1
|
Topçu İnce B, Guieu S, Timur SS, Reçber T, Nemutlu E, Vaz Fernandes MH, Eroğlu H. Design and characterization of memantine and donepezil loaded 3D scaffolds. Pharm Dev Technol 2025:1-17. [PMID: 40237315 DOI: 10.1080/10837450.2025.2493256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Memantine HCl (MEM) and Donepezil HCl (DON) are widely used separately and in combination to treat Alzheimer's disease, and some studies suggest that these drugs may also prevent bone fractures and promote bone regeneration. For this purpose, we formulated fiber-based 3D scaffolds for local delivery of MEM/DON to improve the regeneration process of bone fractures. First, Poly (ε-caprolactone) (PCL)-based MEM/DON-loaded nanofibrous membranes were produced by electrospinning, and then these nanofibrous membranes were transformed into 3D scaffolds using the thermally induced self-agglomeration (TISA) method. Encapsulation efficiency after these two steps was found to be around 20%. Analyses confirmed that the 3D scaffolds have a morphology similar to the extracellular matrix, and that their hydrophilicity, swelling ratio, porosity, and degradation rate were adequate for bone tissue regeneration. Release studies show that the scaffolds provide an initial burst release of the drugs, followed by a sustained release for 21 days. These 3D scaffolds did not show any cytotoxic effect on the L-929 cell line, and increased cell viability over time indicates that they can be used in tissue engineering applications.
Collapse
Affiliation(s)
- Betül Topçu İnce
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Samuel Guieu
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Selin Seda Timur
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Maria Helena Vaz Fernandes
- CICECO-Aveiro Institute of Materials, Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Hakan Eroğlu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Newman H, Shih YRV, Hoque J, Zeng Y, Natesh NR, Gonzales G, Guo W, Puviindran V, Wu C, Alman BA, Varghese S. Enabling adenosine signaling to promote aged fracture healing. NPJ Regen Med 2025; 10:18. [PMID: 40204719 PMCID: PMC11982386 DOI: 10.1038/s41536-025-00406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/27/2025] [Indexed: 04/11/2025] Open
Abstract
Bone fractures and related complications are a significant concern for older adults, particularly with the growing aging population. Therapeutic interventions that promote bone tissue regeneration are attractive for geriatric fracture repair. Extracellular adenosine plays a key role in bone homeostasis and regeneration. Herein, we examined the changes in extracellular adenosine with aging and the potential of local delivery of adenosine to promote fracture healing using aged mice. Extracellular adenosine level was found to be significantly lower in aged bone tissue compared to young mice. Concomitantly, the ecto-5'-nucleotidase CD73 expression was also lower in aged bone. Local delivery of adenosine using injectable, in situ curing microgel delivery units yielded a pro-regenerative environment and promoted fracture healing in aged mice. This study offers new insights into age-related physiological changes in adenosine levels and demonstrates the therapeutic potential of adenosine supplementation to circumvent the compromised healing of geriatric fractures.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Yu-Ru V Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jiaul Hoque
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yuze Zeng
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Naveen R Natesh
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Gavin Gonzales
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA
| | - Wendi Guo
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Vijitha Puviindran
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Colleen Wu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA.
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Momenzadeh K, Yeritsyan D, Abbasian M, Kheir N, Hanna P, Wang J, Dosta P, Papaioannou G, Goldfarb S, Tang CC, Amar-Lewis E, Nicole Prado Larrea M, Martinez Lozano E, Yousef M, Wixted J, Wein M, Artzi N, Nazarian A. Stimulation of fracture mineralization by salt-inducible kinase inhibitors. Front Bioeng Biotechnol 2024; 12:1450611. [PMID: 39359266 PMCID: PMC11445660 DOI: 10.3389/fbioe.2024.1450611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Over 6.8 million fractures occur annually in the US, with 10% experiencing delayed- or non-union. Anabolic therapeutics like PTH analogs stimulate fracture repair, and small molecule salt inducible kinase (SIK) inhibitors mimic PTH action. This study tests whether the SIK inhibitor YKL-05-099 accelerates fracture callus osteogenesis. Methods 126 female mice underwent femoral shaft pinning and midshaft fracture, receiving daily injections of PBS, YKL-05-099, or PTH. Callus tissues were analyzed via RT-qPCR, histology, single-cell RNA-seq, and μCT imaging. Biomechanical testing evaluated tissue rigidity. A hydrogel-based delivery system for PTH and siRNAs targeting SIK2/SIK3 was developed and tested. Results YKL-05-099 and PTH-treated mice showed higher mineralized callus volume fraction and improved structural rigidity. RNA-seq indicated YKL-05-099 increased osteoblast subsets and reduced chondrocyte precursors. Hydrogel-released siRNAs maintained target knockdown, accelerating callus mineralization. Discussion YKL-05-099 enhances fracture repair, supporting selective SIK inhibitors' development for clinical use. Hydrogel-based siRNA delivery offers targeted localized treatment at fracture sites.
