1
|
Chen Z, Sun J, Shi T, Song C, Wu C, Wu Z, Lin J. Causal roles of circulating cytokines in sarcopenia-related traits: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1370985. [PMID: 39345889 PMCID: PMC11427268 DOI: 10.3389/fendo.2024.1370985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Background Epidemiological and experimental evidence suggests that chronic inflammation plays an important role in the onset and progression of sarcopenia. However, there is inconsistent data on the inflammatory cytokines involved in the pathogenesis of sarcopenia. Therefore, we performed a two-sample Mendelian randomization (MR) analysis to explore the causal relationship between circulating cytokines and sarcopenia-related traits. Methods The MR analysis utilized genetic data from genome-wide association study that included genetic variations in 41 circulating cytokines and genetic variant data for appendicular lean mass (ALM), hand grip strength, and usual walking pace. Causal associations were primarily explored using the inverse variance-weighted (IVW) method, supplemented by MR-Egger, simple mode, weighted median, and weighted mode analyses. Additionally, sensitivity analyses were also performed to ensure the reliability and stability of the results. Results Three cytokines [hepatocyte growth factor (HGF), interferon gamma-induced protein 10 (IP-10), and macrophage colony-stimulating factor (M-CSF)] were positively associated with ALM (β: 0.0221, 95% confidence interval (CI): 0.0071, 0.0372, P= 0.0039 for HGF; β: 0.0096, 95%CI: 4e-04, 0.0189, P= 0.0419 for IP-10; and β: 0.0100, 95%CI: 0.0035, 0.0165, P= 0.0025 for M-CSF). Conversely, higher levels of interleukin-7 (IL-7), monocyte chemotactic protein 3 (MCP-3), and regulated on activation, normal T cell expressed and secreted (RANTES) were associated with decreased hand grip strength (β: -0.0071, 95%CI: -0.0127, -0.0014, P= 0.0140 for IL-7; β: -0.0064, 95%CI: -0.0123, -6e-04, P= 0.0313 for MCP-3; and β: -0.0082, 95%CI: -0.0164, -1e-04, P= 0.0480 for RANTES). Similarly, interleukin 1 receptor antagonist (IL-1RA) was negatively correlated with usual walking pace (β: -0.0104, 95%CI: -0.0195, -0.0013, P= 0.0254). Sensitivity analysis confirmed the robustness of these findings. Conclusions Our study provides additional insights into the pivotal role of specific inflammatory cytokines in the pathogenesis of sarcopenia. Further research is required to determine whether these cytokines can be used as targets for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jun Sun
- Department of Emergency, Zhaotong Traditional Chinese Medicine Hospital, Zhaotong, Yunnan, China
| | - Tengbin Shi
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chenyang Song
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chengjian Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zhengru Wu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jiajun Lin
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Zhao G, Wang Q, Duan N, Zhang K, Li Z, Sun L, Lu Y. Potential drug targets for osteoporosis identified: A Mendelian randomization study. Heliyon 2024; 10:e36566. [PMID: 39253131 PMCID: PMC11382026 DOI: 10.1016/j.heliyon.2024.e36566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Background Osteoporosis is a prevalent global health condition, primarily affecting the aging population, and several therapies for osteoporosis have been widely used. However, available drugs for osteoporosis are far from satisfactory because they cannot alleviate disease progression. This study aimed to explore potential drug targets for osteoporosis through Mendelian randomization analysis. Methods Using cis-expression quantitative trait loci (cis-eQTL) data of druggable genes and two genome-wide association studies (GWAS) datasets related to osteoporosis (UK Biobank and FinnGen cohorts), we employed mendelian randomization (MR) analysis to identify the druggable genes with causal relationships with osteoporosis. Subsequently, a series of follow-up analyses were conducted, such as colocalization analysis, cell-type specificity analysis, and correlation analysis with risk factors. The association between potential drug targets and osteoporosis was validated by qRT-PCR. Results Six druggable genes with causal relationships with osteoporosis were identified and successfully replicated, including ACPP, DNASE1L3, IL32, PPOX, ST6GAL1, and TGM3. Cell-type specificity analysis revealed that PPOX and ST6GAL1 were expressed in all cell types in the bone samples, while IL32, ACPP, DNASE1L3, and TGM3 were expressed in specific cell types. The GWAS data showed there were seven risk factors for osteoporosis, including vitamin D deficiency, COPD, physical activity, BMI, MMP-9, ALP and PTH. Furthermore, ACPP was associated with vitamin D deficiency and COPD; DNASE1L3 was linked to physical activity; IL32 correlated with BMI and MMP-9; and ST6GAL1 was related to ALP, physical activity, and MMP-9. Among these risk factors, only MMP-9 had a high genetic correlation with osteoporosis. The results of qRT-PCR demonstrated that IL32 was upregulated while ST6GAL1 was downregulated in peripheral blood of osteoporosis patients. Conclusion Our findings suggested that those six druggable genes offer potential drug targets for osteoporosis and require further clinical investigation, especially IL32 and ST6GAL1.
