value, mean of positive pixels, and sumAverage. CONCLUSIONS The early stages of diabetic bone marrow with CLI can be evaluated by DCE-MRI for microvascular permeability. Texture analysis based on DCE-MRI could act as an imaging discriminator and new radiological analysis tool for critical limb ischemia in diabetes mellitus.
Collapse
Affiliation(s)
- Liu Yang
- Department of RadiologyRenmin Hospital of Wuhan UniversityNo. 238 Jiefang RoadWuhan430060Wuchang DistrictChina
- Department of RadiologyUnion Hospital, Tongji Medical College, Huazhong University of Science and Technology1277 Jiefang AvenueWuhan430022China
| | - Donghang Li
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityNo.238 Jiefang RoadWuhan430060Wuchang DistrictChina
| | - Yuchen Yan
- Department of RadiologyRenmin Hospital of Wuhan UniversityNo. 238 Jiefang RoadWuhan430060Wuchang DistrictChina
| | - Qi Yang
- Department of RadiologyRenmin Hospital of Wuhan UniversityNo. 238 Jiefang RoadWuhan430060Wuchang DistrictChina
| | - Liang Li
- Department of RadiologyRenmin Hospital of Wuhan UniversityNo. 238 Jiefang RoadWuhan430060Wuchang DistrictChina
| | - Yunfei Zha
- Department of RadiologyRenmin Hospital of Wuhan UniversityNo. 238 Jiefang RoadWuhan430060Wuchang DistrictChina
| |
Collapse
|
4
|
Lei H, Guo W, Pan Y, Lu X, Zhang Q. LOX-1 regulation of H-type vascular endothelial cell regeneration in hyperglycemia. Acta Diabetol 2024; 61:515-524. [PMID: 38244081 DOI: 10.1007/s00592-023-02224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/10/2023] [Indexed: 01/22/2024]
Abstract
AIMS Diabetic osteoporosis (DOP) is the most common secondary form of osteoporosis. Diabetes mellitus affects bone metabolism; however, the underlying pathophysiological mechanisms remain unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression is upregulated in conditions characterized by vascular injury, such as atherosclerosis, hypertension, and diabetes. Additionally, Notch, HIF-1α, and VEGF are involved in angiogenesis and bone formation. Therefore, we aimed to investigate the expression of Notch, HIF-1α, and VEGF in the LOX-1 silencing state. METHODS Rat bone H-type vascular endothelial cells (THVECs) were isolated and cultured in vitro. Cell identification was performed using immunofluorescent co-expression of CD31 and Emcn. Lentiviral silencing vector (LV-LOX-1) targeting LOX-1 was constructed using genetic recombination technology and transfected into the cells. The experimental groups included the following: NC group, HG group, LV-LOX-1 group, LV-CON group, HG + LV-LOX-1 group, HG + LV-CON group, HG + LV-LOX-1 + FLI-06 group, HG + LV-CON + FLI-06 group, HG + LV-LOX-1 + LW6 group, and HG + LV-CON + LW6 group. The levels of LOX-1, Notch, Hif-1α, and VEGF were detected using PCR and WB techniques to investigate whether the expression of LOX-1 under high glucose conditions has a regulatory effect on downstream molecules at the gene and protein levels, as well as the specific molecular mechanisms involved. RESULTS High glucose (HG) conditions led to a significant increase in LOX-1 expression, leading to inhibition of angiogenesis, whereas silencing LOX-1 can reverse this phenomenon. Further analysis reveals that changes in LOX-1 will promote changes in Notch/HIF-1α and VEGF. Moreover, Notch mediates the activation of HIF-1α and VEGF. CONCLUSIONS The activation of LOX-1 and the inhibition of Notch/HIF-1α/VEGF in THVECs are the main causes of DOP. These findings contribute to our understanding of the pathogenesis of DOP and offer a novel approach for preventing and treating osteoporosis.
Collapse
Affiliation(s)
- Haoyue Lei
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Wenhui Guo
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Youzhuo Pan
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xun Lu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, China
| | - Qi Zhang
- Department of Gerontology, Gansu Provincial Hospital, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Le T, Salas Sanchez A, Nashawi D, Kulkarni S, Prisby RD. Diabetes and the Microvasculature of the Bone and Marrow. Curr Osteoporos Rep 2024; 22:11-27. [PMID: 38198033 DOI: 10.1007/s11914-023-00841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the evidence of microvascular dysfunction in bone and marrow and its relation to poor skeletal outcomes in diabetes mellitus. RECENT FINDINGS Diabetes mellitus is characterized by chronic hyperglycemia, which may lead to microangiopathy and macroangiopathy. Micro- and macroangiopathy have been diagnosed in Type 1 and Type 2 diabetes, coinciding with osteopenia, osteoporosis, enhanced fracture risk and delayed fracture healing. Microangiopathy has been reported in the skeleton, correlating with reduced blood flow and perfusion, vasomotor dysfunction, microvascular rarefaction, reduced angiogenic capabilities, and augmented vascular permeability. Microangiopathy within the skeleton may be detrimental to bone and manifest as, among other clinical abnormalities, reduced mass, enhanced fracture risk, and delayed fracture healing. More investigations are required to elucidate the various mechanisms by which diabetic microvascular dysfunction impacts the skeleton.
Collapse
Affiliation(s)
- Teresa Le
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Amanda Salas Sanchez
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Danyah Nashawi
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Sunidhi Kulkarni
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, TX, 76019, USA.
| |
Collapse
|
6
|
Mauricio D, Gratacòs M, Franch-Nadal J. Diabetic microvascular disease in non-classical beds: the hidden impact beyond the retina, the kidney, and the peripheral nerves. Cardiovasc Diabetol 2023; 22:314. [PMID: 37968679 PMCID: PMC10652502 DOI: 10.1186/s12933-023-02056-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Diabetes microangiopathy, a hallmark complication of diabetes, is characterised by structural and functional abnormalities within the intricate network of microvessels beyond well-known and documented target organs, i.e., the retina, kidney, and peripheral nerves. Indeed, an intact microvascular bed is crucial for preserving each organ's specific functions and achieving physiological balance to meet their respective metabolic demands. Therefore, diabetes-related microvascular dysfunction leads to widespread multiorgan consequences in still-overlooked non-traditional target organs such as the brain, the lung, the bone tissue, the skin, the arterial wall, the heart, or the musculoskeletal system. All these organs are vulnerable to the physiopathological mechanisms that cause microvascular damage in diabetes (i.e., hyperglycaemia-induced oxidative stress, inflammation, and endothelial dysfunction) and collectively contribute to abnormalities in the microvessels' structure and function, compromising blood flow and tissue perfusion. However, the microcirculatory networks differ between organs due to variations in haemodynamic, vascular architecture, and affected cells, resulting in a spectrum of clinical presentations. The aim of this review is to focus on the multifaceted nature of microvascular impairment in diabetes through available evidence of specific consequences in often overlooked organs. A better understanding of diabetes microangiopathy in non-target organs provides a broader perspective on the systemic nature of the disease, underscoring the importance of recognising the comprehensive range of complications beyond the classic target sites.