Collapse
Affiliation(s)
- Kaveh Momenzadeh
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Diana Yeritsyan
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohammadreza Abbasian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nadim Kheir
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Philip Hanna
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jialiang Wang
- The Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Garyfallia Papaioannou
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Goldfarb
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eliz Amar-Lewis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Michaela Nicole Prado Larrea
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Edith Martinez Lozano
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mohamed Yousef
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - John Wixted
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Marc Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, United States
| | - Ara Nazarian
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
- Department of Orthopaedic Surgery, Yerevan State Medical University, Yerevan, Armenia
| |
Collapse
|
4
|
Mangiavacchi A, Morelli G, Reppe S, Saera-Vila A, Liu P, Eggerschwiler B, Zhang H, Bensaddek D, Casanova EA, Medina Gomez C, Prijatelj V, Della Valle F, Atinbayeva N, Izpisua Belmonte JC, Rivadeneira F, Cinelli P, Gautvik KM, Orlando V. LINE-1 RNA triggers matrix formation in bone cells via a PKR-mediated inflammatory response. EMBO J 2024; 43:3587-3603. [PMID: 38951609 PMCID: PMC11377738 DOI: 10.1038/s44318-024-00143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
Transposable elements (TEs) are mobile genetic modules of viral derivation that have been co-opted to become modulators of mammalian gene expression. TEs are a major source of endogenous dsRNAs, signaling molecules able to coordinate inflammatory responses in various physiological processes. Here, we provide evidence for a positive involvement of TEs in inflammation-driven bone repair and mineralization. In newly fractured mice bone, we observed an early transient upregulation of repeats occurring concurrently with the initiation of the inflammatory stage. In human bone biopsies, analysis revealed a significant correlation between repeats expression, mechanical stress and bone mineral density. We investigated a potential link between LINE-1 (L1) expression and bone mineralization by delivering a synthetic L1 RNA to osteoporotic patient-derived mesenchymal stem cells and observed a dsRNA-triggered protein kinase (PKR)-mediated stress response that led to strongly increased mineralization. This response was associated with a strong and transient inflammation, accompanied by a global translation attenuation induced by eIF2α phosphorylation. We demonstrated that L1 transfection reshaped the secretory profile of osteoblasts, triggering a paracrine activity that stimulated the mineralization of recipient cells.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| | - Gabriele Morelli
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Sjur Reppe
- Oslo University Hospital, Department of Medical Biochemistry, Oslo, Norway
- Lovisenberg Diaconal Hospital, Unger-Vetlesen Institute, Oslo, Norway
- Oslo University Hospital, Department of Plastic and Reconstructive Surgery, Oslo, Norway
| | | | - Peng Liu
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Benjamin Eggerschwiler
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Dalila Bensaddek
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | - Elisa A Casanova
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | | | - Vid Prijatelj
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Francesco Della Valle
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
- Altos Labs, San Diego, CA, USA
| | - Nazerke Atinbayeva
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia
| | | | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Paolo Cinelli
- Department of Trauma, University Hospital Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Valerio Orlando
- King Abdullah University of Science and Technology (KAUST), Biological Environmental Science and Engineering Division, Thuwal, 23500-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Hadjiargyrou M, Kotsiopriftis M, Lauzier D, Hamdy RC, Kloen P. Activation of Wnt signaling in human fracture callus and nonunion tissues. Bone Rep 2024; 22:101780. [PMID: 39005846 PMCID: PMC11245924 DOI: 10.1016/j.bonr.2024.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
