1
|
Ginsberg AG, Lempka SF, Duan B, Booth V, Crodelle J. Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits. PLoS Comput Biol 2025; 21:e1012234. [PMID: 39808669 PMCID: PMC11771949 DOI: 10.1371/journal.pcbi.1012234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in laminae I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain symptom.
Collapse
Affiliation(s)
- Alexander G. Ginsberg
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott F. Lempka
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bo Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States of America
| |
Collapse
|
2
|
Ginsberg AG, Lempka SF, Duan B, Booth V, Crodelle J. Mechanisms for dysregulation of excitatory-inhibitory balance underlying allodynia in dorsal horn neural subcircuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598179. [PMID: 38915505 PMCID: PMC11195069 DOI: 10.1101/2024.06.10.598179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common type of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord. In this work, we analyze biophysically-motivated subcircuit structures that represent common motifs in neural circuits in layers I-II of the dorsal horn. These circuits are hypothesized to be part of the neural pathways that mediate two different types of allodynia: static and dynamic. We use neural firing rate models to describe the activity of populations of excitatory and inhibitory interneurons within each subcircuit. By accounting for experimentally-observed responses under healthy conditions, we specify model parameters defining populations of subcircuits that yield typical behavior under normal conditions. Then, we implement a sensitivity analysis approach to identify the mechanisms most likely to cause allodynia-producing dysregulation of the subcircuit's E-I signaling. We find that disruption of E-I balance generally occurs either due to downregulation of inhibitory signaling so that excitatory neurons are "released" from inhibitory control, or due to upregulation of excitatory neuron responses so that excitatory neurons "escape" their inhibitory control. Which of these mechanisms is most likely to occur, the subcircuit components involved in the mechanism, and the proportion of subcircuits exhibiting the mechanism can vary depending on the subcircuit structure. These results suggest specific hypotheses about diverse mechanisms that may be most likely responsible for allodynia, thus offering predictions for the high interindividual variability observed in allodynia and identifying targets for further experimental studies on the underlying mechanisms of this chronic pain condition.
Collapse
Affiliation(s)
- Alexander G. Ginsberg
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
| | - Scott F. Lempka
- Department of Biomedical Engineering, and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Bo Duan
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jennifer Crodelle
- Department of Mathematics and Statistics, Middlebury College, Middlebury, Vermont, United States
| |
Collapse
|
3
|
Wang Y, Zhang Y, Ma N, Zhao W, Ren X, Sun Y, Zang W, Cao J. SIRT1 mediates the excitability of spinal CaMKIIα-positive neurons and participates in neuropathic pain by controlling Nav1.3. CNS Neurosci Ther 2024; 30:e14764. [PMID: 38828629 PMCID: PMC11145124 DOI: 10.1111/cns.14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
AIMS Neuropathic pain is a common chronic pain disorder, which is largely attributed to spinal central sensitization. Calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα) activation in the spinal dorsal horn (SDH) is a major contributor to spinal sensitization. However, the exact way that CaMKIIα-positive (CaMKIIα+) neurons in the SDH induce neuropathic pain is still unclear. This study aimed to explore the role of spinal CaMKIIα+ neurons in neuropathic pain caused by chronic constriction injury (CCI) and investigate the potential epigenetic mechanisms involved in CaMKIIα+ neuron activation. METHODS CCI-induced neuropathic pain mice model, Sirt1loxP/loxP mice, and chemogenetic virus were used to investigate whether the activation of spinal CaMKIIα+ neurons is involved in neuropathic pain and its involved mechanism. Transcriptome sequence, western blotting, qRT-PCR, and immunofluorescence analysis were performed to assay the expression of related molecules and activation of neurons. Co-immunoprecipitation was used to observe the binding relationship of protein. Chromatin immunoprecipitation (ChIP)-PCR was applied to analyze the acetylation of histone H3 in the Scn3a promoter region. RESULTS The expression of sodium channel Nav1.3 was increased and the expression of SIRT1 was decreased in the spinal CaMKIIα+ neurons of CCI mice. CaMKIIα neurons became overactive after CCI, and inhibiting their activation relieved CCI-induced pain. Overexpression of SIRT1 reversed the increase of Nav1.3 and alleviated pain, while knockdown of SIRT1 or overexpression of Nav1.3 promoted CaMKIIα+ neuron activation and induced pain. By knocking down spinal SIRT1, the acetylation of histone H3 in the Scn3a (encoding Nav1.3) promoter region was increased, leading to an increased expression of Nav1.3. CONCLUSION The findings suggest that an aberrant reduction of spinal SIRT1 after nerve injury epigenetically increases Nav1.3, subsequently activating CaMKIIα+ neurons and causing neuropathic pain.
Collapse
Affiliation(s)
- Yuanzeng Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Yidan Zhang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Nan Ma
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Wen Zhao
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- Neuroscience Research InstituteZhengzhou University Academy of Medical SciencesZhengzhouHenanChina
| | - Xiuhua Ren
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Weidong Zang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- The Nursing and Health SchoolZhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
4
|
Sabnis SS, Narasimhan KKS, Chettiar PB, Gakare SG, Shelkar GP, Asati DG, Thakur SS, Dravid SM. Intravenous recombinant cerebellin 1 treatment restores signalling by spinal glutamate delta 1 receptors and mitigates chronic pain. Br J Pharmacol 2024; 181:1421-1437. [PMID: 38044332 PMCID: PMC11288346 DOI: 10.1111/bph.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain remains a major clinical problem that needs effective therapeutic agents. Glutamate delta 1 (GluD1) receptors and the protein cerebellin 1 (Cbln1) are down-regulated in the central amygdala (CeA) in models of inflammatory and neuropathic pain. One treatment with Cbln1, intracerebroventricularly (ICV) or in CeA, normalized GluD1 and reduced AMPA receptor expression, resulting in lasting (7-10 days) pain relief. Unlike many CNS-targeting biological agents, the structure of Cbln1 suggests potential blood-brain barrier penetration. Here, we have tested whether systemic administration of Cbln1 provides analgesic effects via action in the CNS. EXPERIMENTAL APPROACH Analgesic effects of intravenous recombinant Cbln1 was assessed in complete Freund's adjuvant inflammatory pain model in mice. GluD1 knockout and a mutant form of Cbln1 were used. KEY RESULTS A single intravenous injection of Cbln1 mitigated nocifensive and averse behaviour in both inflammatory and neuropathic pain models. This effect of Cbln1 was dependent on GluD1 receptors and required binding to the amino terminal domain of GluD1. Time course of analgesic effect was similar to previously reported ICV and intra-CeA injection. GluD1 in both spinal cord and CeA was down -regulated in the inflammatory pain model, whereas GluD1 expression in spinal cord but not in CeA, was partly normalized by intravenous Cbln1. Importantly, recombinant Cbln1 was detected in the synaptoneurosomes in spinal cord but not in the CeA. CONCLUSIONS AND IMPLICATIONS Our results describe a novel mechanism by which systemic Cbln1 induces analgesia potentially by central actions involving normalization of signalling by spinal cord GluD1 receptors.
