1
|
Wu Y, Gong Y, Liu Y, Chen F, Chen S, Zhang F, Wang C, Li S, Hu M, Huang R, Guo X, Wang X, Ning Y, Yang L. Comparative Analysis of Differentially Expressed Genes in Chondrocytes from Rats Exposed to Low Selenium and T-2 Toxin. Biol Trace Elem Res 2024; 202:1020-1030. [PMID: 37326932 DOI: 10.1007/s12011-023-03725-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to construct rat models of environmental risk factors for Kashin-Beck disease (KBD) with low selenium and T-2 toxin levels and to screen the differentially expressed genes (DEGs) between the rat models exposed to environmental risk factors. The Se-deficient (SD) group and T-2 toxin exposure (T-2) group were constructed. Knee joint samples were stained with hematoxylin-eosin, and cartilage tissue damage was observed. Illumina high-throughput sequencing technology was used to detect the gene expression profiles of the rat models in each group. Gene Ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis were performed and five differential gene expression results were verified by quantitative real-time polymerase chain reaction (qRT‒PCR). A total of 124 DEGs were identified from the SD group, including 56 upregulated genes and 68 downregulated genes. A total of 135 DEGs were identified in the T-2 group, including 68 upregulated genes and 67 downregulated genes. The DEGs were significantly enriched in 4 KEGG pathways in the SD group and 9 KEGG pathways in the T-2 group. The expression levels of Dbp, Pc, Selenow, Rpl30, and Mt2A were consistent with the results of transcriptome sequencing by qRT‒PCR. The results of this study confirmed that there were some differences in DEGs between the SD group and the T-2 group and provided new evidence for further exploration of the etiology and pathogenesis of KBD.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yi Gong
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yanli Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Sijie Chen
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feiyu Zhang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Chaowei Wang
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shujin Li
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Minhan Hu
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Ruitian Huang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
- Clinical Research Center for Endemic Disease of Shaanxi Province, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157 Xi Wu Road, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Xi Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China.
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China.
| | - Yujie Ning
- School of Public Health, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Lei Yang
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Mohamed FF, de Oliveira FA, Kinoshita Y, Yalamanchili RR, Eltilib LA, Andras NL, Narisawa S, Tani T, Chu EY, Millán JL, Foster BL. Dentoalveolar Alterations in an Adenine-Induced Chronic Kidney Disease Mouse Model. J Bone Miner Res 2023; 38:1192-1207. [PMID: 37191192 PMCID: PMC10524958 DOI: 10.1002/jbmr.4829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Chronic kidney disease (CKD) is characterized by kidney damage and loss of renal function. CKD mineral and bone disorder (CKD-MBD) describes the dysregulation of mineral homeostasis, including hyperphosphatemia and elevated parathyroid hormone (PTH) secretion, skeletal abnormalities, and vascular calcification. CKD-MBD impacts the oral cavity, with effects including salivary gland dysfunction, enamel hypoplasia and damage, increased dentin formation, decreased pulp volume, pulp calcifications, and altered jaw bones, contributing to clinical manifestations of periodontal disease and tooth loss. Underlying mechanisms are not fully understood, and CKD mouse models commonly require invasive procedures with high rates of infection and mortality. We aimed to characterize the dentoalveolar effects of an adenine diet (AD)-induced CKD (AD-CKD) mouse model. Eight-week-old C57BL/6J mice were provided either a normal phosphorus diet control (CTR) or adenine and high-phosphorus diet CKD to induce kidney failure. Mice were euthanized at 15 weeks old, and mandibles were collected for micro-computed tomography and histology. CKD mice exhibited kidney failure, hyperphosphatemia, and hyperparathyroidism in association with porous cortical bone in femurs. CKD mice showed a 30% decrease in molar enamel volume compared to CTR mice. Enamel wear was associated with reduced ductal components, ectopic calcifications, and altered osteopontin (OPN) deposition in submandibular salivary glands of CKD mice. Molar cusps in CKD mice were flattened, exposing dentin. Molar dentin/cementum volume increased 7% in CKD mice and pulp volume decreased. Histology revealed excessive reactionary dentin and altered pulp-dentin extracellular matrix proteins, including increased OPN. Mandibular bone volume fraction decreased 12% and bone mineral density decreased 9% in CKD versus CTR mice. Alveolar bone in CKD mice exhibited increased tissue-nonspecific alkaline phosphatase localization, OPN deposition, and greater osteoclast numbers. AD-CKD recapitulated key aspects reported in CKD patients and revealed new insights into CKD-associated oral defects. This model has potential for studying mechanisms of dentoalveolar defects or therapeutic interventions. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Fatma F. Mohamed
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Flavia Amadeu de Oliveira
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yuka Kinoshita
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Riti R. Yalamanchili
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Leena A. Eltilib
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Natalie L. Andras
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Takashi Tani
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Emily Y. Chu
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Vervloet MG. Shedding Light on the Complex Regulation of FGF23. Metabolites 2022; 12:metabo12050401. [PMID: 35629904 PMCID: PMC9147863 DOI: 10.3390/metabo12050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Early research has suggested a rather straightforward relation between phosphate exposure, increased serum FGF23 (Fibroblast Growth Factor 23) concentrations and clinical endpoints. Unsurprisingly, however, subsequent studies have revealed a much more complex interplay between autocrine and paracrine factors locally in bone like PHEX and DMP1, concentrations of minerals in particular calcium and phosphate, calciprotein particles, and endocrine systems like parathyroid hormone PTH and the vitamin D system. In addition to these physiological regulators, an expanding list of disease states are shown to influence FGF23 levels, usually increasing it, and as such increase the burden of disease. While some of these physiological or pathological factors, like inflammatory cytokines, may partially confound the association of FGF23 and clinical endpoints, others are in the same causal path, are targetable and hence hold the promise of future treatment options to alleviate FGF23-driven toxicity, for instance in chronic kidney disease, the FGF23-associated disease with the highest prevalence by far. These factors will be reviewed here and their relative importance described, thereby possibly opening potential means for future therapeutic strategies.
Collapse
Affiliation(s)
- Marc G. Vervloet
- Amsterdam UMC, Location Vrije Universiteit Amsterdam, Nephrology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; ; Tel.: +31-20-4442671
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:996776. [PMID: 36353239 PMCID: PMC9637707 DOI: 10.3389/fendo.2022.996776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease (ESRD). However, its pathogenesis remains unclear, and effective prevention and treatment strategies are lacking. Recently, organ-to-organ communication has become a new focus of studies on pathogenesis. Various organs or tissues (the liver, muscle and adipose tissue) secrete a series of proteins or peptides to regulate the homeostasis of distal organs in an endocrine manner. Bone, an important part of the body, can also secrete bone-derived proteins or peptides that act on distal organs. As an organ with high metabolism, the kidney is responsible for signal and material exchange with other organs at any time through circulation. In this review, we briefly discussed bone composition and changes in bone structure and function in DN and summarized the current status of bone-derived proteins and their role in the progression of DN. We speculated that the "bone-kidney axis" is a potential target for early diagnosis and treatment of DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xi Wang,
| |
Collapse
|