1
|
Ding H, Zhao X, Liu G, Wen H. Evaluation of causal links of gut microbiota and inflammatory cytokines with 10 fracture locations: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42353. [PMID: 40355229 PMCID: PMC12074065 DOI: 10.1097/md.0000000000042353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
Recent investigations have revealed an association of variations in gut microbiota (GM) composition and inflammatory cytokine (IC) levels with fracture risk; however, the causal relationship of GM or inflammatory factors with fracture risk remains unelucidated. The study utilized Mendelian randomization (MR) analyses, utilizing aggregated data from the genome-wide association study of GM, ICs, and 10 fracture locations. The primary aim was to examine the causal associations between GM, ICs, and 10 fracture locations. Furthermore, mediational analyses and multivariate MR were conducted to explore the potential mediating role of ICs in this relationship. MR analysis identified 35 positive and 53 negative causal associations between GM and 10 fracture locations. ICs showed 22 positive and 24 negative correlations with 10 fracture locations. However, after false discovery rate correction, most associations lost significance, leaving only 1 IC significant for foot fractures. Moreover, our findings suggest that the ICs may be act as a mediating factor in the pathway from GM to 10 fracture locations. GM and ICs exhibited a significant causal relationship with the 10 fracture locations; furthermore, ICs may function as mediators in the pathway from GM to fracture risk.
Collapse
Affiliation(s)
- Hong Ding
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| | - Xiaojiang Zhao
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| | - Guofeng Liu
- Basic Education Department, Shandong Labor Vocational and Technical College, Jinan, China
| | - Hebao Wen
- Department of Physical Education and Arts, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Agashe VM, Bhadani JS, Maini L. Beyond Hardware: The Orthoplastic Approach to Managing Infected Nonunions. Indian J Orthop 2024; 58:1777-1781. [PMID: 39664345 PMCID: PMC11628453 DOI: 10.1007/s43465-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Vikas M. Agashe
- P.D. Hinduja Hospital, Mahim, Dr Agashe’s Nursing Home, Vrindavan, Kurla, Mumbai, 400070 India
| | | | - Lalit Maini
- Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
Wen J, Zeng Y, Su S, Song M, Wang Z, Chen X, Dong X. Magnesium degradation-induced variable fixation plates promote bone healing in rabbits. J Orthop Traumatol 2024; 25:56. [PMID: 39572420 PMCID: PMC11582307 DOI: 10.1186/s10195-024-00803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Both initial mechanical stability and subsequent axial interfragmentary micromotion at fracture ends play crucial roles in fracture healing. However, the conversion timing of variable fixation and its effect on and mechanism of fracture healing remain inadequately explored. METHODS A magnesium degradation-induced variable fixation plate (MVFP) for femurs was designed, and its conversion timing was investigated both in vitro and in vivo. Then, locking plates and MVFPs with and without a magnesium shim were implanted in rabbit femur fracture models. X-ray photography and micro computed tomography (micro-CT) were performed to observe the healing of the fracture. Toluidine blue and Masson's trichrome staining were performed to observe new bone formation. The torsion test was used to determine the strength of the bone after healing. Finally, reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were used to detect the expression of osteogenesis-related genes in the three groups. RESULTS The MVFP with sample 3 magnesium shim showed greater axial displacement within 15 days in vitro, and its variable capability was likewise confirmed in vivo. X-ray photography and micro-CT indicated increased callus formation in the variable fixation group. Toluidine blue and Masson's trichrome staining revealed less callus formation on the rigid fixation side of the locking plate, whereas the variable fixation group presented more callus formation, more symmetrical intraosseous calli, and greater maturity. The torsion test indicated greater torsional resistance of the healed bone in the variable fixation group. RT-PCR and western blotting revealed that the expression levels of BMP2 and OPG increased during early fracture stages but decreased in late fracture stages, whereas RANKL expression showed the opposite trend in the variable fixation group. CONCLUSIONS MVFP promoted faster and stronger bone healing in rabbits, potentially by accelerating the expression of BMP2 and modulating the OPG/RANKL/RANK signaling axis. This study offers valuable insights for the clinical application of variable fixation technology in bone plates and contributes to the advancement of both internal fixation technology and theory. LEVEL OF EVIDENCE level V.
