1
|
Legault MA, Hartford J, Arsenault BJ, Yang AY, Pineau J. A flexible machine learning Mendelian randomization estimator applied to predict the safety and efficacy of sclerostin inhibition. Am J Hum Genet 2025:S0002-9297(25)00171-5. [PMID: 40378846 DOI: 10.1016/j.ajhg.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/19/2025] Open
Abstract
Mendelian randomization (MR) enables the estimation of causal effects while controlling for unmeasured confounding factors. However, traditional MR's reliance on strong parametric assumptions can introduce bias if these are violated. We describe a machine learning MR estimator named quantile instrumental variable (Quantile IV) that achieves a low estimation error in a wide range of plausible MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous causal effects and offers a flexible approach for subgroup analysis. Applying quantile IV, we investigate the impact of circulating sclerostin levels on heel bone mineral density, osteoporosis, and cardiovascular outcomes. Employing various MR estimators and colocalization techniques, our analysis reveals that a genetically predicted reduction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of osteoporosis while showing no discernible effect on ischemic cardiovascular diseases. As a second application, we estimated the effect of increases in low-density lipoprotein cholesterol and waist-to-hip ratio on ischemic cardiovascular diseases using this well-known association as a positive control analysis. Quantile IV contributes to the advancement of MR methodology, and the selected applications demonstrate the applicability of our estimator in various MR contexts.
Collapse
Affiliation(s)
- Marc-André Legault
- Department of Computer Science, McGill University, Montreal, QC, Canada; Mila, Montreal, QC, Canada; Faculté de pharmacie, Université de Montréal, Montreal, QC, Canada; Centre de recherche Azrieli du CHU Sainte-Justine, Montreal, QC, Canada.
| | | | - Benoît J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec, QC, Canada
| | - Archer Y Yang
- Mila, Montreal, QC, Canada; Department of Mathematics and Statistics, McGill University, Montreal, QC, Canada
| | - Joelle Pineau
- Department of Computer Science, McGill University, Montreal, QC, Canada; Mila, Montreal, QC, Canada
| |
Collapse
|
2
|
He T, Qin L, Chen S, Huo S, Li J, Zhang F, Yi W, Mei Y, Xiao G. Bone-derived factors mediate crosstalk between skeletal and extra-skeletal organs. Bone Res 2025; 13:49. [PMID: 40307216 PMCID: PMC12044029 DOI: 10.1038/s41413-025-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/02/2025] Open
Abstract
Bone has long been acknowledged as a fundamental structural entity that provides support and protection to the body's organs. However, emerging research indicates that bone plays a crucial role in the regulation of systemic metabolism. This is achieved through the secretion of a variety of hormones, cytokines, metal ions, extracellular vesicles, and other proteins/peptides, collectively referred to as bone-derived factors (BDFs). BDFs act as a medium through which bones can exert targeted regulatory functions upon various organs, thereby underscoring the profound and concrete implications of bone in human physiology. Nevertheless, there remains a pressing need for further investigations to elucidate the underlying mechanisms that inform the effects of bone on other body systems. This review aims to summarize the current findings related to the roles of these significant modulators across different organs and metabolic contexts by regulating critical genes and signaling pathways in vivo. It also addresses their involvement in the pathogenesis of various diseases affecting the musculoskeletal system, circulatory system, glucose and lipid metabolism, central nervous system, urinary system, and reproductive system. The insights gained from this review may contribute to the development of innovative therapeutic strategies through a focused approach to bone secretomes. Continued research into BDFs is expected to enhance our understanding of bone as a multifunctional organ with diverse regulatory roles in human health.