Collapse
Affiliation(s)
- Siddhesh S. Sabnis
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Poojashree B. Chettiar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Devansh G. Asati
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shriti S. Thakur
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| |
Collapse
|
5
|
de Caro A, Talmont F, Rols MP, Golzio M, Kolosnjaj-Tabi J. Therapeutic perspectives of high pulse repetition rate electroporation. Bioelectrochemistry 2024; 156:108629. [PMID: 38159429 DOI: 10.1016/j.bioelechem.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Electroporation, a technique that uses electrical pulses to temporarily or permanently destabilize cell membranes, is increasingly used in cancer treatment, gene therapy, and cardiac tissue ablation. Although the technique is efficient, patients report discomfort and pain. Current strategies that aim to minimize pain and muscle contraction rely on the use of pharmacological agents. Nevertheless, technical improvements might be a valuable tool to minimize adverse events, which occur during the application of standard electroporation protocols. One recent technological strategy involves the use of high pulse repetition rate. The emerging technique, also referred as "high frequency" electroporation, employs short (micro to nanosecond) mono or bipolar pulses at repetition rate ranging from a few kHz to a few MHz. This review provides an overview of the historical background of electric field use and its development in therapies over time. With the aim to understand the rationale for novel electroporation protocols development, we briefly describe the physiological background of neuromuscular stimulation and pain caused by exposure to pulsed electric fields. Then, we summarize the current knowledge on electroporation protocols based on high pulse repetition rates. The advantages and limitations of these protocols are described from the perspective of their therapeutic application.
Collapse
Affiliation(s)
- Alexia de Caro
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
6
|
Martín Pérez SE, Rodríguez JD, Kalitovics A, de Miguel Rodríguez P, Bortolussi Cegarra DS, Rodríguez Villanueva I, García Molina Á, Ruiz Rodríguez I, Montaño Ocaña J, Martín Pérez IM, Sosa Reina MD, Villafañe JH, Alonso Pérez JL. Effect of Mirror Therapy on Post-Needling Pain Following Deep Dry Needling of Myofascial Trigger Point in Lateral Elbow Pain: Prospective Controlled Pilot Trial. J Clin Med 2024; 13:1490. [PMID: 38592311 PMCID: PMC10934708 DOI: 10.3390/jcm13051490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Background: This prospective randomized, controlled pilot trial to explore the immediate effect of adding Mirror Visual Feedback Therapy on pain sensitivity and motor performance among subjects suffering from post-needling pain diagnosed as Lateral Elbow Pain. Methods: A total of 49 participants (23 female, 26 male) were enrolled and randomly allocated to either the experimental group, which received Deep Dry Needling in the m. Brachioradialis, Ischemic Compression, Cold Spray, Stretching, and Mirror Visual Feedback Therapy (n = 25), or a control group without Mirror Visual Feedback Therapy (n = 24). Pre- and post-treatment evaluations included assessments of post-needling pain intensity, pressure pain threshold, two-point discrimination threshold, and maximum hand grip strength. Results: Intergroup analysis revealed a statistically significant reduction in post-needling pain intensity favoring the experimental group (U = 188.00, p = 0.034). Additionally, intragroup analysis showed significant improvements in post-needling pain intensity (MD = 0.400, SEM = 0.271, W = 137.00, p = 0.047) and pressure pain threshold (MD = 0.148 Kg/cm2, SEM = 0.038, W = 262.00, p < 0.001) within the experimental group following the intervention. Conclusions: These findings suggest a potential benefit of integrating Mirror Visual Feedback Therapy into treatment protocols for individuals with Lateral Elbow Pain experiencing post-needling discomfort. Further research is necessary to fully elucidate the clinical implications of these findings.
Collapse
Affiliation(s)
- Sebastián Eustaquio Martín Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Jhoselyn Delgado Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Alejandro Kalitovics
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Pablo de Miguel Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
| | - Daniela Sabrina Bortolussi Cegarra
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iremar Rodríguez Villanueva
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Álvaro García Molina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Iván Ruiz Rodríguez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Juan Montaño Ocaña
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
| | - Isidro Miguel Martín Pérez
- Departamento de Medicina Física y Farmacología, Área de Radiología y Medicina Física, Facultad de Ciencias de la Salud, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - María Dolores Sosa Reina
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Jorge Hugo Villafañe
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - José Luis Alonso Pérez
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Canarias, 38300 Santa Cruz de Tenerife, Spain; (J.D.R.); (A.K.); (P.d.M.R.); (J.L.A.P.)
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (D.S.B.C.); (I.R.V.); (Á.G.M.); (I.R.R.); (J.M.O.); (M.D.S.R.); (J.H.V.)
- Department of Physiotherapy, Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| |
Collapse
|
7
|
Aydın Y, Aşkın A, Aghazada N, Şengül İ. High frequency neuronavigated repetitive transcranial magnetic stimulation in post-stroke shoulder pain: A double-blinded, randomized controlled study. J Stroke Cerebrovasc Dis 2024; 33:107562. [PMID: 38214240 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/13/2024] Open
Abstract
OBJECTIVE This study aimed to determine the effect of 5Hz neuronavigated repetitive transcranial magnetic stimulation (rTMS) to the affected primary motor cortex (M1) on pain, the effect of pain on activities of daily living, disability, mood, neurophysiological parameters and passive shoulder joint range of motion in patients with post-stroke shoulder pain. DESIGN Twenty two patients were randomized into an experimental group (rTMS, n=7) who received daily rTMS 5Hz 1000 pulses, five times/week for three weeks (15 sessions) to the affected M1 and a control group (n=11) who received sham stimulation. Outcome measures were Numeric Rating Scale (NRS), Brief Pain Inventory (BPI), Disabilities of the arm, shoulder, and hand questionnaire (Quick DASH), Hospital Depression Anxiety Scale (HADS), joint range of motion (ROM) measurements, neurophysiological parameters. Selected outcome measures were performed before treatment (T0), after the 5th session (T1) of rTMS treatment, after the 10th session (T2), after the 15th session (T3), and four weeks after the end of the treatment (T4). In the analysis of the outcomes, within-group comparisons were performed by using the Wilcoxon or Friedman test and between-group comparisons were performed by using the Mann-Whitney U test. RESULTS There was no statistically significant difference between and within groups in terms of change- and followup scores in the NRS measurements (p>0.05). BPI scale was found to be lower in rTMS group at T0 and T3 (p= 0.010). Quick-DASH scores at T4 were found to be significantly lower in rTMS group (p= 0.032). However, no difference was found within each group over time (p>0.05) and there was no statistical difference between the groups in terms of change scores (T3-T0 and T4-T0) (p>0.05) for BPI and Quick-DASH. In rTMS group, there was a statistically significant difference in shoulder external rotation at T3 compared to the baseline (T0) (p=0.039). However, the magnitude of external rotation change (T3-T0) with the treatment was comparable in the groups. No statistically significant change occurred in both treatment groups in other range of motion measurements. CONCLUSION High frequency neuronavigated rTMS to the affected M1 did not show any significant beneficial effect on pain, activities of daily living, disability, anxiety and depression, neurophysiological measurements and passive ROM over sham stimulation.