Collapse
Affiliation(s)
- Jian Wen
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Department of Pain Management, The 2Nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Yu Zeng
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Jiangxi University of Chinese Medicine, No. 1688, Meiling Avenue, Nanchang, 330004, Jiangxi, China
| | - Shenghui Su
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Meiling Song
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
- Ruijin Traditional Chinese Medicine Hospital, Ruijin, 342500, Jiangxi, China
| | - Zhe Wang
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Xiaofan Chen
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Xieping Dong
- JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Zhao X, Wang Q, Wang W, Lu S. Increased neutrophil extracellular traps caused by diet-induced obesity delay fracture healing. FASEB J 2024; 38:e70126. [PMID: 39446097 PMCID: PMC11580727 DOI: 10.1096/fj.202401523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/28/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Obesity, recognized as a risk factor for nonunion, detrimentally impacts bone health, with significant physical and economic repercussions for affected individuals. Nevertheless, the precise pathomechanisms by which obesity impairs fracture healing remain insufficiently understood. Multiple studies have identified neutrophil granulocytes as key players in the systemic immune response, being the predominant immune cells in early fracture hematomas. This study identified a previously unreported critical period for neutrophil infiltration into the callus. In vivo experiments demonstrated that diet-induced obesity (DIO) mice showed earlier neutrophil infiltration, along with increased formation of neutrophil extracellular traps (NETs), compared to control mice during the endochondral phase of fracture repair. Furthermore, Padi4 knockout was found to reduce NET formation and mitigate the fracture healing delays caused by high-fat diets. Mechanistically, in vitro analyses revealed that NETs, by activating NLRP3 inflammasomes, inhibited the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and concurrently promoted M1-like macrophage polarization. These findings establish a connection between NET formation during the endochondral phase and delayed fracture healing, suggesting that targeting NETs could serve as a promising therapeutic approach for addressing obesity-induced delays in fracture recovery.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Qijun Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wei Wang
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of Orthopedics, Xuanwu HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
5
|
Nistor DV, Melinte RM, von Mengershausen R. Anterograde Intramedullary Nailing without Bone Grafting for Humeral Shaft Nonunion Associated with Early Exploration of Secondary Radial Nerve Palsy: A Case Report. Neurol Int 2024; 16:1014-1025. [PMID: 39311350 PMCID: PMC11417706 DOI: 10.3390/neurolint16050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Humeral shaft fractures are relatively common. Complications associated with this type of fracture and its treatment include nonunion and radial nerve palsy. Plate osteosynthesis with autologous bone grafting is considered the gold standard for treating nonunion. However, bone grafts might not always be necessary in cases of hypertrophic nonunion, and treatment should be tailored to the specific type and characteristics of the nonunion. The treatment of radial nerve palsy is debated, with some favoring expectant management based on the nerve's ability to regenerate, and others preferring early surgical exploration to prevent possible lasting nerve damage. METHODS We present the case of a 46-year-old male patient with a six-year-old humeral shaft fracture resulting in hypertrophic nonunion. We treated the nonunion with anterograde intramedullary nailing without bone grafting. Postoperatively, the patient developed severe radial nerve palsy. After repeated electrophysiological studies, a decision was made to surgically explore the nerve 10 days after the nonunion surgery. The nerve was subsequently found to be intact and treated with neurolysis. RESULTS Bony union was shown at six months after nonunion surgery. Four months after the nonunion surgery, the patient started to show clinical signs of nerve recovery, and at 12 months he achieved nearly full clinical recovery of radial nerve function. CONCLUSIONS Anterograde intramedullary nailing without autologous bone grafting may be considered an option for treating hypertrophic nonunion. The management of radial nerve palsy requires effective cooperation and communication between patient and physician. Further research is necessary to be able to better predict nerve recovery.
Collapse
Affiliation(s)
| | | | - Romana von Mengershausen
- Department of Orthopedics and Traumatology, Iuliu Hațieganu University of Medicine and Pharmacy, Strada Victor Babes 8, 4000132 Cluj-Napoca, Romania; (D.V.N.); (R.M.M.)
| |
Collapse
|
6
|
Wähnert D, Miersbach M, Colcuc C, Brianza S, Vordemvenne T, Plecko M, Schwarz A. Promoting bone callus formation by taking advantage of the time-dependent fracture gap strain modulation. Front Surg 2024; 11:1376441. [PMID: 38756355 PMCID: PMC11096559 DOI: 10.3389/fsurg.2024.1376441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Delayed union and non-union of fractures continue to be a major problem in trauma and orthopedic surgery. These cases are challenging for the surgeon. In addition, these patients suffer from multiple surgeries, pain and disability. Furthermore, these cases are a major burden on healthcare systems. The scientific community widely agrees that the stability of fixation plays a crucial role in determining the outcome of osteosynthesis. The extent of stabilization affects factors like fracture gap strain and fluid flow, which, in turn, influence the regenerative processes positively or negatively. Nonetheless, a growing body of literature suggests that during the fracture healing process, there exists a critical time frame where intervention can stimulate the bone's return to its original form and function. This article provides a summary of existing evidence in the literature regarding the impact of different levels of fixation stability on the strain experienced by newly forming tissues. We will also discuss the timing and nature of this "window of opportunity" and explore how current knowledge is driving the development of new technologies with design enhancements rooted in mechanobiological principles.
