1
|
Zang X, Zhang J, Hu J, Mo X, Zheng T, Ji J, Xing J, Chen C, Zhou S. Electroconvulsive therapy combined with esketamine improved depression through PI3K/AKT/GLT-1 pathway. J Affect Disord 2025; 368:282-294. [PMID: 39265873 DOI: 10.1016/j.jad.2024.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/14/2024]
Abstract
Neuron excitotoxic damage induced by extracellular glutamate accumulation pathologically is one of the main mechanisms of depression. Glutamate transporter-1 (GLT-1) expressed in astrocyte is responsible for glutamate clearance to maintain glutamate balance. Electroconvulsive therapy (ECT) is prevalently recommended for severe depression due to its significant anti-depressant effect. Esketamine could offer advantages of rapid anti-depressant effect and neuron protection. The aim of this study is to investigate the anti-depressant efficacy of esketamine plus ECT, and further to explore the mechanism. Firstly, total 12 patients were randomized into anesthesia with propofol (P) or propofol+esketamine (PK) before ECT. 24-Hamilton Depression Scale (HAMD) was used to evaluate the severity of depression after each ECT. Then, depressive rat model was built using chronic unpredictable mild stress method, and subsequently received infusion of esketamine (5 mg/kg) or saline before ECT treatment (0.5 mA; 100 V) for consecutive 10 days. Tests including sucrose preference test, open field test and forced swimming test were used to evaluate depression-like behaviors. In next experiments, rats were injected with RIL, DHK or LY294002 intracerebroventricularly for continuous 10 days before individual treatment. After the fifth and sixth ECT, PK group displayed lower HAMD score compared to P group. In rat model, we found that esketamine plus ECT could significantly improve depression-like behaviors and decrease glutamate level. Esketamine and ECT could both activate PI3K/Akt/GLT-1 pathway. The GLT-1 agonist RIL made equivalent effect as esketamine plus ECT. Furthermore, after using PI3K/Akt inhibitor LY294002 and GLT-1 inhibitor DHK, esketamine plus ECT could neither improve depression-like symptoms, nor upregulate GLT-1 level. Our present study suggested that esketamine plus ECT could dramatically improve depression symptom. The activation of PI3K/Akt/GLT-1 pathway may be the potential mechanism.
Collapse
Affiliation(s)
- Xiangyang Zang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingting Zhang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jingping Hu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Xingying Mo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Tingwei Zheng
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jiaming Ji
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China
| | - Jibin Xing
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
2
|
Alzu'bi A, Abu-El-Rub E, Almahasneh F, Tahat L, Athamneh RY, Khasawneh R, Alzoubi H, Ghorab DS, Almazari R, Zoubi MSA, Al-Zoubi RM. Delineating the molecular mechanisms of hippocampal neurotoxicity induced by chronic administration of synthetic cannabinoid AB-FUBINACA in mice. Neurotoxicology 2024; 103:50-59. [PMID: 38823587 DOI: 10.1016/j.neuro.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Chronic use of synthetic cannabinoids (SCs) has been associated with cognitive and behavioural deficits and an increased risk of neuropsychiatric disorders. The underlying molecular and cellular mechanisms of the neurotoxic effects of long-term use of SCs have not been well investigated in the literature. Herein, we evaluated the in vivo effects of chronic administration of AB-FUBINACA on the hippocampus in mice. Our results revealed that the administration of AB-FUBINACA induced a significant impairment in recognition memory associated with histopathological changes in the hippocampus. These findings were found to be correlated with increased level of oxidative stress, neuroinflammation, and apoptosis markers, and reduced expression of brain-derived neurotrophic factor (BDNF), which plays an essential role in modulating synaptic plasticity integral for promoting learning and memory in the hippocampus. Additionally, we showed that AB-FUBINACA significantly decreased the expression of NR1, an important functional subunit of glutamate/NMDA receptors and closely implicated in the development of toxic psychosis. These findings shed light on the long-term neurotoxic effects of SCs on hippocampus and the underlying mechanisms of these effects. This study provided new targets for possible medical interventions to improve the treatment guidelines for SCs addiction.