Collapse
Affiliation(s)
- Yağmur Aydın
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Katip Çelebi University, Izmir, Turkey
| | - Ayhan Aşkın
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Katip Çelebi University, Izmir, Turkey.
| | - Nazrin Aghazada
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Katip Çelebi University, Izmir, Turkey
| | - İlker Şengül
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
8
|
He Z, Xu C, Guo J, Liu T, Zhang Y, Feng Y. The CSF1-CSF1R pathway in the trigeminal ganglion mediates trigeminal neuralgia via inflammatory responses in mice. Mol Biol Rep 2024; 51:215. [PMID: 38281257 DOI: 10.1007/s11033-023-09149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Trigeminal neuralgia (TN) is the most severe type of neuropathic pain. The trigeminal ganglion (TG) is a crucial target for the pathogenesis and treatment of TN. The colony-stimulating factor 1 (CSF1) - colony-stimulating factor 1 receptor (CSF1R) pathway regulates lower limb pain development. However, the effect and mechanism of the CSF1-CSF1R pathway in TG on TN are unclear. METHODS Partial transection of the infraorbital nerve (pT-ION) model was used to generate a mouse TN model. Mechanical and cold allodynia were used to measure pain behaviors. Pro-inflammatory factors (IL-6, TNF-a) were used to measure inflammatory responses in TG. PLX3397, an inhibitor of CSF1R, was applied to inhibit the CSF1-CSF1R pathway in TG. This pathway was activated in naïve mice by stereotactic injection of CSF1 into the TG. RESULTS The TN model activated the CSF1-CSF1R pathway in the TG, leading to exacerbated mechanical and cold allodynia. TN activated inflammatory responses in the TG manifested as a significant increase in IL-6 and TNF-a levels. After using PLX3397 to inhibit CSF1R, CSF1R expression in the TG declined significantly. Inhibiting the CSF1-CSF1R pathway in the TG downregulated the expression of IL-6 and TNF-α to reduce allodynia-related behaviors. Finally, mechanical allodynia behaviors were exacerbated in naïve mice after activating the CSF1-CSF1R pathway in the TG. CONCLUSIONS The CSF1-CSF1R pathway in the TG modulates TN by regulating neuroimmune responses. Our findings provide a theoretical basis for the development of treatments for TN in the TG.
Collapse
Affiliation(s)
- Zile He
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Chao Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Guo
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yunpeng Zhang
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Xueyuan Road 38, Beijing, 100191, China.
| |
Collapse
|
9
|
Ismail CAN, Zakaria R, Azman KF, Shafin N, Bakar NAA. Brain-derived neurotrophic factor (BDNF) in chronic pain research: A decade of bibliometric analysis and network visualization. AIMS Neurosci 2024; 11:1-24. [PMID: 38617040 PMCID: PMC11007409 DOI: 10.3934/neuroscience.2024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Chronic pain research, with a specific focus on the brain-derived neurotrophic factor (BDNF), has made impressive progress in the past decade, as evident in the improved research quality and increased publications. To better understand this evolving landscape, a quantitative approach is needed. The main aim of this study is to identify the hotspots and trends of BDNF in chronic pain research. We screened relevant publications from 2013 to 2022 in the Scopus database using specific search subject terms. A total of 401 documents were selected for further analysis. We utilized several tools, including Microsoft Excel, Harzing's Publish or Perish, and VOSViewer, to perform a frequency analysis, citation metrics, and visualization, respectively. Key indicators that were examined included publication growth, keyword analyses, topmost influential articles and journals, networking by countries and co-citation of cited references. Notably, there was a persistent publication growth between 2015 and 2021. "Neuropathic pain" emerged as a prominent keyword in 2018, alongside "microglia" and "depression". The journal Pain® was the most impactful journal that published BDNF and chronic pain research, while the most influential publications came from open-access reviews and original articles. China was the leading contributor, followed by the United States (US), and maintained a leadership position in the total number of publications and collaborations. In conclusion, this study provides a comprehensive list of the most influential publications on BDNF in chronic pain research, thereby aiding in the understanding of academic concerns, research hotspots, and global trends in this specialized field.
Collapse
Affiliation(s)
- Che Aishah Nazariah Ismail
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Rahimah Zakaria
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Khairunnuur Fairuz Azman
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Nazlahshaniza Shafin
- Department of Physiology, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, MALAYSIA
| | - Noor Azlina Abu Bakar
- Faculty of Medicine, Universiti Sultan Zainal Abidin Medical Campus, Jalan Mahmud, 20400 Kuala Terengganu, Terengganu, MALAYSIA
| |
Collapse
|
10
|
Moreira E, Soares T, Evangelista R, Torres A, Caldas J. Can Failed Back Surgery Syndrome Be Healed by Transverse Myelitis? Cureus 2023; 15:e39680. [PMID: 37398797 PMCID: PMC10308201 DOI: 10.7759/cureus.39680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2023] [Indexed: 07/04/2023] Open
Abstract
Failed back surgery syndrome (FBSS) is a condition characterized by persistent or recurring back pain following spinal surgery. Etiological factors for FBSS are being studied by investigators and clinicians in an attempt to organize them based on their temporal relation to the surgery event. However, many questions regarding the pathophysiology of FBSS remain, which has resulted in a lack of efficacy among its treatment options. In this report, we present a remarkable case of longitudinally extensive transverse myelitis (LETM) in a patient with a medical history of FBSS who was taking multiple pain medications but had persisting pain. The patient, a 56-year-old woman, presented with an incomplete motor injury (American Spinal Injury Association Impairment Scale D) and a neurological level of C4. Investigations revealed an idiopathic LETM that was unresponsive to high doses of corticosteroids. An inpatient rehabilitation program was initiated, resulting in favorable clinical progress. The patient no longer complained of back pain, and her pain medication was gradually discontinued. At the time of discharge, the patient was able to walk with a stick, dress and groom herself independently, and eat with an adapted fork without experiencing pain. As the pain mechanisms underlying FBSS are complex and not yet fully understood, this clinical case aims to contribute to the discussion of possible pathological mechanisms implicated in LETM that may have contributed to the shutdown of pain perception in a patient with a history of FBSS. By doing so, we hope to identify new and effective ways to treat FBSS.