The Wnt signaling pathway is a key molecular process during fracture repair. Although much of what we now know about the role of this pathway in bone is derived from in vitro and animal studies, the same cannot be said about humans. As such, we hypothesized that Wnt signaling will also be a key process in humans during physiological fracture healing as well as in the development of a nonunion (hypertrophic and oligotrophic). We further hypothesized that the expression of Wnt-signaling pathway genes/proteins would exhibit a differential expression pattern between physiological fracture callus and the pathological nonunion tissues. We tested these two hypotheses by examining the mRNA levels of key Wnt-signaling related genes: ligands (WNT4, WNT10a), receptors (FZD4, LRP5, LRP6), inhibitors (DKK1, SOST) and modulators (CTNNB1 and PORCN). RNA sequencing from calluses as well as from the two nonunion tissue types, revealed that all of these genes were expressed at about the same level in these three tissue types. Further, spatial expression experiments identified the cells responsible of producing these proteins. Robust expression was detected in osteoblasts for the majority of these genes except SOST which displayed low expression, but in contrast, was mostly detected in osteocytes. Many of these genes were also expressed by callus chondrocytes as well. Taken together, these results confirm that Wnt signaling is indeed active during both human physiological fracture healing as well as in pathological nonunions.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Maria Kotsiopriftis
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC H4A 0A9, Canada
| | - Dominique Lauzier
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC H4A 0A9, Canada
| | - Reggie C Hamdy
- Division of Orthopaedic Surgery, Shriners Hospital for Children, Montreal Children Hospital, McGill University, Montreal, QC H4A 0A9, Canada
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC, location Meibergdreef 9, Amsterdam, the Netherlands
- Amsterdam Movement Sciences, (Tissue Function and Regeneration), Amsterdam, the Netherlands
| |
Collapse
|
6
|
Song C, Liu Y, Tao X, Cheng K, Cai W, Zhou D, Zhou Y, Wang L, Shi H, Hao Q, Liu Z. Immunomodulation Pathogenesis and Treatment of Bone Nonunion. Orthop Surg 2024; 16:1770-1782. [PMID: 38946017 PMCID: PMC11293939 DOI: 10.1111/os.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Fractures and bone nonunion commonly require surgical intervention. Serious outcomes of non-healing in the late stages of fracture place a significant financial burden on society and families. Bone nonunion occurs when a fracture stops healing, for many reasons, and leads to a variety of bad outcomes. Numerous factors, including biomechanics and immunology, are involved in the complicated mechanisms of bone nonunion. The immune-inflammatory response plays a significant part in the emergence of bone nonunion, and the occurrence, control, and remission of inflammation in the bone healing process have a significant influence on the ultimate success of bone tissue repair. In the bone microenvironment, immune cells and associated cytokines control bone repair, which is significantly influenced by macrophages, T cells, and fibroblast growth factor. To limit acute inflammation and balance osteogenesis and osteoblastogenesis for tissue repair and regeneration, immune cells and various cytokines in the local microenvironment must be precisely regulated. As a bad complication of late-stage fractures, bone nonunion has a significant effect on patients' quality of life and socioeconomic development. Therefore, in-depth research on its pathogenesis and treatment methods has important clinical value. To provide more precise, focused therapeutic options for the treatment of bone nonunion, we discuss the regulatory roles of the key immune cells engaged in bone healing within the microenvironment during bone healing and their effect on osteogenesis.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yong Liu
- Department of Bone and Joint Sports MedicineXingguo People's Hospital, Gannan Medical CollegeXingguoChina
| | - Xingxing Tao
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Yang Zhou
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Liquan Wang
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Qi Hao
- Orthopedic Surgery, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bone‐Setting), Laboratory of Integrated Chinese and Western Medicine for Orthopedic and Traumatic Diseases Prevention and Treatment, The Affiliated Traditional Chinese Medicine HospitalSouthwest Medical UniversityLuzhouChina
- Department of OrthopedicsLuzhou Longmatan District People's HospitalLuzhouChina
| |
Collapse
|
7
|