Collapse
Affiliation(s)
- Dirk Wähnert
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Marco Miersbach
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Christian Colcuc
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | | | - Thomas Vordemvenne
- Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Bielefeld, Germany
| | - Michael Plecko
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| | - Angelika Schwarz
- Department of Orthopaedics and Traumatology, Trauma Hospital Graz (UKH), Graz, Austria
| |
Collapse
|
7
|
Zhu L, Li P, Qin Y, Xiao B, Li J, Xu W, Yu B. Platelet-rich plasma in orthopedics: Bridging innovation and clinical applications for bone repair. J Orthop Surg (Hong Kong) 2024; 32:10225536231224952. [PMID: 38217531 DOI: 10.1177/10225536231224952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2024] Open
Abstract
In the burgeoning domain of orthopedic therapeutic research, Platelet-Rich Plasma (PRP) has firmly established its position, transforming paradigms ranging from tissue regeneration to the management of chondral lesions. This review delves into PRP's recent integrations with cutting-edge interventions such as 3D-printed scaffolds, its role in bone and cartilage defect management, and its enhanced efficacy when combined with molecules like Kartogenin (KGN) for fibrocartilage zone repair. Significant attention is paid to tissue engineering for meniscal interventions, where a combination of KGN, PRP, and bone marrow-derived mesenchymal stem cells are under exploration. Within the sphere of osteochondral regenerative therapy, the synergy of PRP with Bone Marrow Aspirate Concentrate (BMAC) represents a noteworthy leap towards cartilage regeneration. The innovative incorporation of PRP with biomaterials like hydroxyapatite and graphene oxide further underscores its versatility in supporting structural integrity and ensuring sustained growth factor release. However, while PRP's autologous and nontoxic nature makes it an inherently safe option, concerns arising from its preparation methods, particularly with bovine thrombin, necessitate caution. As of 2023, despite the burgeoning promise of PRP in bone healing, the quest for its standardization, optimization, and substantiation through rigorous clinical trials continues. This comprehensive review elucidates the contemporary applications, challenges, and future trajectories of PRP in orthopedics, aiming to spotlight areas primed for further research and exploration.
Collapse
Affiliation(s)
- Liangbo Zhu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, Yichun People'S Hospital, Yichun, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, P.R. China
| | - Yuhong Qin
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Baowei Xiao
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Junning Li
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Wenhua Xu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Bo Yu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| |
Collapse
|
8
|
Esposito A, Klüppel M, Wilson BM, Meka SRK, Spagnoli A. CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. Bone 2023; 166:116600. [PMID: 36368465 PMCID: PMC10057209 DOI: 10.1016/j.bone.2022.116600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment improved fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Michael Klüppel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Brittany M Wilson
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sai R K Meka
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
9
|
Altering the course of fracture healing monitoring. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
10
|
Zheng X, Wang J, Zhou J, Wang D. The Extract of Ilex cornuta Bark Promotes Bone Healing by Activating Adenosine A2A Receptor. Drug Des Devel Ther 2022; 16:2569-2587. [PMID: 35959419 PMCID: PMC9359408 DOI: 10.2147/dddt.s362238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Bone fracture is a common reason causing human disability. The delay union and nonunion rates are approximately 5–10% despite patients receiving active treatment. Currently, there is a limited number of drugs directly accelerating bone healing, especially direct extracts from plants. Moreover, the pharmacological effects of Ilex cornuta bark are still unknown. This study aimed to explore the effects and mechanisms of Ilex cornuta bark in bone healing. Methods and Results First, the promoting effects of Ilex cornuta bark on bone healing were verified by the mice femur fracture model as Ilex cornuta bark increased the callus formation and enhanced the biomechanical stability during the bone healing process. Second, the target gene of Ilex cornuta bark in bone healing identified by bioinformatics analysis and immunofluorescence validation was ADORA2A. Third, 410 main compound compositions of Ilex cornuta bark were explored by a non-target metabolomic analysis, where 190 of them were neg ion mode, and 220 were pos ion mode. Molecular docking was used to predict the regulatory effect of the compounds on adora2a (adenosine A2A receptor), and ursonic acid had the lowest binding energy with adora2a. Finally, nfkb1 was the transcription factor (TF) of adora2a, and ursonic acid also had the lowest binding energy by bioinformatic analysis and molecular docking. Conclusion Overall, Ilex cornuta bark water extract was a new plant extract on promoting bone healing; in addition, the mechanism of it might be activating adora2a though Nfkb1.