Collapse
Affiliation(s)
- Elisa Moreira
- Physical Medicine and Rehabilitation, Tondela-Viseu Hospital Center, Viseu, PRT
| | - Tiago Soares
- Physical Medicine and Rehabilitation, Tondela-Viseu Hospital Center, Viseu, PRT
| | - Rafaela Evangelista
- Physical Medicine and Rehabilitation, Tondela-Viseu Hospital Center, Viseu, PRT
| | - Ana Torres
- Physical Medicine and Rehabilitation, Tondela-Viseu Hospital Center, Viseu, PRT
| | - Jorge Caldas
- Physical Medicine and Rehabilitation, Tondela-Viseu Hospital Center, Viseu, PRT
| |
Collapse
|
11
|
Casili G, Lanza M, Filippone A, Cucinotta L, Paterniti I, Repici A, Capra AP, Cuzzocrea S, Esposito E, Campolo M. Dimethyl Fumarate (DMF) Alleviated Post-Operative (PO) Pain through the N-Methyl-d-Aspartate (NMDA) Receptors. Antioxidants (Basel) 2022; 11:antiox11091774. [PMID: 36139848 PMCID: PMC9495385 DOI: 10.3390/antiox11091774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
The management of post-operative (PO) pain has generally been shown to be inadequate; therefore, acquiring a novel understanding of PO pain mechanisms would increase the therapeutic options available. There is accumulating evidence to implicate N-methyl-d-aspartate (NMDA) receptors in the induction and maintenance of central sensitization during pain states by reinforcing glutamate sensory transmission. It is known that DMF protects from oxidative glutamate toxicity. Therefore, NMDA receptor antagonists have been implicated in peri-operative pain management. Recent advances demonstrated that dimethyl fumarate (DMF), a non-opioid and orally bioavailable drug, is able to resolve neuroinflammation through mechanisms that drive nociceptive hypersensitivity. Therefore, in this study, we evaluated the role of DMF on pain and neuroinflammation in a mouse model of PO pain. An incision of the hind paw was performed, and DMF at two different doses (30 and 100 mg/kg) was administered by oral gavage for five consecutive days. Mechanical allodynia, thermal hyperalgesia and locomotor dysfunction were evaluated daily for five days after surgery. Mice were sacrificed at day 7 following PO pain induction, and hind paw and lumbar spinal cord samples were collected for histological and molecular studies. DMF administration significantly reduced hyperalgesia and allodynia, alleviating motor disfunction. Treatment with DMF significantly reduced histological damage, counteracted mast cell activation and reduced the nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) inflammatory pathway, in addition to downregulating tumor necrosis factor-α (TNF-α), Interleukin-1β (Il-1β) and Il-4 expression. Interestingly, DMF treatment lowered the activation of NMDA receptor subtypes (NR2B and NR1) and the NMDA-receptor-interacting PDZ proteins, including PSD93 and PSD95. Furthermore, DMF interfered with calcium ion release, modulating nociception. Thus, DMF administration modulated PO pain, managing NMDA signaling pathways. The results suggest that DMF positively modulated persistent nociception related to PO pain, through predominantly NMDA-receptor-operated calcium channels.
Collapse
|
12
|
Transplantation of human neural progenitor cells secreting GDNF into the spinal cord of patients with ALS: a phase 1/2a trial. Nat Med 2022; 28:1813-1822. [PMID: 36064599 PMCID: PMC9499868 DOI: 10.1038/s41591-022-01956-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3–5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation. A phase 1/2a study shows that human neural progenitor cells modified to release the growth factor GDNF are safely transplanted into the spinal cord of patients with ALS, with cell survival and GDNF production for over 3 years.
Collapse
|
13
|
Sciberras SC, Vella AP, Vella B, Spiteri J, Mizzi C, Borg-Xuereb K, LaFerla G, Grech G, Sammut F. A randomized, controlled trial on the effect of anesthesia on chronic pain after total knee arthroplasty. Pain Manag 2022; 12:711-723. [PMID: 35350864 DOI: 10.2217/pmt-2021-0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The study sought to evaluate the influence of anesthesia on chronic pain after total knee arthroplasty (TKA). Methods: This was a single-center, randomized controlled study, with patients receiving a spinal anesthetic (SP) alone or a general anesthetic (GA) with femoral block, with follow-up at 3 and at 6 months. The primary outcome was the WOMAC® score at 6 months. Results: 199 patients were enrolled. Group SP had better function (WOMAC: GA: 16.9 vs SP: 14.4, p = 0.015) and less pain (WOMAC pain: GA: 3.04 vs SP: 2.69, p = 0.02) at 3 months, but not at 6 months. Overall, 11% of patients had chronic postsurgical pain (CPSP), with Group GA having a higher incidence of CPSP at 6 months. Neuropathic pain increased during the follow-up and was more common in patients with CPSP. Conclusion: An SP reduces pain and incidence of CPSP after TKA. Clinical Trial Registration: NCT04206046 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Stephen C Sciberras
- Department of Surgery, Faculty of Medicine & Surgery, University of Malta, Msida, MSD, 2090, Malta
| | - Adrian P Vella
- Department of Surgery, Faculty of Medicine & Surgery, University of Malta, Msida, MSD, 2090, Malta.,Saint James Hospital, Sliema, SLM, 1807, Malta
| | - Bernice Vella
- Department of Anaesthesia, ITU & Pain Management, Mater Dei Hospital, Msida, MSD, 2080, Malta
| | - Jessica Spiteri
- Department of Anaesthesia, ITU & Pain Management, Mater Dei Hospital, Msida, MSD, 2080, Malta
| | - Christabel Mizzi
- Department of Anaesthesia, ITU & Pain Management, Mater Dei Hospital, Msida, MSD, 2080, Malta
| | - Keith Borg-Xuereb
- Department of Anaesthesia, ITU & Pain Management, Mater Dei Hospital, Msida, MSD, 2080, Malta
| | - Godfrey LaFerla
- Department of Surgery, Faculty of Medicine & Surgery, University of Malta, Msida, MSD, 2090, Malta
| | - Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, University of Malta, Msida, MSD, 2090, Malta
| | - Fiona Sammut
- Department of Statistics & Operations Research, Faculty of Science, University of Malta, Msida, MSD, 2090, Malta
| |
Collapse
|
14
|
Adiponectin regulates electroacupuncture-produced analgesic effects in association with a crosstalk between the peripheral circulation and the spinal cord. Brain Behav Immun 2022; 99:43-52. [PMID: 34562596 DOI: 10.1016/j.bbi.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Neurotransmitter-mediated acupuncture analgesia has been widely studied in nervous systems. It remains largely unclear if peripheral substances are involved the acupuncture analgesia. Adiponectin (APN), a circulating adipokine, shows analgesic effects. The study aimed to examine whether APN regulates analgesic effects of electroacupuncture (EA) in the complete Freund's adjuvant (CFA)-induced mouse model. APN wild type (WT) and knockout (KO) mouse were employed in the study. We found that EA attenuates the CFA-induced pain as demonstrated by the Hargreaves thermal test and the von Frey filament test. The deletion of APN significantly reduced the acupuncture analgesia in the CFA-treated APN KO mice while the intrathecal administration of APN mimicked the analgesic effects of EA. We further revealed that EA produced analgesic effects mainly via APN/AdipoR2-mediated AMPK pathway by the siRNA inhibitions of APN receptors (adipoR1/2) in the spinal cord. The immunofluorescence staining analysis showed that EA increased the APN accumulation in spinal cord through the blood circulation. In conclusion, the study indicates a novel mechanism that acupuncture produces analgesic effects at least partially via APN/AdipoR2-AMPK pathway in the spinal cord.