Collapse
Affiliation(s)
- Tailin He
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Qin
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China, Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen, 518000, China
| | - Jie Li
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), 100101, Beijing, China
| | - Weihong Yi
- Department of Orthopedics, Shenzhen Nanshan People's Hospital, and the 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, China
| | - Yifang Mei
- Department of Rheumatology and Immunology, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Guozhi Xiao
- Department of Biochemistry, Homeostatic Medicine Institute, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Michaëlsson K, Zheng R, Baron JA, Fall T, Wolk A, Lind L, Höijer J, Brunius C, Warensjö Lemming E, Titova OE, Svennblad B, Larsson SC, Yuan S, Melhus H, Byberg L, Brooke HL. Cardio-metabolic-related plasma proteins reveal biological links between cardiovascular diseases and fragility fractures: a cohort and Mendelian randomisation investigation. EBioMedicine 2025; 113:105580. [PMID: 39919333 PMCID: PMC11848109 DOI: 10.1016/j.ebiom.2025.105580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 12/17/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND How cardiovascular diseases (CVD) predispose to a higher risk of fragility fractures is not well understood. Both contribute to significant components of disease burden and health expenditure. Poor bone quality, central obesity, sarcopenia, falls, and low grip strength are independent risk factors for hip and other fragility fractures and also for CVD and early death. METHODS We used proteomics and a cohort design combined with Mendelian randomisation analysis to understand shared mechanisms for developing CVD and fragility fractures, two significant sources of disease burden and health expenditure. We primarily aimed to discover and replicate the association of 274 cardio-metabolic-related proteins with future rates of hip and any fracture in two separate population-based cohorts, with a total of 12,314 women and men. FINDINGS The average age at baseline was 68 years in the discovery cohort of women and 74 years in the mixed-sex replication cohort. During 100,619 person-years of follow-up, 2168 had any fracture, and 538 had a hip fracture. Our analysis resulted in 24 cardiometabolic proteins associated with fracture risk: 20 with hip fracture, 9 with any fracture, and 5 with both. The associations remained even if protein concentrations were measured from specimens taken during preclinical stages of cardio-metabolic diseases, and 19 associations remained after adjustment for bone mineral density. Twenty-two of the proteins were associated with total body fat mass or lean body mass. Mendelian randomisation (MR) analysis supported causality since genetically predicted levels of SOST (Sclerostin), CCDC80 (Coiled-coil domain-containing protein 80), NT-proBNP (N-terminal prohormone brain natriuretic peptide), and BNP (Brain natriuretic peptide) were associated with risk of hip fracture. MR analysis also revealed a possible negative impact on bone mineral density (BMD) by genetically predicted higher levels of SOST, CCDC80, and TIMP4 (Metalloproteinase inhibitor 4). The MR association with BMD was positive for PTX3 (Pentraxin-related protein) and SPP1 (Osteopontin). Genetically predicted higher concentrations of SOST and lower concentrations of SPP1 also conferred a higher risk of falls and lowered grip strength. The genetically determined concentration of nine proteins influenced fat mass, and one influenced lean body mass. INTERPRETATION These data reveal biological links between cardiovascular diseases and fragility fractures. The proteins should be further evaluated as shared targets for developing pharmacological interventions to prevent fractures and cardiovascular disease. FUNDING The study was supported by funding from the Swedish Research Council (https://www.vr.se; grants No. 2015-03257, 2017-00644, 2017-06100, and 2019-01291 to Karl Michaëlsson) and funding from Olle Engkvist Byggmästares stiftelse (SOEB).
Collapse
Affiliation(s)
- Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rui Zheng
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Tove Fall
- Molecular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Carl Brunius
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Olga E Titova
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bodil Svennblad
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Melhus
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hannah L Brooke
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Ando M, Kawai S, Morishita K, Takashima S, Otake K, Yamamoto M, Shoji Y, Hinoi E, Kitao T, Shirahase H. Synthesis and Structure-Activity Relationships of Novel Benzofuran Derivatives with Osteoblast Differentiation-Promoting Activity. Chem Pharm Bull (Tokyo) 2025; 73:25-38. [PMID: 39805602 DOI: 10.1248/cpb.c24-00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed. In the present study, to find novel candidates for oral osteogenic drugs, various benzofuran derivatives were synthesized and their effects on osteoblast differentiation were examined in mouse mesenchymal stem cells (ST2 cells). Among the compounds tested, 3-{4-[2-(2-isopropoxyethoxy)ethoxy]phenyl}benzofuran-5-carboxamide (23d) exhibited potent osteoblast differentiation-promoting activity, estimated as EC200 for increasing alkaline phosphatase activity, and good oral absorption in female rats, resulting in high Cmax/EC200. Dual-energy X-ray absorptiometry scanning revealed that 23d at 10 mg/kg/d for 8 weeks increased femoral bone mineral density in ovariectomized rats with an elevation in plasma bone-type alkaline phosphatase activity, and micro-computed tomography showed that it increased bone volume, mineral contents, and strength in femoral diaphysis cortical, but not trabecular bone during the experiment period. 23d potently inhibited cyclin-dependent kinase 8 (CDK8) activity, suggesting that its osteoblastogenic activity is mediated by the suppression of CDK8, as previously reported for diphenylether derivatives. In conclusion, the structure-activity relationships of novel benzofuran derivatives were clarified and 3,5-disubstituted benzofuran was identified as a useful scaffold for orally active osteogenic compounds. Compound 23d exhibited potent osteoblastogenic activity through CDK8 inhibition and osteogenic effects in ovariectomized rats, indicating its potential as an orally active anti-osteoporotic drug.