Collapse
Affiliation(s)
- Xi Zheng
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Jingyi Wang
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Correspondence: Dong Wang, Department of Orthopedics, Beijing Chaoyang hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel +86-13240718193, Email
| |
Collapse
|
11
|
Cebpb Regulates Skeletal Stem Cell Osteogenic Differentiation and Fracture Healing via the WNT/β-Catenin Pathway. Stem Cells Int 2022; 2022:2091615. [PMID: 35898655 PMCID: PMC9314177 DOI: 10.1155/2022/2091615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Fracture is the most common traumatic organ injury, and fracture nonunion is a critical clinical challenge. The research on the mechanisms of skeletal stem cell (SSC) differentiation and fracture healing may help develop new treatment strategies and improve the prognosis of patients at high risk of nonunion. Bioinformatic analysis of scRNA-seq data of mouse SSCs and mouse osteoprogenitors was applied to discover major transcription factors for the regulation of SSC differentiation. FACS was used to isolate SSCs prospectively. The expression of Cebpb, osteogenesis-related genes (Runx2, Sp7, and Bglap2), and markers for Notch, Hedgehog, MAPK, BMP2/SMAD, and WNT/β-catenin signaling pathways (Hes1, Gli1, p-Erk1/2, p-Smad1/5/9, and β-catenin) were detected in SSCs with qPCR or western blot, respectively. Alkaline phosphatase assay and alizarin red S staining were used to illustrate the osteogenic differentiation ability of SSCs in vitro. A WNT inhibitor, IWR-1, was further used to explore the mechanism of WNT signaling in the differentiation of SSCs. Micro-CT, mechanical testing, and immunohistochemistry of osteogenic and chondrogenic proteins (Sp7 and Col2α1) were used to demonstrate the capacity of Cebpb knockdown in promoting fracture healing in a monocortical defect model. We found that Cebpb was the crucial transcription factor regulating SSC differentiation. Inhibiting Cebpb in SSCs enhanced the expression of active β-catenin to promote the expression of WNT target genes, thus facilitating the osteogenic differentiation of SSCs. Bone mass, mechanical properties, and osteogenic protein expression were also increased in the Cebpb inhibition group compared to the group without Cebpb inhibition. Collectively, our results proved that Cebpb knockdown promotes SSC osteogenic differentiation and fracture healing via the WNT/β-catenin signaling pathway.
Collapse
|
12
|
Zheng ZY, Jiang T, Huang ZF, Chu B, Gu J, Zhao X, Liu H, Fan J, Yu LP, Jiang SH, Li Q, Hu LP, Kong FQ, Zhang L, Chen Q, Chen J, Zhang HW, Yin GY, Zhao SJ. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol 2022; 53:102326. [PMID: 35525025 PMCID: PMC9093016 DOI: 10.1016/j.redox.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
The nonunion following a fracture is associated with severe patient morbidity and economic consequences. Currently, accumulating studies are focusing on the importance of macrophages during fracture repair. However, details regarding the process by which macrophages facilitate endochondral ossification (EO) are largely unknown. In this study, we present evidence that apoptotic chondrocytes (ACs) are not inert corpses awaiting removal, but positively modulate the osteoinductive ability of macrophages. In vivo experiments revealed that fatty acid (FA) metabolic processes up-regulated following EO. In vitro studies further uncovered that FAs derived from ACs are taken up by macrophages mainly through macrophage scavenger receptor 1 (MSR1). Then, our functional experiments confirmed that these exogenous FAs subsequently activate peroxisome proliferator-activated receptor α (PPARα), which further facilitates lipid droplets generation and fatty acid oxidation (FAO). Mechanistically, elevated FAO is involved in up-regulating the osteoinductive effect by generating BMP7 and NAD+/SIRT1/EZH2 axis epigenetically controls BMP7 expression in macrophages cultured with ACs culture medium. Our findings advanced the concept that ACs could promote bone regeneration by regulating metabolic and function reprogram in macrophages and identified macrophage MSR1 represents a valuable target for fracture treatments.