Collapse
|
15
|
Kim D, Chae Y, Park HJ, Lee IS. Effects of Chronic Pain Treatment on Altered Functional and Metabolic Activities in the Brain: A Systematic Review and Meta-Analysis of Functional Neuroimaging Studies. Front Neurosci 2021; 15:684926. [PMID: 34290582 PMCID: PMC8287208 DOI: 10.3389/fnins.2021.684926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have identified altered brain changes in chronic pain patients, however, it remains unclear whether these changes are reversible. We summarized the neural and molecular changes in patients with chronic pain and employed a meta-analysis approach to quantify the changes. We included 75 studies and 11 of these 75 studies were included in the activation likelihood estimation (ALE) analysis. In the 62 functional magnetic resonance imaging (fMRI) studies, the primary somatosensory and motor cortex (SI and MI), thalamus, insula, and anterior cingulate cortex (ACC) showed significantly decreased activity after the treatments compared to baseline. In the 13 positron emission tomography (PET) studies, the SI, MI, thalamus, and insula showed significantly increased glucose uptake, blood flow, and opioid-receptor binding potentials after the treatments compared to baseline. A meta-analysis of fMRI studies in patients with chronic pain, during pain-related tasks, showed a significant deactivation likelihood cluster in the left medial posterior thalamus. Further studies are warranted to understand brain reorganization in patients with chronic pain compared to the normal state, in terms of its relationship with symptom reduction and baseline conditions.
Collapse
Affiliation(s)
- Dongwon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
16
|
Khakpour Taleghani B, Ghaderi B, Rostampour M, Fekjur EM, Hasannejad F, Ansar MM. Involvement of opioidergic and GABAergic systems in the anti-nociceptive activity of the methanolic extract of Cuscuta Epithymum Murr. in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113826. [PMID: 33465443 DOI: 10.1016/j.jep.2021.113826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cuscuta epithymum Murr. (CE) is a parasitic plant used as a traditional medicine to treat various diseases such as muscle and joint pains and headache different parts of the world, Europe in the north, Asia in the east. AIM OF THE STUDY In this study, we aimed to investigate the anti-nociceptive effect of the methanolic extract of the aerial parts of CE and its probable mechanism(s) in mice. MATERIALS AND METHODS The anti-nociceptive activity of different doses of CE methanolic extract (2.5, 5, 10, 25, 50 and 100 mg/kg, i.p.) was assessed using tail flick, formalin and writhing tests. Morphine (5 mg/kg, s.c.) was used as positive control drug. The possible mechanisms were evaluated by using naloxone (4 mg/kg, i.p.), ondansetron (4 mg/kg, i.p.), picrotoxin (0.6 mg/kg, i.p.) and MK-801 (0.03 mg/kg, i.p.). RESULTS GC-MS analysis indicated that one of the main components of CE extract was terpenoid compounds. The CE extract (25-100 mg/kg), like morphine, reduced tail flick latency and nociceptive response in both phases of the formalin test. We also observed that the extract significantly decreased the number of abdominal contractions dose-dependently from 5 to 100 mg/kg. The results of tail flick and the first phase of formalin test proved that unlike ondansetron and MK-801, naloxone and picotroxin were able to reverse the anti-nociceptive effect of CE extract. CONCLUSION Our observations showed the anti-nociceptive potential of the CE extract, which may be mediated by opioidergic and GABAergic systems.
Collapse
Affiliation(s)
- Behrooz Khakpour Taleghani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Behnaz Ghaderi
- MSc in Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mohammad Rostampour
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Edris Mahdavi Fekjur
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Farkhonde Hasannejad
- Center of Applied Cell Science and Tissue Engineering, Semnan University of Medical Sciences, Semnan, Iran.
| | - Malek Moien Ansar
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran; Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
17
|
Ota Y, Connolly M, Srinivasan A, Kim J, Capizzano AA, Moritani T. Mechanisms and Origins of Spinal Pain: from Molecules to Anatomy, with Diagnostic Clues and Imaging Findings. Radiographics 2020; 40:1163-1181. [DOI: 10.1148/rg.2020190185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshiaki Ota
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Michael Connolly
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - John Kim
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Aristides A. Capizzano
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109
| |
Collapse
|
18
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
19
|
Savić Vujović K, Vučković S, Vasović D, Medić B, Stojanović R, Divac N, Srebro D, Prostran M. Involvement of serotonergic and opioidergic systems in the antinociceptive effect of ketamine-magnesium sulphate combination in formalin test in rats. Pharmacol Rep 2019; 71:1014-1019. [PMID: 31563018 DOI: 10.1016/j.pharep.2019.05.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ketamine and magnesium sulphate showed synergic interaction in the tail-immersion test and additive interaction in the rat formalin test. Aim of study was to evaluate the influence of serotonergic and opioidergic system of this combination in the formalin test in rats. METHODS Antinociceptive activity was assessed by the formalin test in male Wistar rats (200-250 g). Antagonists (naloxone and methysergide) were administrated 5 min before and magnesium sulphate 5 min after ketamine injection. Formalin (2.5%, 100 μL) was injected into the right hind paw surface (intraplantar) of rats 5 min after ketamine/magnesium combination. Data were recorded as the total time spent in pain related behavior after the injection of formalin or vehicle (0.9% NaCl). RESULTS In the intermediate phase of the formalin test, methysergide at a dose of 0.2 mg/kg did not have any effect, but at doses of 0.5 and 1 mg/kg it had a pronociceptive effect. Methysergide (0.2, 0.5 and 1 mg/kg) inhibited the antinociceptive effect of ketamine-magnesium sulphate combination. In the intermediate phase, naloxone at a dose of 0.2 mg/kg did not have any effect, but at a dose of 3 mg/kg it produced a pronociceptive effect. Naloxone (0.2 and 3 mg/kg) antagonized the antinociceptive effect of the ketamine (5 mg/kg)-magnesium sulphate (5 mg/kg) combination. CONCLUSION The results of the present study suggest that serotonergic and opioidergic systems are involved, at least in part, in the antinociceptive effect of the ketamine-magnesium sulphate combination in the model of inflammatory pain in rats.