Collapse
Affiliation(s)
- Ayman Alzu'bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan.
| | - Ejlal Abu-El-Rub
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Fatimah Almahasneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Lena Tahat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Rabaa Y Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa 13110, Jordan
| | - Ramada Khasawneh
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Doaa S Ghorab
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan; Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rawan Almazari
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, QU-Health, College of Health Sciences, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
3
|
Lee D, Woo CW, Heo H, Ko Y, Jang JS, Na S, Kim N, Woo DC, Kim KW, Lee DW. Mapping Changes in Glutamate with Glutamate-Weighted MRI in Forced Swim Test Model of Depression in Rats. Biomedicines 2024; 12:384. [PMID: 38397986 PMCID: PMC10887078 DOI: 10.3390/biomedicines12020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chemical exchange saturation transfer with glutamate (GluCEST) imaging is a novel technique for the non-invasive detection and quantification of cerebral Glu levels in neuromolecular processes. Here we used GluCEST imaging and 1H magnetic resonance spectroscopy (1H MRS) to assess in vivo changes in Glu signals within the hippocampus in a rat model of depression induced by a forced swim test. The forced swimming test (FST) group exhibited markedly reduced GluCEST-weighted levels and Glu concentrations when examined using 1H MRS in the hippocampal region compared to the control group (GluCEST-weighted levels: 3.67 ± 0.81% vs. 5.02 ± 0.44%, p < 0.001; and Glu concentrations: 6.560 ± 0.292 μmol/g vs. 7.133 ± 0.397 μmol/g, p = 0.001). Our results indicate that GluCEST imaging is a distinctive approach to detecting and monitoring Glu levels in a rat model of depression. Furthermore, the application of GluCEST imaging may provide a deeper insight into the neurochemical involvement of glutamate in various psychiatric disorders.
Collapse
Affiliation(s)
- Donghoon Lee
- Faculty of Health Sciences, Higher Colleges of Technology, Fujairah P.O. Box 1626, United Arab Emirates;
| | - Chul-Woong Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (C.-W.W.); (D.-C.W.)
| | - Hwon Heo
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Yousun Ko
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| | - Ji Sung Jang
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (J.S.J.); (S.N.)
| | - Seongwon Na
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (J.S.J.); (S.N.)
| | - Nari Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Dong-Cheol Woo
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea; (C.-W.W.); (D.-C.W.)
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Kyung Won Kim
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea;
| | - Do-Wan Lee
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea;
| |
Collapse
|
4
|
Caffino L, Mottarlini F, Piva A, Rizzi B, Fumagalli F, Chiamulera C. Temporal dynamics of BDNF signaling recruitment in the rat prefrontal cortex and hippocampus following a single infusion of a translational dose of ketamine. Neuropharmacology 2024; 242:109767. [PMID: 37858883 DOI: 10.1016/j.neuropharm.2023.109767] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/25/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
Despite several decades of investigations, the mechanisms underlying the rapid action of ketamine as antidepressant are still far from being completely understood. Several studies indicated Brain-Derived Neurotrophic Factor (BDNF) as critical for the fast antidepressant action of ketamine, due to its contribution in early and rapid synaptic adaptations. However, previous reports have been essentially based on ketamine dosing modes that differ from the clinical route of administration (slow intravenous infusion). In this report, we investigated the effects of a ketamine dosing mode in male Sprague-Dawley rats showed to be translational to the clinically effective mode in patients. We focused on the first 24 h after infusion to finely dissect potential differences in the contribution of BDNF signaling pathway in prefrontal cortex and hippocampus, two brain regions involved in the antidepressant effects of ketamine. Our data show that the slow ketamine infusion activates the BDNF-mTOR-S6 pathway in prefrontal cortex as early as 2 h and remains on until at least 6 h after the infusion. At the 12 h timepoint, this pathway is turned off in prefrontal cortex while it becomes activated in hippocampus. Interestingly, this pathway appears to be activated in both brain regions at 24 h through a BDNF-independent mechanism adding complexity to the early action of ketamine. We have captured previously unknown dynamics of the early effects of ketamine showing rapid activation/deactivation of BDNF and its downstream signaling in prefrontal cortex and hippocampus, following a precise temporal profile.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy
| | - Beatrice Rizzi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Dept Diagnostic & Public Health, P.le Scuro 10, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Thompson SM. Modulators of GABA A receptor-mediated inhibition in the treatment of neuropsychiatric disorders: past, present, and future. Neuropsychopharmacology 2024; 49:83-95. [PMID: 37709943 PMCID: PMC10700661 DOI: 10.1038/s41386-023-01728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
The predominant inhibitory neurotransmitter in the brain, γ-aminobutyric acid (GABA), acts at ionotropic GABAA receptors to counterbalance excitation and regulate neuronal firing. GABAA receptors are heteropentameric channels comprised from subunits derived from 19 different genes. GABAA receptors have one of the richest and well-developed pharmacologies of any therapeutic drug target, including agonists, antagonists, and positive and negative allosteric modulators (PAMs, NAMs). Currently used PAMs include benzodiazepine sedatives and anxiolytics, barbiturates, endogenous and synthetic neurosteroids, and general anesthetics. In this article, I will review evidence that these drugs act at several distinct binding sites and how they can be used to alter the balance between excitation and inhibition. I will also summarize existing literature regarding (1) evidence that changes in GABAergic inhibition play a causative role in major depression, anxiety, postpartum depression, premenstrual dysphoric disorder, and schizophrenia and (2) whether and how GABAergic drugs exert beneficial effects in these conditions, focusing on human studies where possible. Where these classical therapeutics have failed to exert benefits, I will describe recent advances in clinical and preclinical drug development. I will also highlight opportunities to advance a generation of GABAergic therapeutics, such as development of subunit-selective PAMs and NAMs, that are engendering hope for novel tools to treat these devastating conditions.