Kim YH, Ha KY, Bae HW, Park HY, Ko YI, Ko MS, Kim SI. The Effects of Longer Use of Teriparatide on Clinical and Radiographic Outcomes after Spinal Fusion in Geriatric Patients. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:946. [PMID: 38929563 PMCID: PMC11205696 DOI: 10.3390/medicina60060946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Background: Teriparatide is an anabolic agent for osteoporosis and is believed to improve the bone healing process. Previous studies showed that teriparatide could enhance not only fracture healing but also spine fusion. It has been reported that use of teriparatide could promote the spine fusion process and decrease mechanical complications. However, there was no consensus regarding optimal treatment duration. The purpose of this study was to compare surgical outcomes between short-duration and long-duration teriparatide treatment after lumbar fusion surgery in elderly patients. Materials and Methods: All consecutive patients older than 60 years who underwent 1-level lumbar fusion surgery for degenerative diseases between January 2015 and December 2019 were retrospectively reviewed. Based on the duration of teriparatide treatment (daily subcutaneous injection of 20 µg teriparatide), patients were subdivided into two groups: a short-duration (SD) group (<6 months) and a long-duration (LD) group (≥6 months). Mechanical complications, such as screw loosening, cage subsidence, and adjacent vertebral fractures, were investigated. Postoperative 1-year union rate was also evaluated on computed tomography. Clinical outcomes were recorded using visual analog scale (VAS) and Oswestry Disability Index (ODI). Between-group differences for these radiographic and clinical outcomes were analyzed. Results: Ninety-one patients were reviewed in this study, including sixty patients in the SD group and thirty-one patients in the LD group. Their mean age was 72.3 ± 6.2 years, and 79 patients were female. Mean T-score was -3.3 ± 0.8. Cage subsidence (6.7% vs. 3.2%), screw loosening (28.3% vs. 35.5%), and adjacent vertebral fracture (6.7% vs. 9.7%) were not significantly different between the SD and LD groups. Union rate at 1-year postoperative was 65.0% in the SD group and 87.1% in the LD group (p = 0.028). Both groups showed improvement in VAS and ODI after surgery. However, the differences of VAS from preoperative to 6 months and 1 year postoperative were significantly higher in the LD group. Conclusions: Longer teriparatide treatment after lumbar fusion surgery resulted in a higher union rate at 1-year postoperative than the shorter treatment. Also, it could be more beneficial for clinical outcomes.
Collapse
Affiliation(s)
- Young-Hoon Kim
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kee-Yong Ha
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Hyun W. Bae
- Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hyung-Youl Park
- Department of Orthopedic Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young-Il Ko
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Myung-Sup Ko
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sang-Il Kim
- Department of Orthopedic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
8
|
Yao L, Lu J, Zhong L, Wei Y, Gui T, Wang L, Ahn J, Boerckel JD, Rux D, Mundy C, Qin L, Pacifici M. Activin A marks a novel progenitor cell population during fracture healing and reveals a therapeutic strategy. eLife 2023; 12:e89822. [PMID: 38079220 PMCID: PMC10783872 DOI: 10.7554/elife.89822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Insufficient bone fracture repair represents a major clinical and societal burden and novel strategies are needed to address it. Our data reveal that the transforming growth factor-β superfamily member Activin A became very abundant during mouse and human bone fracture healing but was minimally detectable in intact bones. Single-cell RNA-sequencing revealed that the Activin A-encoding gene Inhba was highly expressed in a unique, highly proliferative progenitor cell (PPC) population with a myofibroblast character that quickly emerged after fracture and represented the center of a developmental trajectory bifurcation producing cartilage and bone cells within callus. Systemic administration of neutralizing Activin A antibody inhibited bone healing. In contrast, a single recombinant Activin A implantation at fracture site in young and aged mice boosted: PPC numbers; phosphorylated SMAD2 signaling levels; and bone repair and mechanical properties in endochondral and intramembranous healing models. Activin A directly stimulated myofibroblastic differentiation, chondrogenesis and osteogenesis in periosteal mesenchymal progenitor culture. Our data identify a distinct population of Activin A-expressing PPCs central to fracture healing and establish Activin A as a potential new therapeutic tool.