Collapse
Affiliation(s)
- Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dolika Vasović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branislava Medić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Radan Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Leite LHI, Leite GO, da Silva BAF, Santos SAAR, Magalhães FEA, Menezes PP, Serafini MR, Teixeira CS, Brito RG, Santos PL, da Costa JGM, Araújo AAS, Quintans-Júnior LJ, de Menezes IRA, Coutinho HDM, Campos AR. Molecular mechanism underlying orofacial antinociceptive activity of Vanillosmopsis arborea Baker (Asteraceae) essential oil complexed with β-cyclodextrin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:293-301. [PMID: 30293859 DOI: 10.1016/j.phymed.2018.09.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vanillosmopsis arborea Baker has recognized economic value owing to the high content of (-)-α-bisabolol (BISA) in the essential oil of its stem (EOVA). The antinociceptive effect of EVOA has already been demonstrated, and β-cyclodextrin (βCD) is known to improve the analgesic effect of various substances. PURPOSE Thus, we aimed to evaluate the orofacial antinociceptive effect of a complex containing EOVA-βCD in rodents. METHODS EOVA was obtained by simple hydrodistillation, and the essential oil was complexed with βCD. The animals (n = 6/group) were treated orally with EOVA-βCD (10 or 50 mg/kg), or vehicle (control), and subjected to cutaneous orofacial nociception (formalin, capsaicin, acidic saline or glutamate), corneal (hypertonic saline) or temporomandibular (formalin) tests. The expression of FOS protein was analyzed in the spinal cord. Molecular docking was performed using the 5-HT3 and M2 receptors and BISA. RESULTS The oral administration of EOVA-βCD reduced nociceptive behaviour. Moreover, EOVA-βCD decreased FOS expression. The molecular docking study indicates that BISA interacts with 5-HT3 and M2 receptors, indicating the potential mechanism of action of the tested compound. CONCLUSIONS Our results indicate that EOVA-βCD possesses orofacial antinociceptive effect, indicating that this complex can be used in analgesic drug development.
Collapse
Affiliation(s)
- Laura Hévila I Leite
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil; Institute of Educators Training, Federal University of Cariri, Brejo Santo, Ceará, Brazil
| | - Gerlânia O Leite
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | | | | - Paula P Menezes
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Mairim R Serafini
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Claudener S Teixeira
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | | | - Adriano A S Araújo
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | | | - Irwin R A de Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | | | |
Collapse
|
21
|
Directing neuronal cell fate in vitro : Achievements and challenges. Prog Neurobiol 2018; 168:42-68. [DOI: 10.1016/j.pneurobio.2018.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
|
22
|
Bruce RD, Merlin J, Lum PJ, Ahmed E, Alexander C, Corbett AH, Foley K, Leonard K, Treisman GJ, Selwyn P. 2017 HIVMA of IDSA Clinical Practice Guideline for the Management of Chronic Pain in Patients Living With HIV. Clin Infect Dis 2018; 65:e1-e37. [PMID: 29020263 DOI: 10.1093/cid/cix636] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
Abstract
Pain has always been an important part of human immunodeficiency virus (HIV) disease and its experience for patients. In this guideline, we review the types of chronic pain commonly seen among persons living with HIV (PLWH) and review the limited evidence base for treatment of chronic noncancer pain in this population. We also review the management of chronic pain in special populations of PLWH, including persons with substance use and mental health disorders. Finally, a general review of possible pharmacokinetic interactions is included to assist the HIV clinician in the treatment of chronic pain in this population.It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. The Infectious Diseases Society of American considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
- R Douglas Bruce
- Department of Medicine, Cornell Scott-Hill Health Center and Yale University, New Haven, Connecticut
| | - Jessica Merlin
- Divisions of Infectious Diseases and Gerontology, Geriatrics and Palliative Care, University of Alabama at Birmingham
| | - Paula J Lum
- Division of HIV, Infectious Disease, and Global Medicine, University of California San Francisco
| | - Ebtesam Ahmed
- St. Johns University College of Pharmacy and Health Sciences, Metropolitan Jewish Health System Institute for Innovation in Palliative Care, New York
| | - Carla Alexander
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore
| | - Amanda H Corbett
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill
| | - Kathleen Foley
- Attending Neurologist Emeritus, Memorial Sloan Kettering Cancer Center, New York
| | - Kate Leonard
- Division of Neuroscience and Clinical Pharmacology, Cornell University, New York, New York
| | | | - Peter Selwyn
- Department of Family and Social Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
23
|
Tompkins DA, Hobelmann JG, Compton P. Providing chronic pain management in the "Fifth Vital Sign" Era: Historical and treatment perspectives on a modern-day medical dilemma. Drug Alcohol Depend 2017; 173 Suppl 1:S11-S21. [PMID: 28363315 PMCID: PMC5771233 DOI: 10.1016/j.drugalcdep.2016.12.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Over 100 million Americans are living with chronic pain, and pain is the most common reason that patients seek medical attention. Despite the prevalence of pain, the practice of pain management and the scientific discipline of pain research are relatively new fields compared to the rest of medicine - contributing to a twenty-first century dilemma for health care providers asked to relieve suffering in the "Fifth Vital Sign" era. METHODS This manuscript provides a narrative review of the basic mechanisms of chronic pain and history of chronic pain management in the United States - including the various regulatory, health system and provider factors that contributed to the decline of multidisciplinary pain treatment in favor of the predominant opioid treatment strategy seen today. Multiple non-opioid pain treatment strategies are then outlined. The manuscript concludes with three key questions to help guide future research at the intersection of pain and addiction. CONCLUSIONS The assessment and treatment of chronic pain will continue to be one of the most common functions of a health care provider. To move beyond an over reliance on opioid medications, the addiction and pain research communities must unite with chronic pain patients to increase the evidence base supporting non-opioid analgesic strategies.