Collapse
Affiliation(s)
- Guolong Zhao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Qian Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Kun Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Liang Sun
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Yao Lu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| |
Collapse
|
3
|
Xu T, Li C, Liao Y, Xu Y, Fan Z, Zhang X. Is there a causal relationship between resistin levels and bone mineral density, fracture occurrence? A mendelian randomization study. PLoS One 2024; 19:e0305214. [PMID: 39190724 DOI: 10.1371/journal.pone.0305214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/25/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND In a great many of observational studies, whether there is a relevance of resistin levels on bone mineral density (BMD) and fracture occurrence has been inconsistently reported, and the causality is unclear. METHODS We aim to assess the resistin levels on BMD and fracture occurrence within a Mendelian randomization (MR) analysis. Exposure and outcome data were derived from the Integrative Epidemiology Unit (IEU) Open genome wide association studies (GWAS) database. Screening of instrumental variables (IVs) was performed subject to conditions of relevance, exclusivity, and independence. Inverse variance weighting (IVW) was our primary method for MR analysis based on harmonized data. Weighted median and MR-Egger were chosen to evaluate the robustness of the results of IVW. Simultaneously, heterogeneity and horizontal pleiotropy were also assessed and the direction of potential causality was detected by MR Steiger. Multivariable MR (MVMR) analysis was used to identify whether confounding factors affected the reliability of the results. RESULTS After Bonferroni correction, the results showed a suggestively positive causality between resistin levels and total body BMD (TB-BMD) in European populations over the age of 60 [β(95%CI): 0.093(0.021, 0.165), P = 0.011]. The weighted median [β(95%CI): 0.111(0.067, 0.213), P = 0.035] and MR-Egger [β(95%CI): 0.162(0.025, 0.2983), P = 0.040] results demonstrate the robustness of the IVW results. No presence of pleiotropy or heterogeneity was detected between them. MR Steiger supports the causal inference result and MVMR suggests its direct effect. CONCLUSIONS In European population older than 60 years, genetically predicted higher levels of resistin were associated with higher TB-BMD. A significant causality between resistin levels on BMD at different sites, fracture in certain parts of the body, and BMD in four different age groups between 0-60 years of age was not found in our study.
Collapse
Affiliation(s)
- Taichuan Xu
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yitao Liao
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yenan Xu
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Zhihong Fan
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Zeng X, Tong L. Genetic and causal relationship between chronic gastrointestinal diseases and erectile dysfunction: a Mendelian randomization study. Front Med (Lausanne) 2024; 11:1422267. [PMID: 39144654 PMCID: PMC11322132 DOI: 10.3389/fmed.2024.1422267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Studies based on observations have indicated potential associations between chronic gastrointestinal diseases and an increased risk of erectile dysfunction (ED). However, the causality of these connections remains ambiguous. Methods Summary data for chronic gastrointestinal diseases were extracted from public data. Summary data on ED were extracted from three distinct sources. The genetic correlations between chronic gastrointestinal diseases and ED were explored using linkage disequilibrium score regression (LDSC). The causal associations between chronic gastrointestinal diseases and ED were evaluated using Mendelian randomization (MR) analysis, followed by a meta-analysis to determine the ultimate causal effect. Results The LDSC results suggested significant genetic correlations between Crohn's disease (CD) and ED. Inflammatory bowel disease (IBD), ulcerative colitis (UC), and liver cirrhosis (LC) were found to have potential genetic correlations with ED. The combined multiple MR results indicate that IBD and CD have significant causal relationships with ED, while colorectal cancer (CRC) may have a potential causal effect on ED. Conclusion This research provided evidence supporting a causal association between IBD, CD, CRC, and ED. The impact of chronic gastrointestinal diseases on ED warrants greater attention in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining, China
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, China
| | - Li Tong
- Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining, China
| |
Collapse
|
5
|
Bouillon R, LeBoff MS, Neale RE. Health Effects of Vitamin D Supplementation: Lessons Learned From Randomized Controlled Trials and Mendelian Randomization Studies. J Bone Miner Res 2023; 38:1391-1403. [PMID: 37483080 PMCID: PMC10592274 DOI: 10.1002/jbmr.4888] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Vitamin D plays an important role in calcium homeostasis and many cellular processes. Although vitamin D supplements are widely recommended for community-dwelling adults, definitive data on whether these supplements benefit clinically important skeletal and extraskeletal outcomes have been conflicting. Although observational studies on effects of vitamin D on musculoskeletal and extraskeletal outcomes may be confounded by reverse causation, randomized controlled studies (RCTs) and Mendelian randomization (MR) studies can help to elucidate causation. In this review, we summarize the recent findings from large RCTs and/or MR studies of vitamin D on bone health and risk of fractures, falls, cancer, and cardiovascular disease, disorders of the