Collapse
Affiliation(s)
- Dídac Mauricio
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain.
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IR Sant Pau, Barcelona, Spain.
- Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| | - Mònica Gratacòs
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Josep Franch-Nadal
- DAP-Cat group, Unitat de Suport a la Recerca Barcelona, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
| |
Collapse
|
7
|
Draghici AE, Zahedi B, Taylor JA, Bouxsein ML, Yu EW. Vascular deficits contributing to skeletal fragility in type 1 diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1272804. [PMID: 37867730 PMCID: PMC10587602 DOI: 10.3389/fcdhc.2023.1272804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Over 1 million Americans are currently living with T1D and improvements in diabetes management have increased the number of adults with T1D living into later decades of life. This growing population of older adults with diabetes is more susceptible to aging comorbidities, including both vascular disease and osteoporosis. Indeed, adults with T1D have a 2- to 3- fold higher risk of any fracture and up to 7-fold higher risk of hip fracture compared to those without diabetes. Recently, diabetes-related vascular deficits have emerged as potential risks factors for impaired bone blood flow and poor bone health and it has been hypothesized that there is a direct pathophysiologic link between vascular disease and skeletal outcomes in T1D. Indeed, microvascular disease (MVD), one of the most serious consequences of diabetes, has been linked to worse bone microarchitecture in older adults with T1D compared to their counterparts without MVD. The association between the presence of microvascular complications and compromised bone microarchitecture indicates the potential direct deleterious effect of vascular compromise, leading to abnormal skeletal blood flow, altered bone remodeling, and deficits in bone structure. In addition, vascular diabetic complications are characterized by increased vascular calcification, decreased arterial distensibility, and vascular remodeling with increased arterial stiffness and thickness of the vessel walls. These extensive alterations in vascular structure lead to impaired myogenic control and reduced nitric-oxide mediated vasodilation, compromising regulation of blood flow across almost all vascular beds and significantly restricting skeletal muscle blood flow seen in those with T1D. Vascular deficits in T1D may very well extend to bone, compromising skeletal blood flow control, and resulting in reduced blood flow to bone, thus negatively impacting bone health. Indeed, several animal and ex vivo human studies report that diabetes induces microvascular damage within bone are strongly correlated with diabetes disease severity and duration. In this review article, we will discuss the contribution of diabetes-induced vascular deficits to bone density, bone microarchitecture, and bone blood flow regulation, and review the potential contribution of vascular disease to skeletal fragility in T1D.
Collapse
Affiliation(s)
- Adina E. Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Cardiovascular Research Laboratory, Schoen Adams Research Institute at Spaulding Rehabilitation, Cambridge, MA, United States
| | - Bita Zahedi
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - J. Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States
- Cardiovascular Research Laboratory, Schoen Adams Research Institute at Spaulding Rehabilitation, Cambridge, MA, United States
| | - Mary L. Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, United States
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Elaine W. Yu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Khandelwal N, Rajauria S, Kanjalkar SP, Chavanke OS, Rai S. Bone Mineral Density Evaluation Among Type 2 Diabetic Patients in Rural Haryana, India: An Analytical Cross-Sectional Study. Cureus 2023; 15:e45908. [PMID: 37885541 PMCID: PMC10599097 DOI: 10.7759/cureus.45908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Background and objective Diabetes is one of the most prevalent diseases globally, affecting almost all organ systems. The relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) has been a matter of controversy, and data from developing countries in this regard is highly scarce. Early detection of low BMD in diabetic patients will help prevent further bone loss and risk of fragility fracture. In this study, we aimed to assess the effect of T2DM on BMD among the rural population of Haryana, India. Materials and methods This was a cross-sectional study involving 850 patients between 25 and 60 years of age, including 425 diabetic and 425 non-diabetic subjects (as controls). Calcaneus BMD was measured by using quantitative ultrasound (QUS), and the data were compared against matched parameters in both groups. Results The mean age of diabetics was 42.21 ± 10.5 years and that of non-diabetics was 42.18 ± 10.4 years. The mean BMI was 27.8 ± 4.17 kg/m2 in diabetics and 21.6 ± 3.32 kg/m2 in the non-diabetic control group. BMD values significantly differed between the groups: -4.3 ± 1.23 vs. -2.6 ± 0.34 in diabetics and non-diabetics, respectively (p=0.002). Conclusion A significant difference in BMD was observed between the diabetic and non-diabetic groups. Based on our findings, We recommend that all type 2 diabetics be screened for osteoporosis so that this silent bone loss can be detected in the early phase itself and appropriate preventive measures can be promptly initiated.
Collapse
Affiliation(s)
- Nitish Khandelwal
- Department of Pathology, Military Hospital Ambala Cantt, Ambala, IND
| | - Surbhi Rajauria
- Department of Pathology, Maharishi Markandeshwar University Mullana, Ambala, IND
| | | | | | - Sanjay Rai
- Department of Orthopedics, Military Hospital Ambala Cantt, Ambala, IND
| |
Collapse
|
9
|
Meier C, Eastell R, Pierroz DD, Lane NE, Al-Daghri N, Suzuki A, Napoli N, Mithal A, Chakhtoura M, Fuleihan GEH, Ferrari S. Biochemical Markers of Bone Fragility in Patients with Diabetes. A Narrative Review by the IOF and the ECTS. J Clin Endocrinol Metab 2023; 108:dgad255. [PMID: 37155585 PMCID: PMC10505554 DOI: 10.1210/clinem/dgad255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
CONTEXT The risk of fragility fractures is increased in both type 1 and type 2 diabetes. Numerous biochemical markers reflecting bone and/or glucose metabolism have been evaluated in this context. This review summarizes current data on biochemical markers in relation to bone fragility and fracture risk in diabetes. METHODS Literature review by a group of experts from the International Osteoporosis Foundation (IOF) and European Calcified Tissue Society (ECTS) focusing on biochemical markers, diabetes, diabetes treatments and bone in adults. RESULTS Although bone resorption and bone formation markers are low and poorly predictive of fracture risk in diabetes, osteoporosis drugs seem to change bone turnover markers in diabetics similarly to non-diabetics, with similar reductions in fracture risk. Several other biochemical markers related to bone and glucose metabolism have been correlated with BMD and/or fracture risk in diabetes, including osteocyte-related markers such as sclerostin, HbA1c and advanced glycation end products (AGEs), inflammatory markers and adipokines, as well as IGF-1 and calciotropic hormones. CONCLUSION Several biochemical markers and hormonal levels related to bone and/or glucose metabolism have been associated with skeletal parameters in diabetes. Currently, only HbA1c levels seem to provide a reliable estimate of fracture risk, while bone turnover markers could be used to monitor the effects of anti-osteoporosis therapy.