Collapse
Affiliation(s)
- D. Andrew Tompkins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Corresponding author. Behavioral Pharmacology Research Unit, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - J. Greg Hobelmann
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peggy Compton
- Department of Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia PA, USA.
| |
Collapse
|
24
|
Abstract
There is a critical need for new analgesics acting through new mechanisms of action, which could increase the efficacy respect to existing therapies and/or reduce their unwanted effects. Current preclinical evidence supports the modulatory role of the sigma-1 receptor (σ1R) in nociception, mainly based on the pain-attenuated phenotype of σ1R knockout mice and on the antinociceptive effect exerted by σ1R antagonists on pain of different etiology, very consistently in neuropathic pain, but also in nociceptive, inflammatory, and visceral pain. σ1R is highly expressed in different pain areas of the CNS and the periphery, particularly dorsal root ganglia (DRG), and interacts and modulates the functionality of different receptors and ion channels. Accordingly, antinociceptive effects of σ1R antagonists both acting alone and in combination with other analgesics have been reported at both central and peripheral sites. At the central level, behavioral, electrophysiological, neurochemical, and molecular findings support a role for σ1R antagonists in inhibiting augmented excitability secondary to sustained afferent input. Moreover, the involvement of σ1R in mechanisms regulating pain at the periphery has been recently confirmed. Unlike opioids, σ1R antagonists do not modify normal sensory mechanical and thermal sensitivity thresholds but they exert antihypersensitivity effects (antihyperalgesic and antiallodynic) in sensitizing conditions, enabling the reversal of nociceptive thresholds back to normal values. These are distinctive features allowing σ1R antagonists to exert a modulatory effect specifically in pathophysiological conditions such as chronic pain.
Collapse
Affiliation(s)
- Manuel Merlos
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Luz Romero
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | - Daniel Zamanillo
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain
| | | | - José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE, Barcelona, Spain.
- Parc Científic de Barcelona, Baldiri Reixac 4-8, 08028, Barcelona, Spain.
| |
Collapse
|
25
|
Tsao JW, Finn SB, Miller ME. Reversal of phantom pain and hand-to-face remapping after brachial plexus avulsion. Ann Clin Transl Neurol 2016; 3:463-4. [PMID: 27547774 PMCID: PMC4892000 DOI: 10.1002/acn3.316] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 11/23/2022] Open
Abstract
Following left brachial plexus avulsion, a 20‐year‐old man had phantom limb pain and remapping of sensation from his paralyzed hand onto his face. Mirror therapy (15 min daily, 5 days/week) led immediately to good movement of the phantom limb with decreased pain. Within 2 weeks following nerve graft surgery, remapping of hand sensation onto the face disappeared along with resolution of phantom limb pain. Mirror therapy coupled with nerve grafting may relieve phantom limb pain due to brachial plexus avulsion and reverse hand‐to‐face remapping, suggesting that both peripheral and central mechanisms mediate development of phantom limb pain and cortical reorganization/neuroplasticity after brachial plexus avulsion.
Collapse
Affiliation(s)
- Jack W Tsao
- Walter Reed National Military Medical Center Bethesda Maryland; Present address: University of Tennessee Health Science Center Memphis Tennessee
| | - Sacha B Finn
- Walter Reed National Military Medical Center Bethesda Maryland
| | | |
Collapse
|
26
|
Abstract
INTRODUCTION Peripheral and central sensitization are neurophysiological processes that can prolong painful conditions. Painful shoulder conditions are often persistent, perhaps due to the presence of sensitization. METHOD This manuscript summarizes six studies that have evaluated those with musculoskeletal shoulder pain for the presence of sensitization. RESULTS All six manuscripts report evidence of peripheral sensitization, while central sensitization was described in five of the studies. The chronicity of symptoms in subjects who were included in the studies is probably influencing this finding. The primary somatosensory test used to assess sensitization in these studies was Pressure Pain Threshold, a test for lowered nociceptive thresholds. DISCUSSION It appears that peripheral sensitization manifests consistently in those with musculoskeletal shoulder pathology, probably due to the inflammatory processes related to tissue injury. Central sensitization, while not universally present, was reported in a majority of the manuscripts. Because central sensitization is thought to be a key step on the pathway to chronic pain, evidence for its presence in those with shoulder pain is significant. Clinicians should expect the presence of sensitization with shoulder pathology and make appropriate choices about interventions so as not to exacerbate pain.
Collapse
Affiliation(s)
- John Borstad
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, US
| | - Christopher Woeste
- School of Health and Rehabilitation Sciences, Ohio State University, Columbus, Ohio, US
| |
Collapse
|
27
|
Reed KL, Will KR, Conidi F, Bulger R. Concordant occipital and supraorbital neurostimulation therapy for hemiplegic migraine; initial experience; a case series. Neuromodulation 2015; 18:297-303; discussion 304. [PMID: 25688595 PMCID: PMC5024009 DOI: 10.1111/ner.12267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Hemiplegic migraine is a particularly severe form of the disease that often evolves to a debilitating chronic illness that is resistant to commonly available therapies. Peripheral neurostimulation has been found to be a beneficial therapy for some patients among several diagnostic classes of migraine, but its potential has not been specifically evaluated for hemiplegic migraine. MATERIALS AND METHODS Four patients with hemiplegic migraine were treated with concordant, combined occipital and supraorbital neurostimulation over periods ranging 6-92 months. The clinical indicators followed included assessments of headache frequency and severity, frequency of hemiplegic episodes, functional impairment, medication usage, and patient satisfaction. RESULTS All reported a positive therapeutic response, as their average headache frequency decreased by 92% (30 to 2.5 headache days/month); Visual Analog Score by 44% (9.5 to 5.3); frequency of hemiplegic episodes by 96% (7.5 to 0.25 hemiplegic episodes/month); headache medication usage by 96% (6 to 0.25 daily medications); and Migraine Disability Assessment score by 98% (249 to 6). All were satisfied and would recommend the therapy, and all preferred combined occipital-supraorbital neurostimulation to occipital neurostimulation alone. CONCLUSIONS Concordant combined occipital and supraorbital neurostimulation may provide effective therapy for both the pain and motor aura in some patients with hemiplegic migraine.
Collapse
Affiliation(s)
- Ken L Reed
- Interventional Pain Management and Internal Medicine, Reed Migraine Centers, Dallas, TX, USA
| | - Kelly R Will
- Interventional Pain Management, Texas Institute of Surgery, Dallas, TX, USA
| | - Frank Conidi
- Department of Neurology, Florida State University College of Medicine, West Palm Beach, FL, USA
| | - Robert Bulger
- Interventional Pain Management, Department of Anesthesiology, Presbyterian Hospital of Dallas, Dallas, TX, USA
| |
Collapse
|
28
|
Loss of central inhibition: implications for behavioral hypersensitivity after contusive spinal cord injury in rats. PAIN RESEARCH AND TREATMENT 2014; 2014:178278. [PMID: 25180088 PMCID: PMC4142659 DOI: 10.1155/2014/178278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 07/10/2014] [Indexed: 12/29/2022]
Abstract
Behavioral hypersensitivity is common following spinal cord injury (SCI), producing significant discomfort and often developing into chronic pain syndromes. While the mechanisms underlying the development of behavioral hypersensitivity after SCI are poorly understood, previous studies of SCI contusion have shown an increase in amino acids, namely, aspartate and glutamate, along with a decrease in GABA and glycine, particularly below the injury. The current study sought to identify alterations in key enzymes and receptors involved in mediating central inhibition via GABA and glycine after a clinically-relevant contusion SCI model. Following thoracic (T8) 25.0 mm NYU contusion SCI in rodents, significant and persistent behavioral hypersensitivity developed as evidenced by cutaneous allodynia and thermal hyperalgesia. Biochemical analyses confirmed upregulation of glutamate receptor GluR3 with downregulation of the GABA synthesizing enzyme (GAD65/67) and the glycine receptor α3 (GLRA3), notably below the injury. Combined, these changes result in the disinhibition of excitatory impulses and contribute to behavioral hyperexcitability. This study demonstrates a loss of central inhibition and the development of behavioral hypersensitivity in a contusive SCI paradigm. Future use of this model will permit the evaluation of different antinociceptive strategies and help in the elucidation of new targets for the treatment of neuropathic pain.