Collapse
Affiliation(s)
- Lutian Yao
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Department of Orthopaedics, The First Hospital of China Medical UniversityShenyangChina
| | - Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tao Gui
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Jaimo Ahn
- Department of Orthopaedic Surgery, Michigan Medicine, University of MichiganAnn ArborUnited States
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| |
Collapse
|
9
|
Kubi JA, Brah AS, Cheung KMC, Lee YL, Lee KF, Sze SCW, Qiao W, Yeung KWK. A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis. Bioact Mater 2023; 27:429-446. [PMID: 37152710 PMCID: PMC10160600 DOI: 10.1016/j.bioactmat.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2 have been recognized as one of the powerful osteogenic substances that promote mesenchymal stem cells (MSCs) to osteoblast differentiation and are widely applied clinically for bone defect repairs. However, recent reports show that BMP-2 treatment has been associated with clinical adverse side effects such as ectopic bone formation, osteolysis and stimulation of inflammation. Here, we have identified one new osteogenic protein, named 'HKUOT-S2' protein, from Dioscorea opposita Thunb. Using the bone defect model, we have shown that the HKUOT-S2 protein can accelerate bone defect repair by activating the mTOR signaling axis of MSCs-derived osteoblasts and increasing osteoblastic biomineralization. The HKUOT-S2 protein can also modulate the transcriptomic changes of macrophages, stem cells, and osteoblasts, thereby enhancing the crosstalk between the polarized macrophages and MSCs-osteoblast differentiation to facilitate osteogenesis. Furthermore, this protein had no toxic effects in vivo. We have also identified HKUOT-S2 peptide sequence TKSSLPGQTK as a functional osteogenic unit that can promote osteoblast differentiation in vitro. The HKUOT-S2 protein with robust osteogenic activity could be a potential alternative osteoanabolic agent for promoting osteogenesis and bone defect repairs. We believe that the HKUOT-S2 protein may potentially be applied clinically as a new class of osteogenic agent for bone defect healing.
Collapse
Affiliation(s)
- John Akrofi Kubi
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Augustine Suurinobah Brah
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Hong Kong S.A.R, PR China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| |
Collapse
|
10
|
Clark AR, Mauntel TC, Goldman SM, Dearth CL. Repurposing existing products to accelerate injury recovery (REPAIR) of military relevant musculoskeletal conditions. Front Bioeng Biotechnol 2023; 10:1105599. [PMID: 36698630 PMCID: PMC9868163 DOI: 10.3389/fbioe.2022.1105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Musculoskeletal injuries (MSKIs) are a great hindrance to the readiness of the United States Armed Forces through lost duty time and reduced operational capabilities. While most musculoskeletal injuries result in return-to-duty/activity with no (functional) limitations, the healing process is often long. Long healing times coupled with the high frequency of musculoskeletal injuries make them a primary cause of lost/limited duty days. Thus, there exists an urgent, clinically unmet need for interventions to expedite tissue healing kinetics following musculoskeletal injuries to lessen their impact on military readiness and society as a whole. There exist several treatments with regulatory approval for other indications that have pro-regenerative/healing properties, but few have an approved indication for treating musculoskeletal injuries. With the immediate need for treatment options for musculoskeletal injuries, we propose a paradigm of Repurposing Existing Products to Accelerate Injury Recovery (REPAIR). Developing treatments via repurposing existing therapeutics for other indications has shown monumental advantages in both cost effectiveness and reduced time to bring to market compared to novel candidates. Thus, undertaking the needed research efforts to evaluate the effectiveness of promising REPAIR-themed candidates has the potential to enable near-term solutions for optimizing musculoskeletal injuries recovery, thereby addressing a top priority within the United States. Armed Forces. Herein, the REPAIR paradigm is presented, including example targets of opportunity as well as practical considerations for potential technical solutions for the translation of existing therapeutics into clinical practice for musculoskeletal injuries.