Collapse
Affiliation(s)
- Scott M Thompson
- Center for Novel Therapeutics, Department of Psychiatry, University of Colorado School of Medicine, 12700 E. 19th Ave., Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Wojtas A, Bysiek A, Wawrzczak-Bargiela A, Maćkowiak M, Gołembiowska K. Limbic System Response to Psilocybin and Ketamine Administration in Rats: A Neurochemical and Behavioral Study. Int J Mol Sci 2023; 25:100. [PMID: 38203271 PMCID: PMC10779066 DOI: 10.3390/ijms25010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The pathophysiology of depression is related to the reduced volume of the hippocampus and amygdala and hypertrophy of the nucleus accumbens. The mechanism of these changes is not well understood; however, clinical studies have shown that the administration of the fast-acting antidepressant ketamine reversed the decrease in hippocampus and amygdala volume in depressed patients, and the magnitude of this effect correlated with the reduction in depressive symptoms. In the present study, we attempted to find out whether the psychedelic substance psilocybin affects neurotransmission in the limbic system in comparison to ketamine. Psilocybin and ketamine increased the release of dopamine (DA) and serotonin (5-HT) in the nucleus accumbens of naive rats as demonstrated using microdialysis. Both drugs influenced glutamate and GABA release in the nucleus accumbens, hippocampus and amygdala and increased ACh levels in the hippocampus. The changes in D2, 5-HT1A and 5-HT2A receptor density in the nucleus accumbens and hippocampus were observed as a long-lasting effect. A marked anxiolytic effect of psilocybin in the acute phase and 24 h post-treatment was shown in the open field test. These data provide the neurobiological background for psilocybin's effect on stress, anxiety and structural changes in the limbic system and translate into the antidepressant effect of psilocybin in depressed patients.
Collapse
Affiliation(s)
- Adam Wojtas
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Bysiek
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.-B.); (M.M.)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.W.); (A.B.)
| |
Collapse
|
7
|
Gallagher B, Neiman A, Slattery MC, McLoughlin DM. Online news media reporting of ketamine as a treatment for depression from 2000 to 2017. Ir J Psychol Med 2023; 40:607-615. [PMID: 34193329 DOI: 10.1017/ipm.2021.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Since the first reporting of ketamine's antidepressant effects in 2000, there has been growing public interest in this novel rapid-acting treatment for depression despite its abuse potential. Online media is an increasingly popular way for the general public to source information. Our objective was to examine how online news outlets have portrayed ketamine as an antidepressant by ascertaining the volume and content of relevant articles and trends over time. METHODS In this semi-quantitative study, we identified articles regarding ketamine's use in depression from the 30 most popular English-language online news-generating sources over 18 years (2000-2017). Articles were then blindly assessed by 2 independent raters, who analysed the texts by quantifying the presence/absence of 12 content items. RESULTS We identified 97 articles, the number of which has increased since the first online news report in 2006. Most (69%) came from the USA and nearly all correctly stated the indications for ketamine. About half of the most recent articles mentioned abuse potential and 27% of articles referred to risks of unregulated use of ketamine. Just under 20% of articles referred to the lack of evidence regarding direct comparisons between ketamine and other currently available antidepressants. There was no difference in the overall level of detail within the articles during the study time period. CONCLUSIONS Online news media articles have been generally positive about ketamine for treating depression but need to be interpreted with caution as many of them did not discuss negative aspects of ketamine and made unsubstantiated claims about ketamine.