immune system, multiple sclerosis, and mortality in community-dwelling adults. The primary analyses indicate that vitamin D supplementation does not decrease bone loss, fractures, falls, cancer incidence, hypertension, or cardiovascular risk in generally healthy populations. Large RCTs and meta-analyses suggest an effect of supplemental vitamin D on cancer mortality. The existence of extraskeletal benefits of vitamin D supplementations are best documented for the immune system especially in people with poor vitamin D status, autoimmune diseases, and multiple sclerosis. Accumulating evidence indicates that vitamin D may reduce all-cause mortality. These findings, in mostly vitamin D-replete populations, do not apply to older adults in residential communities or adults with vitamin D deficiency or osteoporosis. The focus of vitamin D supplementation should shift from widespread use in generally healthy populations to targeted vitamin D supplementation in select individuals, good nutritional approaches, and elimination of vitamin D deficiency globally. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Mebabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Meryl S LeBoff
- Calcium and Bone Section, Endocrine, Diabetes and Hypertension Division, Department of Medicine Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
6
|
Wu S, Ye Z, Yan Y, Zhan X, Ren L, Zhou C, Chen T, Yao Y, Zhu J, Wu S, Ma F, Liu L, Fan B, Liu C. The causal relationship between autoimmune diseases and osteoporosis: a study based on Mendelian randomization. Front Endocrinol (Lausanne) 2023; 14:1196269. [PMID: 37693362 PMCID: PMC10484226 DOI: 10.3389/fendo.2023.1196269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
Objective The relationship between different autoimmune diseases and bone mineral density (BMD) and fractures has been reported in epidemiological studies. This study aimed to explore the causal relationship between autoimmune diseases and BMD, falls, and fractures using Mendelian randomization (MR). Methods The instrumental variables were selected from the aggregated statistical data of these diseases from the largest genome-wide association study in Europe. Specifically, 12 common autoimmune diseases were selected as exposure. Outcome variables included BMD, falls, and fractures. Multiple analysis methods were utilized to comprehensively evaluate the causal relationship between autoimmune diseases and BMD, falls, and fractures. Additionally, sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, and one analysis, were conducted to verify the result's reliability. Results Strong evidence was provided in the results of the negatively association of ulcerative colitis (UC) with forearm BMD. UC also had a negatively association with the total body BMD, while inflammatory bowel disease (IBD) depicted a negatively association with the total body BMD at the age of 45-60 years. Horizontal pleiotropy or heterogeneity was not detected through sensitivity analysis, indicating that the causal estimation was reliable. Conclusion This study shows a negative causal relationship between UC and forearm and total body BMD, and between IBD and total body BMD at the age of 45-60 years. These results should be considered in future research and when public health measures and osteoporosis prevention strategies are formulated.
Collapse
Affiliation(s)
- Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yi Yan
- Department of Operating Room, Taixing People’s Hospital, Taixing, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liang Ren
- Reproductive Medicine Center, The First Afliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siling Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fengzhi Ma
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Binguang Fan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Tang F, Wang S, Zhao H, Xia D, Dong X. Mendelian randomization analysis does not reveal a causal influence of mental diseases on osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1125427. [PMID: 37152964 PMCID: PMC10157183 DOI: 10.3389/fendo.2023.1125427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Osteoporosis (OP) is primarily diagnosed through bone mineral density (BMD) measurements, and it often leads to fracture. Observational studies suggest that several mental diseases (MDs) may be linked to OP, but the causal direction of these associations remain unclear. This study aims to explore the potential causal association between five MDs (Schizophrenia, Depression, Alzheimer's disease, Parkinson's disease, and Epilepsy) and the risk of OP. Methods First, single-nucleotide polymorphisms (SNPs) were filtered from summary-level genome-wide association studies using quality control measures. Subsequently, we employed two-sample Mendelian randomization (MR) analysis to indirectly analyze the causal effect of MDs on the risk of OP through bone mineral density (in total body, femoral neck, lumbar spine, forearm, and heel) and fractures (in leg, arm, heel, spine, and osteoporotic fractures). Lastly, the causal effect of the MDs on the risk of OP was evaluated directly through OP. MR analysis was performed using several methods, including inverse variance weighting (IVW)-random effects, IVW-fixed effects, maximum likelihood, weighted median, MR-Egger regression, and penalized weighted median. Results The results did not show any evidence of a causal relationship between MDs and the risk of OP (with almost all P values > 0.05). The robustness of the above results was proved to be good. Discussion In conclusion, this study did not find evidence supporting the claim that MDs have a definitive impact on the risk of OP, which contradicts many existing observational reports. Further studies are needed to determine the potential mechanisms of the associations observed in observational studies.