Collapse
Affiliation(s)
- Christian Meier
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, 4031 Basel, Switzerland
| | - Richard Eastell
- Academic Unit of Bone Metabolism, Mellanby Centre for Bone Research, University of Sheffield, S57AU Sheffield, UK
| | | | - Nancy E Lane
- Department of Medicine and Rheumatology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Nasser Al-Daghri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Atsushi Suzuki
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Department of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Ambrish Mithal
- Institute of Diabetes and Endocrinology, Max Healthcare, Saket, New Delhi 110017, India
| | - Marlene Chakhtoura
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Ghada El-Hajj Fuleihan
- Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone Disorders, American University of Beirut Medical Center, Riad El Solh, Beirut 6044, Lebanon
| | - Serge Ferrari
- Service and Laboratory of Bone Diseases, Geneva University Hospital and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Chen W, Jin X, Wang T, Bai R, Shi J, Jiang Y, Tan S, Wu R, Zeng S, Zheng H, Jia H, Li S. Ginsenoside Rg1 interferes with the progression of diabetic osteoporosis by promoting type H angiogenesis modulating vasculogenic and osteogenic coupling. Front Pharmacol 2022; 13:1010937. [PMID: 36467080 PMCID: PMC9712449 DOI: 10.3389/fphar.2022.1010937] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 08/13/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) has been demonstrated to have antidiabetic and antiosteoporotic activities. The aim of this study was to investigate the protective effect of Rg1 against diabetic osteoporosis and the underlying mechanism. In vitro, we found that Rg1 increased the number of osteoprogenitors and alleviated high glucose (HG) induced apoptosis of osteoprogenitors by MTT assays and flow cytometry. qRT‒PCR and western blot analysis suggested that Rg1 can also promote the secretion of vascular endothelial growth factor (VEGF) by osteoprogenitors and promote the coupling of osteogenesis and angiogenesis. Rg1 can also promote the proliferation of human umbilical vein endothelial cells (HUVECs) cultured in high glucose, enhance the angiogenic ability of endothelial cells, and activate the Notch pathway to promote endothelial cells to secrete the osteogenesis-related factor Noggin to regulate osteogenesis, providing further feedback coupling of angiogenesis and osteogenesis. Therefore, we speculated that Rg1 may have similar effects on type H vessels. We used the Goto-Kakizaki (GK) rat model to perform immunofluorescence staining analysis on two markers of type H vessels, Endomucin (Emcn) and CD31, and the osteoblast-specific transcription factor Osterix, and found that Rg1 stimulates type H angiogenesis and bone formation. In vivo experiments also demonstrated that Rg1 promotes VEGF secretion, activates the Noggin/Notch pathway, increases the level of coupling between type H vessels and osteogenesis, and improves the bone structure of GK rats. All of these data reveal that Rg1 is a promising candidate drug for treating diabetic osteoporosis as a potentially bioactive molecule that promotes angiogenesis and osteointegration coupling.
Collapse
Affiliation(s)
- Wenhui Chen
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyan Jin
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ting Wang
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Rui Bai
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine, Nanning, China
| | - Jun Shi
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Yunxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Simin Tan
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruijie Wu
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiqi Zeng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongxiang Zheng
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongyang Jia
- School of Graduate, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuanglei Li
- Department of Endocrinology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
11
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
12
|
Karim K, Giribabu N, Salleh N. Marantodes pumilum (blume) Kuntze (Kacip Fatimah) leaves aqueous extract prevents downregulation of Wnt/β-catenin pathway and upregulation of apoptosis in osteoblasts of estrogen-deficient, diabetes-induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114236. [PMID: 34044074 DOI: 10.1016/j.jep.2021.114236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Marantodes pumilum (Blume) Kuntze has been claimed to be beneficial in protecting the bone against loss in post-menopausal women. In view of increased incidence of diabetes mellitus (DM) in post-menopausal period, M. pumilum ability to overcome the detrimental effect of estrogen-deficiency and DM on the bones were identified. AIM OF THE STUDY To identify the mechanisms underlying protective effect of MPLA on the bone in estrogen-deficient, diabetic condition. METHODS Adult female, estrogen-deficient, diabetic rats (225 ± 10 g) were divided into untreated group and treated with M. pumilum leaf aqueous extract (MPLA) (50 mg/kg/day and 100 mg/kg/day) and estrogen for 28 days (n = 6 per group). Fasting blood glucose (FBG) levels were weekly monitored and at the end of treatment, rats were sacrificed and femur bones were harvested. Bone collagen distribution was observed by Masson's trichome staining. Levels of bone osteoblastogenesis, apoptosis and proliferative markers were evaluated by Realtime PCR, Western blotting, immunofluorescence and immunohistochemistry. RESULTS MPLA treatment was able to ameliorate the increased in FBG levels in estrogen deficient, diabetic rats. In these rats, decreased bone collagen content, expression level of osteoblastogenesis markers (Wnt3a, β-catenin, Frizzled, Dvl and LRP-5) and proliferative markers (PCNA and c-Myc) and increased expression of anti-osteoblastogenesis marker (Gsk-3β) and apoptosis markers (Caspase-3, Caspase-9 and Bax) but not Bcl-2 were ameliorated. Effects of 100 mg/kg/day MPLA were greater than estrogen. CONCLUSION MPLA was able to protect against bone loss, thus making it a promising agent for the treatment of osteoporosis in women with estrogen deficient, diabetic condition.