Collapse
|
29
|
Hayes AG, Arendt-Nielsen L, Tate S. Multiple mechanisms have been tested in pain—how can we improve the chances of success? Curr Opin Pharmacol 2014; 14:11-7. [DOI: 10.1016/j.coph.2013.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 10/26/2022]
|
30
|
Shen X, Liu Y, Xu S, Zhao Q, Wu H, Guo X, Shen R, Wang F. Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain. Pharmacol Rep 2014; 66:49-55. [PMID: 24905306 DOI: 10.1016/j.pharep.2013.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Our previous work found that tumor suppressor menin potentiates spinal synaptic plasticity in the context of peripheral nerve injury-induced neuropathic hypersensitivity, but the underlying molecular mechanisms are not clear. We hereby assessed the role of menin in regulating the spinal balance between glutamate and GABA and its contribution to the pathological condition of nerve injury-induced hypersensitivity. METHODS In spared nerve injury induced C57BL/6 mice, mechanical withdrawal threshold was measured with von Frey filaments after intrathecal administration of small interfering RNA (siRNA) of MEN1 or/and subcutaneous histone deacetylase (HDAC) inhibitors to control the level of glutamic acid decarboxylase 65 (GAD65). Immunoblotting and high-performance liquid chromatography were used to detect the level of protein expression and spinal glutamate and GABA, respectively. RESULTS Genetic knockdown of spinal menin alleviated nerve injury evoked mechanical hypersensitivity, which was strongly associated with the alteration of the spinal level of GAD65 that resulted in an imbalance of glutamate/GABA ratio from the baseline ratio of 5.8 ± 0.9 (×10(-4)) to the peak value of 58.6 ± 11.8 (×10(-4)) at the day 14 after SNI (p < 0.001), which was reversed by MEN1 siRNA to 14.7 ± 2.1 (×10(-4)) at the day 14 after nerve injury (p < 0.01). In further, selective inhibitors of HDACs considerably reversed the ratio of spinal glutamate and GABA, and also alleviated the mechanical withdrawal threshold markedly. CONCLUSION Our findings provide mechanistic insight into the contribution of the upregulated spinal menin to peripheral nerve injury induced neuropathic hypersensitivity by regulating glutamate-GABA balance through deactivating GAD65.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Yusheng Liu
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Shiqin Xu
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Qingsong Zhao
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Haibo Wu
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Xirong Guo
- The Institute of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Shen
- The Institute of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | - Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China; Division of Neuroscience, Bonoi Academy of Science & Education, Winston-Salem, NC, USA.
| |
Collapse
|
31
|
Decoding the Role of Epigenetics and Genomics in Pain Management. Pain Manag Nurs 2013; 14:358-367. [DOI: 10.1016/j.pmn.2011.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/30/2022]
|
32
|
Phang LKD, Tan KH. Current pharmacological modalities for control of chronic non-cancer pain. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Abstract
Chronic pain has a significant economic and social impact on the community. The most common medical treatments for it include paracetamol, anti-inflammatory agents, and opioid analgesics. However, many of these medications cause side effects, and their long-term effectiveness is questionable. The traditional alternative to the biomedical approach is cognitive behavioral therapy. However, this has also been shown in recent studies to have only modest benefit. It is becoming clear that the effective management of chronic pain requires a more holistic, systems-based approach, hence the emerging interest in the relationship between pain and lifestyle. The authors aim to review the literature regarding the relationship between comprehensive lifestyle changes, markers of systemic inflammation, and the perception of chronic pain. An extensive search of bibliographic databases, including MEDLINE, PubMed, Web of Science, and Cochrane Library databases was made. A total of 2197 articles were identified using the search strategy. Only 44 articles were retrieved for critical appraisal, of which only 2 studies met the prespecified primary inclusion criteria and were included in the final review. These data provided some evidence that a single lifestyle factor (sleep restriction or disturbance) can produce elevated levels of interleukin-6, which is associated with higher pain intensity ratings. However, this review has highlighted a paucity of research based around the relationship between lifestyle, metaflammation, and chronic pain. There is a clear need for well-designed trials examining comprehensive lifestyle interventions and their effect on both pain intensity and markers of metaflammation.
Collapse
|
34
|
Sprenger C, Eippert F, Finsterbusch J, Bingel U, Rose M, Büchel C. Attention Modulates Spinal Cord Responses to Pain. Curr Biol 2012; 22:1019-22. [DOI: 10.1016/j.cub.2012.04.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/28/2012] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
|
35
|
|
36
|
Abstract
The prevalence of hemiplegic shoulder pain is approximately 22%-23% in the general population of stroke survivors and approximately 54%-55% among stroke patients in rehabilitation settings. Hemiplegic shoulder pain causes a reduced quality-of-life, poor functional recovery, depression, disturbed sleep, and prolonged hospitalization. Herein, we attempted to understand, based on a literature review and experts' opinion, the pathologic processes underlying hemiplegic shoulder pain and the major associated factors contributing to its development. The systematization of underlying pathologies was proposed, which might eventually enable a more constructive clinical approach in evaluating and treating patients with hemiplegic shoulder pain.
Collapse
|
37
|
Abstract
Chronic pain is a pervasive problem that affects the patient, their significant others, and society in many ways. The past decade has seen advances in our understanding of the mechanisms underlying pain and in the availability of technically advanced diagnostic procedures; however, the most notable therapeutic changes have not been the development of novel evidenced-based methods, but rather changing trends in applications and practices within the available clinical armamentarium. We provide a general overview of empirical evidence for the most commonly used interventions in the management of chronic non-cancer pain, including pharmacological, interventional, physical, psychological, rehabilitative, and alternative modalities. Overall, currently available treatments provide modest improvements in pain and minimum improvements in physical and emotional functioning. The quality of evidence is mediocre and has not improved substantially during the past decade. There is a crucial need for assessment of combination treatments, identification of indicators of treatment response, and assessment of the benefit of matching of treatments to patient characteristics.
Collapse
Affiliation(s)
- Dennis C Turk
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|