Collapse
Affiliation(s)
- Fen Tang
- School of Medicine, Shanghai University, Shanghai, China
| | - Sheng Wang
- Department of Emergency, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hongxia Zhao
- Clinical Research Institute of Zhanjiang, Central People’s Hospital of Zhanjiang, Zhanjiang, China
| | - Demeng Xia
- Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China
- *Correspondence: Xin Dong, ; Demeng Xia,
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xin Dong, ; Demeng Xia,
| |
Collapse
|
8
|
Hartley AE, Power GM, Sanderson E, Smith GD. A Guide for Understanding and Designing Mendelian Randomization Studies in the Musculoskeletal Field. JBMR Plus 2022; 6:e10675. [PMID: 36248277 PMCID: PMC9549705 DOI: 10.1002/jbm4.10675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
Mendelian randomization (MR) is an increasingly popular component of an epidemiologist's toolkit, used to provide evidence of a causal effect of one trait (an exposure, eg, body mass index [BMI]) on an outcome trait or disease (eg, osteoarthritis). Identifying these effects is important for understanding disease etiology and potentially identifying targets for therapeutic intervention. MR uses genetic variants as instrumental variables for the exposure, which should not be influenced by the outcome or confounding variables, overcoming key limitations of traditional epidemiological analyses. For MR to generate a valid estimate of effect, key assumptions must be met. In recent years, there has been a rapid rise in MR methods that aim to test, or are robust to violations of, these assumptions. In this review, we provide an overview of MR for a non-expert audience, including an explanation of these key assumptions and how they are often tested, to aid a better reading and understanding of the MR literature. We highlight some of these new methods and how they can be useful for specific methodological challenges in the musculoskeletal field, including for conditions or traits that share underlying biological pathways, such as bone and joint disease. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- April E Hartley
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - Grace M Power
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - Eleanor Sanderson
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| | - George Davey Smith
- MRC‐Integrative Epidemiology UnitPopulation Health Sciences, Bristol Medical SchoolBristolUK
| |
Collapse
|
9
|
Li R, Medina-Gomez C, Rivadeneira F. Down-to-Earth Studies of the Gut Microbiome in Bone Health and Disease. J Bone Miner Res 2022; 37:595-596. [PMID: 35298042 DOI: 10.1002/jbmr.4547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ruolin Li
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Rauner M, Foessl I, Formosa MM, Kague E, Prijatelj V, Lopez NA, Banerjee B, Bergen D, Busse B, Calado Â, Douni E, Gabet Y, Giralt NG, Grinberg D, Lovsin NM, Solan XN, Ostanek B, Pavlos NJ, Rivadeneira F, Soldatovic I, van de Peppel J, van der Eerden B, van Hul W, Balcells S, Marc J, Reppe S, Søe K, Karasik D. Perspective of the GEMSTONE Consortium on Current and Future Approaches to Functional Validation for Skeletal Genetic Disease Using Cellular, Molecular and Animal-Modeling Techniques. Front Endocrinol (Lausanne) 2021; 12:731217. [PMID: 34938269 PMCID: PMC8686830 DOI: 10.3389/fendo.2021.731217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The availability of large human datasets for genome-wide association studies (GWAS) and the advancement of sequencing technologies have boosted the identification of genetic variants in complex and rare diseases in the skeletal field. Yet, interpreting results from human association studies remains a challenge. To bridge the gap between genetic association and causality, a systematic functional investigation is necessary. Multiple unknowns exist for putative causal genes, including cellular localization of the molecular function. Intermediate traits ("endophenotypes"), e.g. molecular quantitative trait loci (molQTLs), are needed to identify mechanisms of underlying associations. Furthermore, index variants often reside in non-coding regions of the genome, therefore challenging for interpretation. Knowledge of non-coding variance (e.g. ncRNAs), repetitive sequences, and regulatory interactions between enhancers and their target genes is central for understanding causal genes in skeletal conditions. Animal models with deep skeletal phenotyping and cell culture models have already facilitated fine mapping of some association signals, elucidated gene mechanisms, and revealed disease-relevant biology. However, to accelerate research towards bridging the current gap between association and causality in skeletal diseases, alternative in vivo platforms need to be used and developed in parallel with the current -omics and traditional in vivo resources. Therefore, we argue that as a field we need to establish resource-sharing standards to collectively address complex research questions. These standards will promote data integration from various -omics technologies and functional dissection of human complex traits. In this mission statement, we review the current available resources and as a group propose a consensus to facilitate resource sharing using existing and future resources. Such coordination efforts will maximize the acquisition of knowledge from different approaches and thus reduce redundancy and duplication of resources. These measures will help to understand the pathogenesis of osteoporosis and other skeletal diseases towards defining new and more efficient therapeutic targets.