Collapse
Affiliation(s)
- Kamarulzaman Karim
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Naguib Salleh
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Hidayat K, Fang QL, Shi BM, Qin LQ. Influence of glycemic control and hypoglycemia on the risk of fracture in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. Osteoporos Int 2021; 32:1693-1704. [PMID: 33860816 DOI: 10.1007/s00198-021-05934-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
Individuals with diabetes mellitus (DM) have an increased risk of fracture. Glycemic control is crucial to the management of DM, but there are concerns pertaining to hypoglycemia development in the course of glycemic control target achievement. The extent to which glycemic control may affect the risk of fracture remains less defined. Hypoglycemia-induced falls have been suggested to contribute to an elevated risk of fracture in DM patients. In this meta-analysis of observational studies, we aimed to investigate the relative contribution of glycemic control, as measured by glycated hemoglobin (HbA1c), and hypoglycemia to the risk of fracture in DM. The PubMed and Web of Science databases were searched for relevant studies. A random-effects model was used to generate summary relative risks (RRs) and 95% confidence intervals (CIs). Both increased HbA1c levels (RR per 1% increase 1.08, 95% CI 1.03, 1.14; nstudies = 10) and hypoglycemia (RR 1.52, 95% CI 1.23, 1.88; nstudies = 8) were associated with an increased risk of fracture. The association between HbA1c levels and the risk of fracture was somewhat nonlinear, with a noticeably increased risk observed at an HbA1c level ≥ 8%. The positive associations of HbA1c levels and hypoglycemia with the risk of fracture did not reach statistical significance in the studies that adjusted for insulin use, hypoglycemia, or falls for the former and in those that adjusted for falls for the latter. In summary, both increased HbA1c levels and hypoglycemia may increase the risk of fracture in patients with DM. The positive association between HbA1c levels and the risk of fracture appears to be, in part, explained by hypoglycemia-induced falls, possibly due to insulin use. The avoidance of hypoglycemia in the course of achieving good glycemic control through the careful selection of glucose-lowering medications may contribute to fracture prevention by reducing the risk of falls related to treatment-induced hypoglycemia.
Collapse
Affiliation(s)
- K Hidayat
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, China.
| | - Q-L Fang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China
| | - B-M Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215006, China.
| | - L-Q Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, No. 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
14
|
Andrade VFC, Besen D, Chula DC, Borba VZC, Dempster D, Moreira CA. Bone Marrow Adiposity in Premenopausal Women With Type 2 Diabetes With Observations on Peri-Trabecular Adipocytes. J Clin Endocrinol Metab 2021; 106:e3592-e3602. [PMID: 33974069 DOI: 10.1210/clinem/dgab322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT No study has yet evaluated the relationships among bone marrow adiposity (BMA), bone histomorphometry (BH), and glycemic control in premenopausal women with type 2 diabetes (T2DM). OBJECTIVE We aimed to assess the effect of glycemic control on BMA, correlate the parameters of BH with BMA, and correlate BMA with the use of hypoglycemic agents and with bone mineral density (BMD). METHODS This was a cross-sectional study that evaluated 26 premenopausal women with T2DM who were divided into groups with HbA1c < 7% (good control [GC], n = 10) and HbA1c > 7% (poor control [PC], n = 16). BMA parameters (adipocyte number [Ad.N], total adipocyte perimeter [Ad.Pm], total adipocyte area [Ad.Ar], percentage adipocyte volume per marrow volume [Ad.V/Ma.V]) and peri-trabecular adipocyte number divided by bone surface (Ad.N/BS) were evaluated. BH static (bone volume fraction [BV/TV], osteoid thickness [O.Th], osteoid surface/bone surface [OS/BS]) and dynamic parameters and serum insulin-like growth factor-1 were measured. BMA data were compared between the GC and PC groups. Correlations were performed. RESULTS Ad.N, Ad.Pm, and Ad.Ar were higher in PC (all, P = 0.04). HbA1c correlated positively with Ad.N/BS (P < 0.01) and Ad.N/BS correlated negatively with O.Th (P < 0.01) and OS/BS (P = 0.02). Positive and negative correlations were observed between insulin and metformin use, respectively, with all adipocyte parameters except Ad.N/BS (P < 0.05). Structural parameters were negatively correlated with the BMA. BMD of the femoral neck (r = -549, P < 0.01) and total femur (r = -0.502, P < 0.01) were negatively correlated with Ad.V/Ma.V. CONCLUSION Poor glycemic control is associated with hyperplasia and hypertrophy of BMAs and with lower BV/TV. Ad.N/BS, a new BMA parameter, is correlated with HbA1c and negatively with O.Th. The use of insulin seems to stimulate the expansion of BMA while that of metformin has the opposite effect. These findings suggest that the increase in BMA may play a role in the T2DM bone disease; on the other hand, good glycemic control might help prevent it.
Collapse
Affiliation(s)
- Vicente F C Andrade
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - Débora Besen
- Professor of Endocrinology, University of Southern Santa Catarina (Unisul), Palhoça, Santa Catarina, 88137-270, Brazil
| | - Domingos C Chula
- Nephrology Unit, Clinics Hospital of Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - Victória Z C Borba
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
| | - David Dempster
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Carolina Aguiar Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Paraná, Curitiba, Paraná, 80030-110, Brazil
- Laboratory PRO - section of bone histomorphometry, Fundação Pró-Renal, Curitiba, Paraná, 80030-110, Brazil
| |
Collapse
|
15
|
Maamar El Asri M, Pariente Rodrigo E, Díaz-Salazar de la Flor S, Pini Valdivieso S, Ramos Barrón MC, Olmos Martínez JM, Hernández Hernández JL. Trabecular bone score and 25-hydroxyvitamin D levels in microvascular complications of type 2 diabetes mellitus. Med Clin (Barc) 2021; 158:308-314. [PMID: 34238580 DOI: 10.1016/j.medcli.2021.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Diabetic microvascular disease (MVD) has been associated with increased bone fragility. The objective was to analyse the relationship between MVD and trabecular microstructure -assessed by the trabecular bone score (TBS)- in type 2 diabetic (T2D) patients. A second aim was to know the relationship between vitamin D and MVD. PATIENTS AND METHODS Cross-sectional study, which included men >50 years and postmenopausal women participating in a population-based cohort, diagnosed with T2D. The presence of nephropathy, neuropathy and/or retinopathy was classified as MVD+. Clinical and laboratory variables, TBS, 25(OH)D and BMD by DXA, were evaluated. Bivariate and multivariate analysis were performed. RESULTS We evaluated 361 patients (51.1% women), 63.8 (9) years old. Of them, 92 were MVD+ and presented poorer metabolic control, longer duration of T2D, lower TBS [1.235 (.1) vs. 1.287 (.1); p=.007] and lower levels of 25(OH)D [18.3 (7) vs. 21.6 (8) ng/ml; p=.0001). There were no differences between MVD+ and MVD- with regard to BMD or P1NP and β-CTX markers. After adjusting for confounders, including HbA1c and duration of T2D, the TBS value in MVD+ was 1.252 (95% CI 1.230-1.274) vs. 1.281 (95% CI 1.267-1.295) in MVD- (p=.034). MVD was associated with a 25(OH)D level <20 ng ml with an adjusted OR of 1.88 (95% CI 1.06-3.31; p=.028). CONCLUSIONS The MVD+ patients presented a significantly lower TBS, after adjusting for confounders. Furthermore, multivariable analysis showed a significant relationship between a low 25(OH)D level and a prevalent MVD.