Collapse
Affiliation(s)
- Andrew R. Clark
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Timothy C Mauntel
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,Womack Army Medical Center, Fort Bragg, NC, United States
| | - Stephen M Goldman
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Christopher L. Dearth
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, United States,Department of Surgery, Uniformed Services University of the Health Sciences—Walter Reed National Military Medical Center, Bethesda, MD, United States,*Correspondence: Christopher L. Dearth,
| |
Collapse
|
11
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
12
|
An JM, Shahriar SMS, Hwang YH, Hwang SR, Lee DY, Cho S, Lee YK. Oral Delivery of Parathyroid Hormone Using a Triple-Padlock Nanocarrier for Osteoporosis via an Enterohepatic Circulation Pathway. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23314-23327. [PMID: 33587600 DOI: 10.1021/acsami.0c22170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intermittent subcutaneous (S.C.) injection of teriparatide [PTH (1-34)] is one of the effective therapies to cure osteoporosis. However, a long-term repeated administration of teriparatide by S.C. to the patients is highly challenging. Herein, a triple padlock nanocarrier prepared by a taurocholic acid-conjugated chondroitin sulfate A (TCSA) is designed to develop an oral dosage form of recombinant human teriparatide (rhPTH). Oral administration of TCSA/rhPTH to the bilateral ovariectomized (OVX) rats resulted in the recovery of the bone marrow density and healthy serum bone parameters from the severe osteoporotic conditions. Also, it enhanced new bone formation in the osteoporotic tibias. This triple padlock oral delivery platform overcame the current barriers associated with teriparatide administration and exhibited a promising therapeutic effect against osteoporosis.
Collapse
Affiliation(s)
- Jeong Man An
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | | | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
| | - Sungpil Cho
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, Chungju 27909, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea
- KB Biomed Inc., Chungju 27469, Republic of Korea
- 4D Biomaterials Center, Korea National University of Transportation, Jeungpyeong, Chungju 27909, Republic of Korea
| |
Collapse
|
13
|
Diffuse Idiopathic Skeletal Hyperostosis of Cervical Spine with Dysphagia-Molecular and Clinical Aspects. Int J Mol Sci 2021; 22:ijms22084255. [PMID: 33923907 PMCID: PMC8074005 DOI: 10.3390/ijms22084255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a condition characterized by the calcification and ossification of the ligaments of the cervical spine; in some cases, it may result in dysphagia. The condition is more common in men over 50 years of age with metabolic disorders, and it is often asymptomatic and not a major issue for patients. The etiology of DISH is poorly understood, and known genetic factors indicate multiple signal pathways and multigene inheritance. In this review, we discuss the epidemiological, clinical, and etiological aspects of DISH with a special focus on dysphagia.
Collapse
|
14
|
Ortinau L, Lei K, Jeong Y, Park D. Real-Time Imaging of CCL5-Induced Migration of Periosteal Skeletal Stem Cells in Mice. J Vis Exp 2020:10.3791/61162. [PMID: 33016934 PMCID: PMC9119154 DOI: 10.3791/61162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Periosteal skeletal stem cells (P-SSCs) are essential for lifelong bone maintenance and repair, making them an ideal focus for the development of therapies to enhance fracture healing. Periosteal cells rapidly migrate to an injury to supply new chondrocytes and osteoblasts for fracture healing. Traditionally, the efficacy of a cytokine to induce cell migration has only been conducted in vitro by performing a transwell or scratch assay. With advancements in intravital microscopy using multiphoton excitation, it was recently discovered that 1) P-SSCs express the migratory gene CCR5 and 2) treatment with the CCR5 ligand known as CCL5 improves fracture healing and the migration of P-SSCs in response to CCL5. These results have been captured in real-time. Described here is a protocol to visualize P-SSC migration from the calvarial suture skeletal stem cell (SSC) niche towards an injury after treatment with CCL5. The protocol details the construction of a mouse restraint and imaging mount, surgical preparation of the mouse calvaria, induction of a calvaria defect, and acquisition of time-lapse imaging.