Collapse
Affiliation(s)
- Martina Rauner
- Department of Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - Melissa M. Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Vid Prijatelj
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- The Generation R Study, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nerea Alonso Lopez
- Rheumatology and Bone Disease Unit, CGEM, Institute of Genetics and Cancer (IGC), Edinburgh, United Kingdom
| | - Bodhisattwa Banerjee
- Musculoskeletal Genetics Laboratory, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Dylan Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Eleni Douni
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
- Institute for Bioinnovation, B.S.R.C. “Alexander Fleming”, Vari, Greece
| | - Yankel Gabet
- Department of Anatomy & Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia García Giralt
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Nika M. Lovsin
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Xavier Nogues Solan
- Musculoskeletal Research Group, IMIM (Hospital del Mar Medical Research Institute), Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Barcelona, Spain
| | - Barbara Ostanek
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Nathan J. Pavlos
- Bone Biology & Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | | | - Ivan Soldatovic
- Institute of Medical Statistics and Informatic, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Bram van der Eerden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wim van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kent Søe
- Clinical Cell Biology, Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
- Marcus Research Institute, Hebrew SeniorLife, Boston, MA, United States
| |
Collapse
|
11
|
Chen J, Zhang J, So HC, Ai S, Wang N, Tan X, Wing YK. Association of Sleep Traits and Heel Bone Mineral Density: Observational and Mendelian Randomization Studies. J Bone Miner Res 2021; 36:2184-2192. [PMID: 34184784 DOI: 10.1002/jbmr.4406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Observational studies have suggested that sleep and circadian disturbances are potentially modifiable risk factors for low bone mineral density (BMD), but the causal relationship is unclear. This study aimed to (i) replicate the findings by examining observational association of sleep traits with low estimated BMD); (ii) examine whether these associations were causal by using Mendelian randomization (MR) analyses; and (iii) investigate potential modulation effects of sex and menopause. A total of 398,137 White British subjects (aged 39 to 73 years) with valid BMD estimated by quantitative ultrasound of the heel (eBMD) at baseline were included. Linear regression analyses and inverse-variance weighted method were used as main methods for observational and one-sample MR analyses, respectively, to investigate the associations between self-reported sleep traits (sleep duration, chronotype, daytime sleepiness, and insomnia) and low eBMD. Furthermore, sensitivity analyses were performed in subgroups based on sex and menopause in both observational and MR analyses. In observational analyses, short/long sleep, insomnia, and definite eveningness were associated with low eBMD (short sleep: β = -0.045, effect in standard deviation change of rank-based inverse normally transformed eBMD; long sleep: β = -0.028; sometimes insomnia: β = -0.012; usually insomnia: β = -0.021; definite eveningness: β = -0.047), whereas definite morningness was associated with decreased risk of low eBMD (β = 0.011). Subgroup analyses suggested associations of short/long sleep and definite eveningness with low eBMD among men, short sleep with low eBMD among premenopausal women, and short sleep, eveningness, and daytime sleepiness among postmenopausal women. In bidirectional MR analyses, there was no causal relationship between sleep traits and eBMD in either overall sample or subgroup analyses. In summary, although observational analysis showed a robust association of low eBMD with sleep duration, chronotype, and insomnia, there was no evidence of causal relationship as suggested by MR analysis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jie Chen
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jihui Zhang
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Mental Health Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hon Cheong So
- School of Biomedical Sciences, Department of Psychiatry, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Cheung Research Centre for Management of Parkinsonism, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sizhi Ai
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiao Tan
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Abstract
PURPOSE OF THE REVIEW The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. RECENT FINDINGS The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.