Collapse
Affiliation(s)
| | | | | | - Stefanie Pini Valdivieso
- Servicio de Hospitalización Domiciliaria, Hospital Universitario Marqués de Valdecilla, Santander, España
| | | | - José M Olmos Martínez
- Servicio de Medicina Interna, Unidad de Metabolismo Óseo, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, España
| | - José L Hernández Hernández
- Servicio de Medicina Interna, Unidad de Metabolismo Óseo, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, España
| |
Collapse
|
16
|
Garita B, Maligro J, Sadoughi S, Wu PH, Liebenberg E, Horvai A, Link TM, Kazakia GJ. Microstructural abnormalities are evident by histology but not HR-pQCT at the periosteal cortex of the human tibia under CVD and T2D conditions. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
17
|
Hu XF, Xiang G, Wang TJ, Ma YB, Zhang Y, Yan YB, Zhao X, Wu ZX, Feng YF, Lei W. Impairment of type H vessels by NOX2-mediated endothelial oxidative stress: critical mechanisms and therapeutic targets for bone fragility in streptozotocin-induced type 1 diabetic mice. Theranostics 2021; 11:3796-3812. [PMID: 33664862 PMCID: PMC7914348 DOI: 10.7150/thno.50907] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Mechanisms underlying the compromised bone formation in type 1 diabetes mellitus (T1DM), which causes bone fragility and frequent fractures, remain poorly understood. Recent advances in organ-specific vascular endothelial cells (ECs) identify type H blood vessel injury in the bone, which actively direct osteogenesis, as a possible player. Methods: T1DM was induced in mice by streptozotocin (STZ) injection in two severity degrees. Bony endothelium, the coupling of angiogenesis and osteogenesis, and bone mass quality were evaluated. Insulin, antioxidants, and NADPH oxidase (NOX) inhibitors were administered to diabetic animals to investigate possible mechanisms and design therapeutic strategies. Results: T1DM in mice led to the holistic abnormality of the vascular system in the bone, especially type H vessels, resulting in the uncoupling of angiogenesis and osteogenesis and inhibition of bone formation. The severity of osteopathy was positively related to glycemic levels. These pathological changes were attenuated by early-started, but not late-started, insulin therapy. ECs in diabetic bones showed significantly higher levels of reactive oxygen species (ROS) and NOX 1 and 2. Impairments of bone vessels and bone mass were effectively ameliorated by treatment with anti-oxidants or NOX2 inhibitors, but not by a NOX1/4 inhibitor. GSK2795039 (GSK), a NOX2 inhibitor, significantly supplemented the insulin effect on the diabetic bone. Conclusions: Diabetic osteopathy could be a chronic microvascular complication of T1DM. The impairment of type H vessels by NOX2-mediated endothelial oxidative stress might be an important contributor that can serve as a therapeutic target for T1DM-induced osteopathy.
Collapse
|
18
|
Lee HS, Hwang JS. Impact of Type 2 Diabetes Mellitus and Antidiabetic Medications on Bone Metabolism. Curr Diab Rep 2020; 20:78. [PMID: 33247351 DOI: 10.1007/s11892-020-01361-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the complex interactions between hyperglycemia and bone fragility and the effects of antidiabetic medications on bone metabolism. RECENT FINDINGS Type 2 diabetes (T2D) is associated with increased risk of bone fracture even in those with increased or normal bone mineral density (BMD). The pathophysiology of diabetic bone disease is not completely understood, but it is thought to be multifactorial and associated with complex cross talk among factors such as AGEs, IGF-1, enteric hormones, and pro-inflammatory cytokines. Treatment for T2D may have an impact on bone metabolism. Diabetic bone disease should be considered a serious complication of long-standing T2D.
Collapse
Affiliation(s)
- Hae Sang Lee
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Ajou University Hospital, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Korea
| | - Jin Soon Hwang
- Department of Pediatrics, Ajou University Hospital, Ajou University School of Medicine, Ajou University Hospital, San 5, Wonchon-dong, Yeongtong-gu, Suwon, 443-721, Korea.
| |
Collapse
|
19
|
Asghar A, Kumar A, Kant Narayan R, Naaz S. Is the cortical capillary renamed as the transcortical vessel in diaphyseal vascularity? Anat Rec (Hoboken) 2020; 303:2774-2784. [PMID: 32470175 DOI: 10.1002/ar.24461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 04/14/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
A recent article published in Nature Metabolism, "A network of trans-cortical capillaries as a mainstay for blood circulation in long bones," explained the long bone vascularity. In the mouse model, the authors demonstrated hundreds of transcortical vessels (TCVs) commencing from the bone marrow and traversing the whole cortical thickness. They realized that TCVs were the same as bleeding vessels of periosteal bed observed in the human tibia and femoral epiphysis during surgery. TCVs expressed arterial or venous markers and were proposed to be the backbone of bone vascularity as 80% of arterial and 59% of venous blood distributed through them. This new evidence challenged the existence of the "cortical capillaries" stated in previous literature. We conducted a review of the existing literature to compare this model with those in earlier research. The bone vascularity model was explained by many researchers who did their work in animal models like pig, dog, rabbit, and mouse. The TCVs were identified in these animal model studies as cortical capillaries or vessels of cortical canals. Studies are scarce, showing the presence of TCVs in humans. The role of TCVs in human cortical vascularity remains ambiguous until the substantial evidence is collected in future studies.