Collapse
Affiliation(s)
- Masafumi Ando
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shota Kawai
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Ko Morishita
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Shunsuke Takashima
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Kazuya Otake
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Megumi Yamamoto
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Yoshimichi Shoji
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Eiichi Hinoi
- Department of Bioactive Molecules, Pharmacology, Gifu Pharmaceutical University
| | - Tatsuya Kitao
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| | - Hiroaki Shirahase
- Drug Discovery Research Department, Kyoto Pharmaceutical Industries, Ltd
| |
Collapse
|
5
|
Macrae F, Clark EM, Walsh K, Bailey SJ, Roy M, Hardcastle S, Cockill C, Tobias JH, Faber BG. Cardiovascular risk assessment for osteoporosis patients considering Romosozumab. Bone 2025; 190:117305. [PMID: 39454743 DOI: 10.1016/j.bone.2024.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Cardiovascular risk scoaring tools are suitable for but not interchangable within the osteoporosis clinic.
Collapse
Affiliation(s)
- F Macrae
- Cardiology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK.
| | - E M Clark
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - K Walsh
- Care of the Elderly, North Bristol Trust, Bristol, UK
| | - S-J Bailey
- Care of the Elderly, North Bristol Trust, Bristol, UK
| | - M Roy
- Rheumatology, University Hospitals Bristol and Weston, Bristol, UK
| | - S Hardcastle
- Rheumatology, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - C Cockill
- Rheumatology, Yeovil NHS Trust, Yeovil, UK
| | - J H Tobias
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| | - B G Faber
- Musculoskeletal Research Unit, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Lewiecki EM, Bilezikian JP, Clark A, Collins MT, Kado DM, Lane J, Langdahl B, McClung MR, Snyder PJ, Stein EM. Proceedings of the 2024 Santa Fe Bone Symposium: Update on the Management of Osteoporosis and Rare Bone Diseases. J Clin Densitom 2025; 28:101559. [PMID: 39826229 DOI: 10.1016/j.jocd.2024.101559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
The 24th Annual Santa Fe Bone Symposium (SFBS) was held in Santa Fe, New Mexico, USA, on August 2-3, 2024. This was a "hybrid" meeting, with in-person and real-time remote participants representing a broad range of geographical locations and medical disciplines. The focus was on new developments in the care of patients with osteoporosis, other metabolic bone diseases, and inherited skeletal disorders. The most current medical evidence was presented and discussed with consideration of implications for patient management. Topics included an update on clinical uses of osteoanabolic agents, management of patients discontinuing denosumab, bone health optimization for orthopedic surgery, estrogen and testosterone in the management of osteoporosis, osteoporosis treatment in the very old, overview of rare bone diseases, treat-to-target for osteoporosis, and a progress report on global activities of Bone Health ECHO. There were two highly interactive faculty panel discussions - one with case presentations by attendees and another with open microphone for all topics of interest. Endocrinology fellows, selected from attendees of the Santa Fe Fellows Workshop on Metabolic Bone Diseases, held the two days preceding the SFBS, participated with presentations of oral abstracts. Ancillary events addressed modern approaches to menopause and bone health, case studies of management of patients at very high fracture risk, and management of patients with rare bone diseases, such as hypophosphatasia, fibrodysplasia ossificans progressiva, X-linked hypophosphatemia, and hypoparathyroidism. These proceedings of the SFBS present the clinical highlights of the plenary sessions and the discussions that followed.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA.