Collapse
Affiliation(s)
- R Li
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - C G Boer
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - L Oei
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 2021; 9:23. [PMID: 33927194 PMCID: PMC8085014 DOI: 10.1038/s41413-021-00143-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023] Open
Abstract
Osteoporosis is a common skeletal disease, affecting ~200 million people around the world. As a complex disease, osteoporosis is influenced by many factors, including diet (e.g. calcium and protein intake), physical activity, endocrine status, coexisting diseases and genetic factors. In this review, we first summarize the discovery from genome-wide association studies (GWASs) in the bone field in the last 12 years. To date, GWASs and meta-analyses have discovered hundreds of loci that are associated with bone mineral density (BMD), osteoporosis, and osteoporotic fractures. However, the GWAS approach has sometimes been criticized because of the small effect size of the discovered variants and the mystery of missing heritability, these two questions could be partially explained by the newly raised conceptual models, such as omnigenic model and natural selection. Finally, we introduce the clinical use of GWAS findings in the bone field, such as the identification of causal clinical risk factors, the development of drug targets and disease prediction. Despite the fruitful GWAS discoveries in the bone field, most of these GWAS participants were of European descent, and more genetic studies should be carried out in other ethnic populations to benefit disease prediction in the corresponding population.
Collapse
|
14
|
Tobias JH, Duncan EL, Kague E, Hammond CL, Gregson CL, Bassett D, Williams GR, Min JL, Gaunt TR, Karasik D, Ohlsson C, Rivadeneira F, Edwards JR, Hannan FM, Kemp JP, Gilbert SJ, Alonso N, Hassan N, Compston JE, Ralston SH. Opportunities and Challenges in Functional Genomics Research in Osteoporosis: Report From a Workshop Held by the Causes Working Group of the Osteoporosis and Bone Research Academy of the Royal Osteoporosis Society on October 5th 2020. Front Endocrinol (Lausanne) 2021; 11:630875. [PMID: 33658983 PMCID: PMC7917291 DOI: 10.3389/fendo.2020.630875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
The discovery that sclerostin is the defective protein underlying the rare heritable bone mass disorder, sclerosteosis, ultimately led to development of anti-sclerostin antibodies as a new treatment for osteoporosis. In the era of large scale GWAS, many additional genetic signals associated with bone mass and related traits have since been reported. However, how best to interrogate these signals in order to identify the underlying gene responsible for these genetic associations, a prerequisite for identifying drug targets for further treatments, remains a challenge. The resources available for supporting functional genomics research continues to expand, exemplified by "multi-omics" database resources, with improved availability of datasets derived from bone tissues. These databases provide information about potential molecular mediators such as mRNA expression, protein expression, and DNA methylation levels, which can be interrogated to map genetic signals to specific genes based on identification of causal pathways between the genetic signal and the phenotype being studied. Functional evaluation of potential causative genes has been facilitated by characterization of the "osteocyte signature", by broad phenotyping of knockout mice with deletions of over 7,000 genes, in which more detailed skeletal phenotyping is currently being undertaken, and by development of zebrafish as a highly efficient additional in vivo model for functional studies of the skeleton. Looking to the future, this expanding repertoire of tools offers the hope of accurately defining the major genetic signals which contribute to osteoporosis. This may in turn lead to the identification of additional therapeutic targets, and ultimately new treatments for osteoporosis.
Collapse
Affiliation(s)
- Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Emma L. Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion & Reproduction, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Josine L. Min
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tom R. Gaunt
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Claes Ohlsson
- Center for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - James R. Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadil M. Hannan
- Nuffield Department of Women’s & Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - John P. Kemp
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Queensland, QLD, Australia
| | - Sophie J. Gilbert
- Biomechanics and Bioengineering Centre Versus Arthritis, Cardiff School of Biosciences, Cardiff, United Kingdom
| | - Nerea Alonso
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Juliet E. Compston
- Department of Medicine, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Stuart H. Ralston
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Mendelian randomization study of telomere length and bone mineral density. Aging (Albany NY) 2020; 13:2015-2030. [PMID: 33323545 PMCID: PMC7880394 DOI: 10.18632/aging.202197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/22/2020] [Indexed: 11/25/2022]
Abstract
Purpose: Some epidemiological studies and animal studies have reported a relationship between leukocyte telomere length (LTL) and bone mineral density (BMD). However, the causality underlying the purported relationship has not been determined. Here we performed a two-sample MR analysis to test the causal link between telomere length and BMD. Results: Our research suggested no causal link of LTL and BMD using IVW method. The weighted median, MR-Egger regression and MR.RAPS method yielded a similar pattern of effects. MR-Egger intercept test demonstrated our results were not influenced by pleiotropy. Heterogeneities among the genetic variants on heel estimated BMD and TB-BMD vanished after excluding rs6028466. “Leave-one-out” sensitivity analysis confirmed the stability of our results. Conclusion: Our MR analysis did not support causal effect of telomere length on BMD. Methods: We utilized 5 independent SNPs robustly associated with LTL as instrument variables. The outcome results were obtained from GWAS summary data of BMD. The two-sample MR analysis was conducted using IVW, weighted median, MR-Egger regression and MR.RAPS method. MR-Egger intercept test, Cochran’s Q test and I2 statistics and “leave-one-out” sensitivity analysis were performed to evaluate the horizontal pleiotropy, heterogeneities and stability of these genetic variants on BMD.