Collapse
Affiliation(s)
- Bronagh Gallagher
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Aaron Neiman
- Department of Anthropology, Stanford University, Stanford, CA94305, USA
| | - Marie-Claire Slattery
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
| | - Declan M McLoughlin
- Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
9
|
Zhang B, Su D, Song Y, Li H, Chen C, Liao L, Zhang H, Luo J, Yang M, Zhu G, Ai Z. Yueju volatile oil plays an integral role in the antidepressant effect by up-regulating ERK/AKT-mediated GLT-1 expression to clear glutamate. Fitoterapia 2023; 169:105583. [PMID: 37336418 DOI: 10.1016/j.fitote.2023.105583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Phytochemical investigation of the volatile oil of Yueju (YJVO) and its constituent herbs induced the detection of 52 compounds in YJVO, mainly monoterpenes and sesquiterpenes as well as a small amount of aromatic and aliphatic compounds. 5 of these compounds were found only in the YJVO instead of the volatile oil of its constituent herbs. The anti-depressant effect of YJVO was proved by behavioral tests in chronic unpredictable mild stress (CUMS) mice. An acute oral toxicity evaluation determined the LD50 of YJVO was 5.780 mL/kg. Doppler ultrasound and laser speckle imaging have detected that the YJVO could improve depression-related cerebral blood flow. In addition, related neurotransmitters and proteins were analyzed through targeted metabolomics and immunofluorescence. The potential antidepressant mechanisms of YJVO related to significantly decreasing Glu in CUMS mice by up-regulating the ERK/AKT-mediated expression of GLT-1.
Collapse
Affiliation(s)
- Bike Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Dan Su
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Huizhen Li
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Changlian Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Liangliang Liao
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Hongjie Zhang
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Jian Luo
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Ming Yang
- Jiangxi Guxiang Jinyun Comprehensive Health Industry Co., Ltd., Nanchang, China
| | - Genhua Zhu
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China
| | - Zhifu Ai
- Key Laboratory of Evaluation of Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, Jiangxi Province, China.
| |
Collapse
|
10
|
Effect of Psilocybin and Ketamine on Brain Neurotransmitters, Glutamate Receptors, DNA and Rat Behavior. Int J Mol Sci 2022; 23:ijms23126713. [PMID: 35743159 PMCID: PMC9224489 DOI: 10.3390/ijms23126713] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light–dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.
Collapse
|
11
|
Bahji A, Zarate CA, Vazquez GH. Efficacy and safety of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. Expert Opin Drug Saf 2022; 21:853-866. [PMID: 35231204 PMCID: PMC9949988 DOI: 10.1080/14740338.2022.2047928] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Racemic ketamine and esketamine have demonstrated rapid antidepressant effects. We aimed to review the efficacy and safety of racemic and esketamine for depression. RESEARCH DESIGN AND METHODS We conducted a PRISMA-guided review for relevant randomized controlled trials of racemic or esketamine for unipolar or bipolar major depression from database inception through 2021. We conducted random-effects meta-analyses using pooled rate ratios (RRs) and Cohen's standardized mean differences (d) with their 95% confidence intervals (CI). RESULTS We found 36 studies (2903 participants, 57% female, 45.1 +/- 7.0 years). Nine trials used esketamine, while the rest used racemic ketamine. The overall study quality was high. Treatment with any form of ketamine was associated with improved response (RR=2.14; 95% CI, 1.72-2.66; I2=65%), remission (RR=1.64; 95% CI, 1.33-2.02; I2=39%), and depression severity (d=-0.63; 95% CI, -0.80 to -0.45; I2=78%) against placebo. Overall, there was no association between treatment with any form of ketamine and retention in treatment (RR=1.00; 95% CI, 0.99-1.01; I2<1%), dropouts due to adverse events (RR=1.56; 95% CI, 1.00-2.45; I2<1%), or the overall number of adverse events reported per participant (OR=2.14; 95% CI, 0.82-5.60; I2=62%) against placebo. CONCLUSIONS Ketamine and esketamine are effective, safe, and acceptable treatments for individuals living with depression.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;,British Columbia Centre on Substance Use, Vancouver, British Columbia, Canada
| | - Carlos A. Zarate
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Gustavo H. Vazquez
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Nordman JC, Bartsch CJ, Li Z. Opposing effects of NMDA receptor antagonists on early life stress-induced aggression in mice. Aggress Behav 2022; 48:365-373. [PMID: 35122262 DOI: 10.1002/ab.22022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