| | - John P Bilezikian
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Amanda Clark
- Oregon Health & Science University, Portland, OR, USA
| | | | | | - Joseph Lane
- Hospital for Special Surgery, New York, NY, USA
| | - Bente Langdahl
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Peter J Snyder
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Chiu SH, Wu WT, Yao TK, Peng CH, Yeh KT. Sclerostin and Cardiovascular Risk: Evaluating the Cardiovascular Safety of Romosozumab in Osteoporosis Treatment. Biomedicines 2024; 12:2880. [PMID: 39767786 PMCID: PMC11673789 DOI: 10.3390/biomedicines12122880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Osteoporosis and cardiovascular disease (CVD) share common risk factors and pathophysiological mechanisms, raising concerns about the cardiovascular implications of sclerostin inhibition. Romosozumab, a monoclonal antibody that targets sclerostin, is effective in increasing bone mineral density (BMD) and reducing fracture risk. However, evidence suggests that sclerostin inhibition may adversely affect vascular calcification, potentially increasing the risk of myocardial infarction (MI) and stroke. Methods: This review synthesizes data from clinical trials, such as ARCH, BRIDGE, and FRAME, alongside genetic studies and observational analyses, to evaluate the cardiovascular safety of romosozumab. PubMed was searched for relevant studies published within the last five years. Studies addressing the relationship between romosozumab and cardiovascular outcomes were included, emphasizing both its efficacy in osteoporosis management and potential cardiovascular risks. Results: Romosozumab significantly improves BMD and reduces fracture risk in postmenopausal women and men with osteoporosis. However, clinical trials report an increased incidence of major adverse cardiovascular events (MACE), particularly in patients with pre-existing cardiovascular conditions such as chronic kidney disease (CKD), diabetes, or prior CVD. Genetic studies indicate that SOST gene variants may also influence cardiovascular outcomes. Conclusions: While romosozumab is an effective treatment for osteoporosis, careful cardiovascular risk assessment is crucial before initiating therapy, especially for high-risk populations. Long-term studies are needed to evaluate chronic safety. Future therapeutic strategies should aim to maintain bone health while minimizing cardiovascular risks, ensuring a balance between efficacy and safety in osteoporosis treatment.
Collapse
Affiliation(s)
- Shi-Hsun Chiu
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.C.); (W.-T.W.); (C.-H.P.)
| | - Wen-Tien Wu
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.C.); (W.-T.W.); (C.-H.P.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Ting-Kuo Yao
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Cheng-Huan Peng
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.C.); (W.-T.W.); (C.-H.P.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
| | - Kuang-Ting Yeh
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.C.); (W.-T.W.); (C.-H.P.)
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Graduate Institute of Clinical Pharmacy, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
8
|
Cianferotti L, Cipriani C, Palermo A, Viapiana O, Zavatta G, Mazziotti G. A practical approach for anabolic treatment of bone fragility with romosozumab. J Endocrinol Invest 2024; 47:2649-2662. [PMID: 38789679 DOI: 10.1007/s40618-024-02395-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Romosozumab, a fully humanized anti-sclerostin-antibody, is a bone-builder stimulating osteoblasts and inhibiting osteoclast by activation of the canonical Wnt-beta catenin signaling. This unique mechanism of action has the potential to address unmet needs in osteoporosis management. METHODS The multifaceted practical clinical issues related to romosozumab are discussed, especially focusing on the rationale of employing a sclerostin inhibitor to target bone fragility as first line or second line treatment in post-menopausal osteoporosis and in males at increased risk of fractures. RESULTS Four randomized clinical trials with several post-hoc analyses and more than ten observational studies have consistently demonstrated that romosozumab is effective in rapidly increasing bone mineral density (BMD) and decreasing risk of vertebral, non-vertebral and hip fractures in post-menopausal women at very-high risk of fractures. In male osteoporosis, only data on BMD are available. Noteworthy, romosozumab was shown to be more effective and rapid than teriparatide in improving BMD, bone structure and strength at the hip, especially in women already treated with anti-resorptive drugs. Interestingly, even if romosozumab displays best results in treatment-naïve patients, its favourable effects on BMD were observed even in women previously treated with teriparatide or denosumab, although to a lesser extent. CONCLUSIONS Based on the available evidence, romosozumab could be proposed as ideal drug in several clinical settings, such as non-fractured post-menopausal women at very-high risk of fractures, patients with recent hip fracture, patients non responder to bisphosphonates and short-term denosumab therapy.