Collapse
|
16
|
Wu F, Huang Y, Hu J, Shao Z. Mendelian randomization study of inflammatory bowel disease and bone mineral density. BMC Med 2020; 18:312. [PMID: 33167994 PMCID: PMC7654011 DOI: 10.1186/s12916-020-01778-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recently, the association between inflammatory bowel disease (including ulcerative colitis and Crohn's disease) and BMD has attracted great interest in the research community. However, the results of the published epidemiological observational studies on the relationship between inflammatory bowel disease and BMD are still inconclusive. Here, we performed a two-sample Mendelian randomization analysis to investigate the causal link between inflammatory bowel disease and level of BMD using publically available GWAS summary statistics. METHODS A series of quality control steps were taken in our analysis to select eligible instrumental SNPs which were strongly associated with exposure. To make the conclusions more robust and reliable, we utilized several robust analytical methods (inverse-variance weighting, MR-PRESSO method, mode-based estimate method, weighted median, MR-Egger regression, and MR.RAPS method) that are based on different assumptions of two-sample MR analysis. The MR-Egger intercept test, Cochran's Q test, and "leave-one-out" sensitivity analysis were performed to evaluate the horizontal pleiotropy, heterogeneities, and stability of these genetic variants on BMD. Outlier variants identified by the MR-PRESSO outlier test were removed step-by-step to reduce heterogeneity and the effect of horizontal pleiotropy. RESULTS Our two-sample Mendelian randomization analysis with two groups of exposure GWAS summary statistics and four groups of outcome GWAS summary statistics suggested a definitively causal effect of genetically predicted ulcerative colitis on TB-BMD and FA-BMD but not on FN-BMD or LS-BMD (after Bonferroni correction), and we merely determined a causal effect of Crohn's disease on FN-BMD but not on the others, which was somewhat inconsistent with many published observational researches. The causal effect of inflammatory bowel disease on TB-BMD was significant and robust but not on FA-BMD, FN-BMD, and LS-BMD, which might result from the cumulative effect of ulcerative colitis and Crohn's disease on BMDs. CONCLUSIONS Our Mendelian randomization analysis supported the causal effect of ulcerative colitis on TB-BMD and FA-BMD. As to Crohn's disease, only the definitively causal effect of it on decreased FN-BMD was observed. Updated MR analysis is warranted to confirm our findings when a more advanced method to get less biased estimates and better precision or GWAS summary data with more ulcerative colitis and Crohn's disease patients was available.
Collapse
Affiliation(s)
- Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Huang
- Department of Otorhinolaryngology, The Third Hospital of Wuhan City, Wuhan, 430070, China
| | - Jialu Hu
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
17
|
Fisher L, Fisher A, Smith PN. Helicobacter pylori Related Diseases and Osteoporotic Fractures (Narrative Review). J Clin Med 2020; 9:E3253. [PMID: 33053671 PMCID: PMC7600664 DOI: 10.3390/jcm9103253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) and osteoporotic fractures (OFs) are common multifactorial and heterogenic disorders of increasing incidence. Helicobacter pylori (H.p.) colonizes the stomach approximately in half of the world's population, causes gastroduodenal diseases and is prevalent in numerous extra-digestive diseases known to be associated with OP/OF. The studies regarding relationship between H.p. infection (HPI) and OP/OFs are inconsistent. The current review summarizes the relevant literature on the potential role of HPI in OP, falls and OFs and highlights the reasons for controversies in the publications. In the first section, after a brief overview of HPI biological features, we analyze the studies evaluating the association of HPI and bone status. The second part includes data on the prevalence of OP/OFs in HPI-induced gastroduodenal diseases (peptic ulcer, chronic/atrophic gastritis and cancer) and the effects of acid-suppressive drugs. In the next section, we discuss the possible contribution of HPI-associated extra-digestive diseases and medications to OP/OF, focusing on conditions affecting both bone homeostasis and predisposing to falls. In the last section, we describe clinical implications of accumulated data on HPI as a co-factor of OP/OF and present a feasible five-step algorithm for OP/OF risk assessment and management in regard to HPI, emphasizing the importance of an integrative (but differentiated) holistic approach. Increased awareness about the consequences of HPI linked to OP/OF can aid early detection and management. Further research on the HPI-OP/OF relationship is needed to close current knowledge gaps and improve clinical management of both OP/OF and HPI-related disorders.