Collapse
Affiliation(s)
- Adil Asghar
- Department of Anatomy, All India Institute of Medical Sciences Patna, Patna, India
| | - Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences Patna, Patna, India
| | - Ravi Kant Narayan
- Department of Anatomy, All India Institute of Medical Sciences Patna, Patna, India
| | - Shagufta Naaz
- Department of Anaesthesiology, All India Institute of Medical Sciences Patna, Patna, India
| |
Collapse
|
20
|
de Oliveira PGFP, Bonfante EA, Bergamo ETP, de Souza SLS, Riella L, Torroni A, Benalcazar Jalkh EB, Witek L, Lopez CD, Zambuzzi WF, Coelho PG. Obesity/Metabolic Syndrome and Diabetes Mellitus on Peri-implantitis. Trends Endocrinol Metab 2020; 31:596-610. [PMID: 32591106 DOI: 10.1016/j.tem.2020.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Literature has reported that up to 50% of dental implants may be affected by peri-implantitis, a bacteria-induced chronic inflammatory process, which promotes osteoclast-mediated bone resorption and inhibits bone formation, leading to progressive bone loss around implants. Current evidence points toward an increased risk for the development of peri-implantitis in both obesity/metabolic syndrome (MetS) and diabetes mellitus (DM) conditions relative to the healthy population. Currently, there is no effective treatment for peri-implantitis and the 50% prevalence in MetS and DM, along with its predicted increase in the worldwide population, presents a major concern in implant dentistry as hyperglycemic conditions are associated with bone-healing impairment; this may be through dysfunction of osteocalcin-induced glucose metabolism. The MetS/DM proinflammatory systemic condition and altered immune/microbiome response affect both catabolic and anabolic events of bone-healing that include increased osteoclastogenesis and compromised osteoblast activity, which could be explained by the dysfunction of insulin receptor that led to activation of signals related with osteoblast differentiation. Furthermore, chronic hyperglycemia along with associated micro- and macro-vascular ailments leads to delayed/impaired wound healing due to activation of pathways that are particularly important in initiating events linked to inflammation, oxidative stress, and cell apoptosis; this may be through deactivation of AKT/PKB protein, which possesses a pivotal role in drive survival and eNOS signaling. This review presents an overview of the local and systemic mechanisms synergistically affecting bone-healing impairment in MetS/DM individuals, as well as a rationale for hierarchical animal model selection, in an effort to characterize peri-implantitis disease and treatment.
Collapse
Affiliation(s)
- Paula Gabriela Faciola Pessôa de Oliveira
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Periodontology, School of Dentistry, University Center of State of Para, Belem, PA, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Sérgio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leonardo Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA
| | - Ernesto B Benalcazar Jalkh
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine Baltimore, MD, USA
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Bioscience Institute (IBB), UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA; Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
21
|
Andrade VFC, Chula DC, Sabbag FP, Cavalheiro DDDS, Bavia L, Ambrósio AR, da Costa CRV, Dos Reis LM, Borba VZC, Moreira CA. Bone Histomorphometry in Young Patients With Type 2 Diabetes is Affected by Disease Control and Chronic Complications. J Clin Endocrinol Metab 2020; 105:5582037. [PMID: 31587051 DOI: 10.1210/clinem/dgz070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/03/2019] [Indexed: 02/08/2023]
Abstract
CONTEXT Type 2 diabetes mellitus (T2DM) is associated with an increased risk of fractures. No study has evaluated the correlation of bone histomorphometry (BH) parameters with glycemic control and presence of chronic complications (CCs) in premenopausal women with T2DM. OBJECTIVES To evaluate BH and correlate them with the degree of glycemic control and presence of CCs. DESIGN, SETTINGS, AND PATIENTS This was a cross-sectional study conducted at a tertiary medical center. Twenty-six premenopausal women with T2DM were divided into groups with glycated hemoglobin HbA1c < 7% (good control, GC; n = 10) and HbA1c > 7% (poor control, PC; n = 16), and further subdivided into groups with (n = 9) and without (n = 17) CCs. BH parameters (bone volume [bone volume per total volume, BV/TV], trabecular thickness [Tb.Th], trabecular number [Tb.N], trabecular separation [Tb.Sp], osteoid thickness [O.Th], osteoid surface [osteoid surface per bone surface, OS/BS]), mineralizing surface [MS/BS], bone formation rate [BFR]), mineral apposition rate [MAR]) as well as serum pentosidine (PEN) and insulin-like growth factor (IGF)-1 were measured. The BH data were compared among the groups and with a BH control group (control group, CG, n = 15) matched by age, sex, and race. RESULTS BV/TV was increased in GC (P < .001) and PC (P = .05) groups and O.th (P = .03) was smaller in the PC group than in the CG. A comparison of the groups with and without CCs with the CG showed in the group with CCs, O.Th was smaller(P = .01) and BV/TV similar to the CG (P = .11). HbA1c correlated negatively with O.Th (P = .02) and OS/BS (P = .01). There was no correlation of BH to PEN and IGF-1. CONCLUSION BH in premenopausal patients with T2DM is affected by disease control and chronic complications.