Rates of childhood trauma are high amongst violent offenders who frequently recidivate. Few clinical options are available to treat excessive and recurring violent aggression associated with childhood trauma. Those that do exist are largely ineffective and often replete with side effects. One promising pharmacological target is the glutamate binding N-methyl- d-aspartate receptor (NMDAR). Clinically available NMDAR antagonists have proven successful in mitigating violent and aggressive behavior associated with a host of psychiatric diseases and have both immediate and long-term effects on nervous system function and behavior. This study examined the impact of three NMDAR antagonists on long-lasting aggression brought on by early-life stress: MK-801, memantine, and ketamine. We find that social isolation early in adolescence followed by acute traumatic stress in the form of noncontingent foot shock (FS) late in adolescence works in tandem to promote long-lasting excessive aggression in mice when measured 1 week later. Systemic injections of MK-801 and memantine 30 min before FS suppressed the long-lasting attack behavior induced by our early life stress induction protocol. Systemic injections of ketamine, on the other hand, significantly enhanced the long-lasting attack behavior when injected before FS. These findings indicate that MK-801, memantine, and ketamine have distinct and opposing effects on early life stress-induced aggression, suggesting these drugs may be mechanistically distinct. This study identifies memantine as a promising pharmacological treatment for aggressive behavior associated with early life stress and demonstrates the need for greater care when using glutamate receptor antagonists to treat aggression.
Collapse
Affiliation(s)
- Jacob C. Nordman
- Department of Physiology Southern Illinois University School of Medicine Carbondale Illinois USA
| | - Caitlyn J. Bartsch
- Department of Physiology Southern Illinois University Carbondale Illinois USA
| | - Zheng Li
- Section on Synapse Development and Plasticity National Institute of Mental Health, National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
13
|
Frank D, Gruenbaum BF, Shelef I, Zvenigorodsky V, Severynovska O, Gal R, Dubilet M, Zlotnik A, Kofman O, Boyko M. Blood Glutamate Scavenging With Pyruvate as a Novel Preventative and Therapeutic Approach for Depressive-Like Behavior Following Traumatic Brain Injury in a Rat Model. Front Neurosci 2022; 16:832478. [PMID: 35237125 PMCID: PMC8883046 DOI: 10.3389/fnins.2022.832478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Depression is a common and serious complication following traumatic brain injury (TBI). Both depression and TBI have independently been associated with pathologically elevated extracellular brain glutamate levels. In the setting of TBI, blood glutamate scavenging with pyruvate has been widely shown as an effective method to provide neuroprotection by reducing blood glutamate and subsequent brain glutamate levels. Here we evaluate pyruvate as a novel approach in the treatment and prevention of post-TBI depression-like behavior in a rat model. Rats were divided into five groups: (1) sham-operated control with pyruvate, (2) sham-operated control with placebo, (3) post-TBI with placebo, (4) post-TBI given preventative pyruvate, and (5) post-TBI treated with pyruvate. These groups had an equal number of females and males. Rats were assessed for depressive-like behavior, neurological status, and glutamate levels in the blood and brain. Post-TBI neurological deficits with concurrent elevations in glutamate levels were demonstrated, with peak glutamate levels 24 h after TBI. Following TBI, the administration of either prophylactic or therapeutic pyruvate led to reduced glutamate levels, improved neurologic recovery, and improved depressive-like behavior. Glutamate scavenging with pyruvate may be an effective prophylactic and therapeutic option for post-TBI depression by reducing associated elevations in brain glutamate levels.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Ilan Shelef
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Vladislav Zvenigorodsky
- Department of Radiology, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Olena Severynovska
- Department of Physiology, Faculty of Biology, Ecology and Medicine, Dnepropetrovsk State University, Dnepropetrovsk, Ukraine
| | - Ron Gal
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael Dubilet
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Ora Kofman
- Department of Psychology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- *Correspondence: Matthew Boyko,
| |
Collapse
|
14
|