Collapse
Affiliation(s)
- Laura Ortinau
- Department of Molecular & Human Genetics, Baylor College of Medicine; Center for Skeletal Biology, Baylor College of Medicine
| | - Kevin Lei
- Department of Molecular & Human Genetics, Baylor College of Medicine
| | - Youngjae Jeong
- Department of Molecular & Human Genetics, Baylor College of Medicine
| | - Dongsu Park
- Department of Molecular & Human Genetics, Baylor College of Medicine; Center for Skeletal Biology, Baylor College of Medicine; Department of Pathology & Immunology, Baylor College of Medicine;
| |
Collapse
|
15
|
Lipoteichoic Acid Accelerates Bone Healing by Enhancing Osteoblast Differentiation and Inhibiting Osteoclast Activation in a Mouse Model of Femoral Defects. Int J Mol Sci 2020; 21:ijms21155550. [PMID: 32756396 PMCID: PMC7432397 DOI: 10.3390/ijms21155550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lipoteichoic acid (LTA) is a cell wall component of Gram-positive bacteria. Limited data suggest that LTA is beneficial for bone regeneration in vitro. Thus, we used a mouse model of femoral defects to explore the effects of LTA on bone healing in vivo. Micro-computed tomography analysis and double-fluorochrome labeling were utilized to examine whether LTA can accelerate dynamic bone formation in vivo. The effects of LTA on osteoblastogenesis and osteoclastogenesis were also studied in vitro. LTA treatment induced prompt bone bridge formation, rapid endochondral ossification, and accelerated healing of fractures in mice with femoral bone defects. In vitro, LTA directly enhanced indicators of osteogenic factor-induced MC3T3-E1 cell differentiation, including alkaline phosphatase activity, calcium deposition and osteopontin expression. LTA also inhibited osteoclast activation induced by receptor activator of nuclear factor-kappa B ligand. We identified six molecules that may be associated with LTA-accelerated bone healing: monocyte chemoattractant protein 1, chemokine (C-X-C motif) ligand 1, cystatin C, growth/differentiation factor 15, endostatin and neutrophil gelatinase-associated lipocalin. Finally, double-fluorochrome, dynamic-labeling data indicated that LTA significantly enhanced bone-formation rates in vivo. In conclusion, our findings suggest that LTA has promising bone-regeneration properties.
Collapse
|
16
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
17
|
Hajializade M, Moghtadaei M, Mirzaei A, Abdollahi Kordkandi S, Babaheidarian P, Pazoki-Toroudi H, Yeganeh A. Significant effect of simvastatin and/or ezetimibe-loaded nanofibers on the healing of femoral defect: An experimental study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110861. [PMID: 32279793 DOI: 10.1016/j.msec.2020.110861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fracture healing complications are associated with significant healthcare and economic burden. In this study, we aimed to investigate how the combined administration of local simvastatin and ezetimibe into the femoral defect of the animal model affects the bone-healing process in comparison with their monotherapy. METHODS A total of 32 four-month-old adult male Wistar rats were randomized into the four study groups: simvastatin + ezetimibe-loaded nanofibers (group 1), simvastatin-loaded nanofibers (group 2), ezetimibe-loaded nanofibers (group 3), and non-loaded nanofibers (group 4). After the generation of femoral defects, the predesigned nanofibers were locally administered into the defect site. The healing measures were serum and bone osteoprotegerin (OPG) expression, pathologic evaluation of union (Allen's fracture healing scores), and radiographic evaluation of bone density (Hounsfield scale) at weeks 2 and 4. RESULTS The improvement of all evaluated healing measures was remarkably superior in rats that were treated with loaded nanofibers in comparison with the control group. Also, the improvement of all evaluated healing measures was considerably more in the simvastatin-ezetimibe combination therapy group compared to their monotherapy. All the evaluated measures were superior in the ezetimibe monotherapy group compared to the simvastatin monotherapy group. CONCLUSION The cumulative effect of simvastatin and ezetimibe on the induction of bone healing is more significant than the individual effect of these drugs. Therefore, local administration of nanofibers loaded with simvastatin and ezetimibe could be regarded as a promising osteoinductive compound for the acceleration of bone repair.
Collapse
Affiliation(s)
- Mikaiel Hajializade
- Department of Orthopaedics Surgery, Rasul-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopaedics Surgery, Rasul-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Pegah Babaheidarian
- Department of Pathology, Rasul-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ali Yeganeh
- Department of Orthopaedics Surgery, Rasul-e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|