Collapse
Affiliation(s)
- Vicente F C Andrade
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
| | - Domingos C Chula
- Nephrology Unit, Clinics Hospital of Federal University of Parana, Curitiba, Brazil
| | - Fábio P Sabbag
- Ophthalmologist, retinal and vitreo specialist at the Clinic Center of Vision, Medical School of Ribeirão Preto, São Paulo University, Curitiba, São Paulo, Brazil
| | | | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Clinics Hospital of Federal do Parana University, Brazil
| | - Altair Rogério Ambrósio
- Laboratory of Molecular Immunopathology, Department of Medical Pathology, Clinics Hospital of Federal do Parana University, Brazil
| | | | - Luciene M Dos Reis
- LIM 16 - Laboratory of Renal Physiopathology, Clinics Hospital (HCFMUSP), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Victória Z C Borba
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
| | - Carolina Aguiar Moreira
- Endocrine Division (SEMPR), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
- Laboratory PRO, Section of bone histomorphometry, Fundação Pró-Renal, Curitiba, Brazil
| |
Collapse
|
22
|
Valentini A, Cianfarani MA, Federici M, Tarantino U, Bertoli A. Osteoprotegerin in diabetic osteopathy. Nutr Metab Cardiovasc Dis 2020; 30:49-55. [PMID: 31757570 DOI: 10.1016/j.numecd.2019.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
AIM The aim of this study is to evaluate the relationship between OPG and the degree of glycaemic control in a population of elderly subjects. METHODS AND RESULTS Data presented included 172 elderly subjects, of whom 107 were hospitalized for a hip fracture and 65 were non fractured outpatients. All participants received a multidimensional geriatric evaluation and underwent blood sampling. HbA1c, OPG, CTX and OC were measured and DXA scans were performed. Carotid intima-media thickness (IMT) was measured in all outpatients. Diabetic patients had more comorbidities, higher mean values of lumbar spine and femoral neck BMD and T-score, lower circulating levels of OC and CTX, and higher circulating levels of OPG compared to non-diabetic subjects. OPG was directly correlated with HbA1c. This association was most evident in non-fractured elderly subjects. Moreover, diabetic patients with IMT>1.5 mm had greater mean values of OPG than non-diabetic subjects with high IMT and than elderly subjects with IMT < 1.5 mm, with and without T2DM. CONCLUSIONS Diabetic patients have reduced circulating levels of OC and CTX, and elevated serum levels of OPG, suggesting a state of low bone turnover. Reduced bone turnover causes an increase of BMD and could lead to a poor bone quality. OPG and HbA1c were directly correlated and OPG mean values were higher in diabetic patients with poor glucose control. Diabetic osteopathy could be considered a late complication of T2DM, directly related with the degree of glucose control and the duration of the disease.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria A Cianfarani
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Orthopaedics and Traumatology, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Aldo Bertoli
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
23
|
Wen J, Tang K, Zhu F, Lin W, Rao H, Huang H, Yao J, Chen L, Liang J, Lin L, Chen H, Li M, Gong X, Peng S, Lu J, Bi Y, Wang W, Ning G, Zhu P, Chen G. Is Retinal Microvascular Abnormalities an Independent Risk Factor of Vertebral Fractures? A Prospective Study From a Chinese Population. JBMR Plus 2018; 1:107-115. [PMID: 30283884 PMCID: PMC6124164 DOI: 10.1002/jbm4.10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/09/2017] [Accepted: 08/15/2017] [Indexed: 12/02/2022] Open
Abstract
Low bone mineral density (BMD) and microvascular diseases (MVD) share various common risk factors; however, whether MVD is an independent risk factor of vertebral fractures is incompletely understood. The aim of this study is to clarify whether MVD is an independent risk factor of vertebral fractures. In this prospective study, calcaneal BMD and retinal microvascular abnormalities were assessed at baseline from June 2011 to January 2012. A total of 2176 premenopausal women, 2633 postmenopausal women, 2998 men aged <65 years, and 737 men aged ≥65 were included. Then with/without retinal microvascular abnormalities cohorts were followed for an average of 2.93 years to find out the relationship between MVD and vertebral fractures. At the baseline, after full adjustment, retinal microvascular abnormalities were related to risk of low BMD only in men aged ≥65 years (odds ratio [OR] = 2.506; 95% confidence interval [CI] 1.454–4.321; p = 0.001). After follow‐up of 2.93 years, retinal microvascular abnormalities were related to risk of vertebral fractures in men aged ≥65 years (OR = 2.475; 95% CI 1.085–5.646; p = 0.031) when adjustment for confounding factors. However, no associations were found between MVD and vertebral fractures in men aged <65 years, premenopausal women, and postmenopausal women. When stratified by diabetes, in the without‐diabetes group, the men with retinal microvascular abnormalities had higher risk for vertebral fractures than without retinopathy (OR = 2.194; 95% CI 1.097–4.389; p = 0.026); however, the difference was not found in women. In the diabetes group, there were no significant differences of risk for vertebral fractures between those with retinal microvascular abnormalities and those without both in men and women. Stratified by hypertension, the men with retinopathy had higher risk for vertebral fractures than those without among the hypertension group (OR = 2.034; 95% CI 1.163–3.559; p = 0.013), but a difference was not found among women. In the without‐hypertension group, no relation was found between MVD and fracture both in men and women. In conclusion, MVD is an independent risk factor of vertebral fractures in old men. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Junping Wen
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Kaka Tang
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Fengye Zhu
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Wei Lin
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Huiying Rao
- Department of Ophthalmology Fujian Provincial Hospital Fujian Medical University Fuzhou China
| | - Huibin Huang
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Jin Yao
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Ling Chen
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Jixing Liang
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Lixiang Lin
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Hongjie Chen
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Meizhi Li
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Xueying Gong
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Shushan Peng
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Jieli Lu
- Department of Endocrinology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Yufang Bi
- Department of Endocrinology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Weiqing Wang
- Department of Endocrinology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guang Ning
- Department of Endocrinology Ruijin Hospital Shanghai Jiaotong University School of Medicine Shanghai China
| | - Pengli Zhu
- Department of Geriatrics Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| | - Gang Chen
- Department of Endocrinology Fujian Provincial Hospital Key Laboratory of Endocrinology Fujian Medical University Fuzhou China
| |
Collapse
|
24
|
Hu XF, Wang L, Xiang G, Lei W, Feng YF. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes. Acta Biomater 2018; 73:470-487. [PMID: 29649637 DOI: 10.1016/j.actbio.2018.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Mechanism underlying the diabetes-induced poor osteointegration of implants remains elusive, making it a challenge to develop corresponding solutions. Here, we studied the role of angiogenesis in the diabetes-induced poor bone repair at the bone-implant interface (BII) and the related mechanisms. In vivo, titanium screws were implanted in the femurs of mice, and, in vitro, vascular endothelial cell (VEC) was cultured on titanium surface. Results showed that, compared with normal milieu (NM), diabetic milieu (DM) led to angiogenesis inhibition around implants which resulted in reduced osteoprogenitors and poor bone formation on BII in vivo. In vitro, DM caused significant increase of NADPH oxidases (NOX), dysfunction of mitochondria and overproduction of reactive oxygen species (ROS) in VEC on titanium surface, inducing obvious cell dysfunction. Both Mito-TEMPO (Mito, a mitochondria-targeted ROS antagonist) and apocynin (APO, a NOX inhibitor) effectively attenuated the oxidative stress and dysfunction of VEC, with the beneficial effects of APO significantly better than those of Mito. Further study showed that the diabetes-induced metabolic disturbance of VEC was significantly related to the increase of advanced glycation end products (AGEs) at the BII. Our results suggested that the AGEs-related and NOX-triggered cellular oxidative stress leads to VEC dysfunction and angiogenesis impairment at the BII, which plays a critical role in the compromised implant osteointegration under diabetic conditions. These demonstrated new insights into the BII in pathological states and also provided NOX and AGEs as promising therapeutic targets for developing novel implant materials to accelerate the angiogenesis and osteointegration of implants in diabetic patients with hyperglycemia. STATEMENT OF SIGNIFICANCE The high failure rate of bone implants in diabetic patients causes patients terrible pain and limits the clinical application of implant materials. The mechanism underlying this phenomenon needs elucidation so that it would be possible to develop corresponding solutions. Our study demonstrated that the AGEs-related and NOX-triggered oxidative stress of VEC leads to angiogenesis impairment at the bone-implant interface (BII) in diabetes. These are critical mechanisms underlying the compromised implant osteointegration in diabetic hyperglycemia. These provide new insights into the BII in diseased states and also suggest NOX and AGEs as crucial therapeutic targets for developing novel implant materials which could modulate the oxidative stress on BII to get improved osteointegration and reduced implant failure, especially in diabetic patients.