Collapse
Affiliation(s)
- Leon Fisher
- Department of Gastroenterology, Frankston Hospital, Peninsula Health, Melbourne 3199, Australia
| | - Alexander Fisher
- Department of Geriatric Medicine, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| | - Paul N Smith
- Department of Orthopedic Surgery, The Canberra Hospital, ACT Health, Canberra 2605, Australia;
- Australian National University Medical School, Canberra 2605, Australia
| |
Collapse
|
18
|
Trajanoska K, Rivadeneira F. Genomic Medicine: Lessons Learned From Monogenic and Complex Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:556610. [PMID: 33162933 PMCID: PMC7581702 DOI: 10.3389/fendo.2020.556610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Current genetic studies of monogenic and complex bone diseases have broadened our understanding of disease pathophysiology, highlighting the need for medical interventions and treatments tailored to the characteristics of patients. As genomic research progresses, novel insights into the molecular mechanisms are starting to provide support to clinical decision-making; now offering ample opportunities for disease screening, diagnosis, prognosis and treatment. Drug targets holding mechanisms with genetic support are more likely to be successful. Therefore, implementing genetic information to the drug development process and a molecular redefinition of skeletal disease can help overcoming current shortcomings in pharmaceutical research, including failed attempts and appalling costs. This review summarizes the achievements of genetic studies in the bone field and their application to clinical care, illustrating the imminent advent of the genomic medicine era.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW We summarize recent evidence on the shared genetics within and outside the musculoskeletal system (mostly related to bone density and osteoporosis). RECENT FINDINGS Osteoporosis is determined by an interplay between multiple genetic and environmental factors. Significant progress has been made regarding its genetic background revealing a number of robustly validated loci and respective pathways. However, pleiotropic factors affecting bone and other tissues are not well understood. The analytical methods proposed to test for potential associations between genetic variants and multiple phenotypes can be applied to bone-related data. A number of recent genetic studies have shown evidence of pleiotropy between bone density and other different phenotypes (traits, conditions, or diseases), within and outside the musculoskeletal system. Power benefits of combining correlated phenotypes, as well as unbiased discovery, make these studies promising. Studies in humans are supported by evidence from animal models. Drug development and repurposing should benefit from the pleiotropic approach. We believe that future studies should take into account shared genetics between the bone and related traits.
Collapse
Affiliation(s)
- M A Christou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - E E Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Center for Research Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA
| | - D Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
20
|
Zheng J, Frysz M, Kemp JP, Evans DM, Davey Smith G, Tobias JH. Use of Mendelian Randomization to Examine Causal Inference in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:807. [PMID: 31824424 PMCID: PMC6882110 DOI: 10.3389/fendo.2019.00807] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies have identified many risk factors for osteoporosis, however it is unclear whether these observational associations reflect true causal effects, or the effects of latent confounding or reverse causality. Mendelian randomization (MR) enables causal relationships to be evaluated, by examining the relationship between genetic susceptibility to the risk factor in question, and the disease outcome of interest. This has been facilitated by the development of two-sample MR analysis, where the exposure and outcome are measured in different studies, and by exploiting summary result statistics from large well-powered genome-wide association studies that are available for thousands of traits. Though MR has several inherent limitations, the field is rapidly evolving and at least 14 methodological extensions have been developed to overcome these. The present paper aims to discuss some of the limitations in the MR analytical framework, and how this method has been applied to the osteoporosis field, helping to reinforce conclusions about causality, and discovering potential new regulatory pathways, exemplified by our recent MR study of sclerostin.
Collapse
Affiliation(s)
- Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Monika Frysz
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John P. Kemp
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - David M. Evans
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jonathan H. Tobias
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
21
|
Koromani F, Trajanoska K, Rivadeneira F, Oei L. Recent Advances in the Genetics of Fractures in Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:337. [PMID: 31231309 PMCID: PMC6559287 DOI: 10.3389/fendo.2019.00337] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility, together with old age, female sex, and low bone mineral density (BMD) are amongst the strongest determinants of fracture risk. Tmost recent large-scale genome-wide association study (GWAS) meta-analysis has yielded fifteen loci. This review focuses on the advances in the research of genetic determinants of fracture risk. We first discuss the genetic architecture of fracture risk, touching upon different methods and overall findings. We then discuss in a second paragraph the most recent advances in the field and focus on the genetics of fracture risk and also of other endophenotypes closely related to fracture risk such as bone mineral density (BMD). Application of state-of-the-art methodology such as Mendelian randzation in fracture GWAS are reviewed. The final part of this review touches upon potential future directions in genetic research of osteoporotic fractures.
Collapse
Affiliation(s)
- Fjorda Koromani
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ling Oei
- Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Ling Oei
| |
Collapse
|