Collapse
|
13
|
Quan K, Xu Q, Zhu M, Liu X, Dai M. Analysis of Risk Factors for Non-union After Surgery for Limb Fractures: A Case-Control Study of 669 Subjects. Front Surg 2022; 8:754150. [PMID: 34970588 PMCID: PMC8712717 DOI: 10.3389/fsurg.2021.754150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this study was to analyze the risk factors for limb fracture non-union in order to improve non-union prevention and early detection. Methods: A total of 223 patients with non-union after surgery for limb fractures performed at our institution from January 2005 to June 2017 were included as the case group, while a computer-generated random list was created to select 446 patients with successful bone healing after surgery for limb fractures who were treated during the same period as the control group, thus achieving a ratio of 1:2. The medical records of these patients were reviewed retrospectively. Age, sex, body mass index, obesity, smoking, alcohol, diabetes, hypertension, osteoporosis, fracture type, multiple fractures, non-steroidal anti-inflammatory drugs (NSAIDs) use, delayed weight bearing, internal fixation failure, and infection data were analyzed and compared between the two groups. A multivariate logistic regression model was constructed to determine relevant factors associated with non-union. Results: After comparison between two groups by univariate analysis and multivariate logistic regression, we found some risk factors associated that osteoporosis (odds ratio [OR] = 3.16, 95% confidence interval [CI]: 2.05–4.89, p < 0.001), open fracture (OR = 2.71, 95%CI: 1.72–4.27, p < 0.001), NSAIDs use (OR = 2.04, 95%CI: 1.24–3.37, p = 0.005), delayed weight bearing (OR = 1.72, 95%CI: 1.08–2.74, p = 0.023), failed internal fixation (OR = 5.93, 95%CI: 2.85–12.36, p < 0.001), and infection (OR = 6.77, 95%CI: 2.92–15.69, p < 0.001) were independent risk factors for non-union after surgery for limb fractures. Conclusions: Osteoporosis, open fracture type, NSAIDs use, delayed weight bearing, failed internal fixation, and infection were found to be the main causes of bone non-union; clinicians should, therefore, take targeted measures to intervene in high-risk groups early.
Collapse
Affiliation(s)
- Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, China
| |
Collapse
|
14
|
Wang D, Wang J, Zhou J, Zheng X. The Role of Adenosine Receptor A2A in the Regulation of Macrophage Exosomes and Vascular Endothelial Cells During Bone Healing. J Inflamm Res 2021; 14:4001-4017. [PMID: 34429631 PMCID: PMC8380306 DOI: 10.2147/jir.s324232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Macrophage exosomes and vascular endothelial cells (VECs) are critical to bone healing. However, few studies explore the molecular regulation of them in the bone fracture microenvironment. Methods In this study, we explored the effects of adenosine receptor A2A (ADA2AR) in macrophage exosomes and VECs during bone healing. CGS21680 (an ADA2AR agonist) and ZM241385 (an ADA2AR antagonist) were used. First, the effects of the ADA2AR on VECs during bone healing were studied in vivo in a rat tibial fracture model. Second, the effects of ADA2AR on VECs and in the regulation of VECs by macrophages were examined in the bone fracture microenvironment. Third, the effects of ADA2AR on the regulation of macrophage exosomes on VECs were analyzed. Finally, the genes and long non-coding RNAs (lncRNAs) associated with the regulation of VECs by the ADA2AR were examined by high-throughput sequencing and bioinformatics analysis. Results CGS21680 accelerated VEC proliferation in the early stage of bone healing and that ZM241385 suppressed VEC proliferation in vivo. ZM241385 inhibited cell viability and tube formation in vitro. However, CGS21680 did not promote tube formation, cell proliferation, or cell migration in vitro. The inhibition of macrophage exosomes could suppress tube formation and VEC migration. CGS21680 had no effects on tube formation in a macrophage-VEC co-culture. The macrophage exosomes were purified and CGS21680 promoted the macrophage secretion of exosomes. In contrast, ZM241385 inhibited the macrophage secretion exosomes. Finally, the lncRNA and mRNA involved in the activation of the ADA2AR in VECs were analyzed. CGS21680 upregulated 3274 mRNAs and downregulated 2236 mRNAs, and upregulated 1696 lncRNAs and downregulated 1882 lncRNAs. The hub genes involved in angiogenesis were Flt1, Fgf2, Mapk14, Fn1, and Jun. Conclusion The activation of ADA2AR was essential for angiogenesis and the secretion of exosomes by macrophages during bone healing; moreover, the inactivation of the ADA2AR led to poor angiogenesis and bone nonunion.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jingyi Wang
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Junlin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xi Zheng
- Department of SICU, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|