Collapse
Affiliation(s)
- L Cianferotti
- Bone Metabolic Diseases Unit, Department of Experimental and Clinical Biomedical Sciences, University Hospital of Florence, University of Florence, Florence, Italy
| | - C Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - A Palermo
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
- Unit of Metabolic Bone and Thyroid Disorders, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - O Viapiana
- Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
| | - G Zavatta
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 420090, Pieve Emanuele, MI, Italy.
- Endocrinology, Diabetology and Andrology Unit, Osteoporosis and Bone Diseases Section, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
| |
Collapse
|
9
|
Martiniakova M, Mondockova V, Kovacova V, Babikova M, Zemanova N, Biro R, Penzes N, Omelka R. Interrelationships among metabolic syndrome, bone-derived cytokines, and the most common metabolic syndrome-related diseases negatively affecting bone quality. Diabetol Metab Syndr 2024; 16:217. [PMID: 39238022 PMCID: PMC11378428 DOI: 10.1186/s13098-024-01440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic syndrome (MetS), as a set of medical conditions including hyperglycemia, hypertension, abdominal obesity, and dyslipidemia, represents a highly prevalent disease cluster worldwide. The individual components of MetS together increase the risk of MetS-related disorders. Recent research has demonstrated that bone, as an endocrine organ, releases several systemic cytokines (osteokines), including fibroblast growth factor 23 (FGF23), lipocalin 2 (LCN2), and sclerostin (SCL). This review not only summarizes current knowledge about MetS, osteokines and the most common MetS-related diseases with a detrimental impact on bone quality (type 2 diabetes mellitus: T2DM; cardiovascular diseases: CVDs; osteoporosis: OP), but also provides new interpretations of the relationships between osteokines and individual components of MetS, as well as between osteokines and MetS-related diseases mentioned above. In this context, particular emphasis was given on available clinical studies. According to the latest knowledge, FGF23 may become a useful biomarker for obesity, T2DM, and CVDs, as FGF23 levels were increased in patients suffering from these diseases. LCN2 could serve as an indicator of obesity, dyslipidemia, T2DM, and CVDs. The levels of LCN2 positively correlated with obesity indicators, triglycerides, and negatively correlated with high-density lipoprotein (HDL) cholesterol. Furthermore, subjects with T2DM and CVDs had higher LCN2 levels. SCL may act as a potential biomarker predicting the incidence of MetS including all its components, T2DM, CVDs, and OP. Elevated SCL levels were noted in individuals with T2DM, CVDs and reduced in patients with OP. The aforementioned bone-derived cytokines have the potential to serve as promising predictors and prospective treatment targets for MetS and MetS-related diseases negatively affecting bone quality.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Nina Zemanova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01, Nitra, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 01, Nitra, Slovakia.
| |
Collapse
|
10
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
11
|
Vilaca T, Eastell R. Efficacy of Osteoporosis Medications in Patients with Type 2 Diabetes. Curr Osteoporos Rep 2024; 22:1-10. [PMID: 38093031 PMCID: PMC10912145 DOI: 10.1007/s11914-023-00833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 03/05/2024]
Abstract
PURPOSE OF THE REVIEW The purpose of the review is to summarise the current scientific evidence on the efficacy of osteoporosis medications in patients with type 2 diabetes. RECENT FINDINGS Type 2 diabetes (T2D) is a growing global epidemic. The highest prevalence is observed in the elderly, the same population affected by osteoporosis. Despite normal or even increased bone mineral density and low bone turnover, T2D is associated with an increased risk of fractures in most skeletal sites. These findings raised concerns over the efficacy of anti-osteoporosis drugs in this population. There is no randomised controlled trial designed specifically for people with T2D. However, observational studies and post-hoc analyses of randomised controlled trials have provided valuable insights into the effects of various anti-osteoporosis treatments in this population. Overall, most anti-osteoporosis drugs seem to have similar efficacy and safety profiles for people with and without type 2 diabetes. However, continued research and long-term safety data are needed to optimise treatment strategies and improve bone health outcomes in this population. The current evidence suggests that most anti-osteoporosis drugs exhibit comparable efficacy in people with and without T2D.
Collapse
Affiliation(s)
- Tatiane Vilaca
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK.
- Metabolic Bone Centre - Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| | - Richard Eastell
- Mellanby Centre for Musculoskeletal Research, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|