Collapse
|
25
|
Mabilleau G, Pereira M, Chenu C. Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists. J Endocrinol 2018; 236:R29-R42. [PMID: 28855317 DOI: 10.1530/joe-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) leads to bone fragility and predisposes to increased risk of fracture, poor bone healing and other skeletal complications. In addition, some anti-diabetic therapies for T2DM can have notable detrimental skeletal effects. Thus, an appropriate therapeutic strategy for T2DM should not only be effective in re-establishing good glycaemic control but also in minimising skeletal complications. There is increasing evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs), now greatly prescribed for the treatment of T2DM, have beneficial skeletal effects although the underlying mechanisms are not completely understood. This review provides an overview of the direct and indirect effects of GLP-1RAs on bone physiology, focusing on bone quality and novel mechanisms of action on the vasculature and hormonal regulation. The overall experimental studies indicate significant positive skeletal effects of GLP-1RAs on bone quality and strength although their mechanisms of actions may differ according to various GLP-1RAs and clinical studies supporting their bone protective effects are still lacking. The possibility that GLP-1RAs could improve blood supply to bone, which is essential for skeletal health, is of major interest and suggests that GLP-1 anti-diabetic therapy could benefit the rising number of elderly T2DM patients with osteoporosis and high fracture risk.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et biomatériauxIRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, Angers, France
| | - Marie Pereira
- Centre for Complement and Inflammation Research (CCIR)Department of Medicine, Imperial College London, London, UK
| | - Chantal Chenu
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| |
Collapse
|
26
|
Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol 2017; 5:827-838. [PMID: 28546096 DOI: 10.1016/s2213-8587(17)30134-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
Type 1 and type 2 diabetes are generally accepted to be associated with increased bone fracture risk. However, the pathophysiological mechanisms of diabetic bone disease are poorly understood, and whether the associated increased skeletal fragility is a comorbidity or a complication of diabetes remains under debate. Although there is some indication of a direct deleterious effect of microangiopathy on bone, the evidence is open to question, and whether diabetic osteopathy can be classified as a chronic, microvascular complication of diabetes remains uncertain. Here, we review the current knowledge of potential contributory factors to diabetic bone disease, particularly the association between diabetic microangiopathy and bone mineral density, bone structure, and bone turnover. Additionally, we discuss and propose a pathophysiological model of the effects of diabetic microvascular disease on bone, and examine the progression of bone disease alongside the evolution of diabetes.
Collapse
Affiliation(s)
| | - Stinus Hansen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Morten Frost
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Kim Brixen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Anne P Hermann
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
27
|
Dirkes RK, Ortinau LC, Rector RS, Olver TD, Hinton PS. Insulin-Stimulated Bone Blood Flow and Bone Biomechanical Properties Are Compromised in Obese, Type 2 Diabetic OLETF Rats. JBMR Plus 2017; 1:116-126. [PMID: 30283885 PMCID: PMC6124191 DOI: 10.1002/jbm4.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 01/20/2023] Open
Abstract
Type 2 diabetes (T2D) increases skeletal fragility and fracture risk; however, the underlying mechanisms remain to be identified. Impaired bone vascular function, in particular insulin‐stimulated vasodilation and blood flow is a potential, yet unexplored mechanism. The purpose of this study was to determine the effects of T2D on femoral biomechanical properties, trabecular microarchitecture, and insulin‐stimulated bone vasodilation by comparison of hyperphagic Otsuka Long‐Evans Tokushima Fatty (OLETF) rats with normoglycemic control OLETF rats. Four‐week old, male OLETF rats were randomized to two groups: type 2 diabetes (O‐T2D) or normoglycemic control (O‐CON). O‐T2D were allowed ad libitum access to a rodent chow diet and O‐CON underwent moderate caloric restriction (30% restriction relative to intake of O‐T2D) to maintain normal body weight (BW) and glycemia until 40 weeks of age. Hyperphagic O‐T2D rats had significantly greater BW, body fat, and blood glucose than O‐CON. Total cross‐sectional area (Tt.Ar), cortical area (Ct.Ar), Ct.Ar/Tt.Ar, and polar moment of inertia of the mid‐diaphyseal femur adjusted for BW were greater in O‐T2D rats versus O‐CON. Whole‐bone biomechanical properties of the femur assessed by torsional loading to failure did not differ between O‐T2D and O‐CON, but tissue‐level strength and stiffness adjusted for BW were reduced in O‐T2D relative to O‐CON. Micro–computed tomography (μCT) of the distal epiphysis showed that O‐T2D rats had reduced percent bone volume, trabecular number, and connectivity density, and greater trabecular spacing compared with O‐CON. Basal tibial blood flow assessed by microsphere infusion was similar in O‐T2D and O‐CON, but the blood flow response to insulin stimulation in both the proximal epiphysis and diaphyseal marrow was lesser in O‐T2D compared to O‐CON. In summary, impaired insulin‐stimulated bone blood flow is associated with deleterious changes in bone trabecular microarchitecture and cortical biomechanical properties in T2D, suggesting that vascular dysfunction might play a causal role in diabetic bone fragility. © 2017 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - Laura C Ortinau
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA.,Division of Gastroenterology and Hepatology Department of Medicine University of Missouri-Columbia Columbia MO USA.,Research Service Harry S Truman Memorial VA Hospital Columbia MO USA
| | - T Dylan Olver
- Department of Biomedical Sciences University of Missouri-Columbia Columbia MO USA
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology University of Missouri-Columbia Columbia MO USA
| |
Collapse
|