Sahraei M, Sahraei H, Rahimi M, Khosravi M, Ganjkhani M, Meftahi GH. Anxiogenic and anxiolytic effects of memantine injected into the ventral hippocampus in male stressed mice. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:581-589. [PMID: 34533006 DOI: 10.1515/jcim-2021-0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The effects of intra-ventral hippocampal memantine administration in male NMRI stressed mice were studied. METHODS Two stainless steel gauge 23 guide cannulas were placed in the middle part of the mice ventral hippocampus using stereotaxic coordination. Seven days later, the animals were undergone to the stress protocol as follows: They experience four consecutive electro-foot shock stress sessions lasting for 10 min. Five or 30 min before each stress session, the animals received intra-ventral hippocampal (0.1, 1 and, 5 µg/mouse) or intraperitoneal (1, 5, and 10 mg/kg) memantine respectively. Eight days after stress termination, the animals were tested either for the maintenance of either anxiety (elevated plus maze) or depression (forced swimming test). RESULTS Animals show anxiety eight days after stress termination. Intra-ventral hippocampal infusion of memantine (5 µg/mouse) 5 min before stress inhibited the anxiety-like behaviors. However, other doses of the drug exacerbate the stress effect. The drug, when injected peripherally exacerbated the stress effect in all doses. The drug by itself had no effect. In addition, animals also show depression nine days after stress termination and memantine (0.1, 1, and 5 µg/mouse) reduced the stress effect. The drug (0.1 µg/mouse) by itself induced depression in the animals. However, the drug when injected peripherally reduced the stress effect in all doses. CONCLUSIONS It could be concluded that NMDA glutamate receptors in the ventral hippocampus may play a pivotal role in the mediation of maintenance of anxiety and depression induced by stress in the mice.
Collapse
Affiliation(s)
- Mohammad Sahraei
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Rahimi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Khosravi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahin Ganjkhani
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
15
|
Rosa PB, Bettio LEB, Neis VB, Moretti M, Kaufmann FN, Tavares MK, Werle I, Dalsenter Y, Platt N, Rosado AF, Fraga DB, Heinrich IA, Freitas AE, Leal RB, Rodrigues ALS. Antidepressant-like effect of guanosine involves activation of AMPA receptor and BDNF/TrkB signaling. Purinergic Signal 2021; 17:285-301. [PMID: 33712981 PMCID: PMC8155134 DOI: 10.1007/s11302-021-09779-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Guanosine is a purine nucleoside that has been shown to exhibit antidepressant effects, but the mechanisms underlying its effect are not well established. We investigated if the antidepressant-like effect induced by guanosine in the tail suspension test (TST) in mice involves the modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, voltage-dependent calcium channel (VDCC), and brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) pathway. We also evaluated if the antidepressant-like effect of guanosine is accompanied by an acute increase in hippocampal and prefrontocortical BDNF levels. Additionally, we investigated if the ability of guanosine to elicit a fast behavioral response in the novelty suppressed feeding (NSF) test is associated with morphological changes related to hippocampal synaptogenesis. The antidepressant-like effect of guanosine (0.05 mg/kg, p.o.) in the TST was prevented by DNQX (AMPA receptor antagonist), verapamil (VDCC blocker), K-252a (TrkBantagonist), or BDNF antibody. Increased P70S6K phosphorylation and higher synapsin I immunocontent in the hippocampus, but not in the prefrontal cortex, were observed 1 h after guanosine administration. Guanosine exerted an antidepressant-like effect 1, 6, and 24 h after its administration, an effect accompanied by increased hippocampal BDNF level. In the prefrontal cortex, BDNF level was increased only 1 h after guanosine treatment. Finally, guanosine was effective in the NSF test (after 1 h) but caused no alterations in dendritic spine density and remodeling in the ventral dentate gyrus (DG). Altogether, the results indicate that guanosine modulates targets known to be implicated in fast antidepressant behavioral responses (AMPA receptor, VDCC, and TrkB/BDNF pathway).
Collapse
Affiliation(s)
- Priscila B. Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Luis E. B. Bettio
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil ,Division of Medical Sciences, University of Victoria, Victoria, BC Canada
| | - Vivian B. Neis
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Morgana Moretti
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Fernanda N. Kaufmann
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Mauren K. Tavares
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabel Werle
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Yasmim Dalsenter
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Nicolle Platt
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Axel F. Rosado
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Daiane B. Fraga
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Isabella A. Heinrich
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Andiara E. Freitas
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Rodrigo B. Leal
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900 Brazil
| |
Collapse
|
16
|
Petit-Pedrol M, Groc L. Regulation of membrane NMDA receptors by dynamics and protein interactions. J Cell Biol 2021; 220:211609. [PMID: 33337489 PMCID: PMC7754687 DOI: 10.1083/jcb.202006101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding neurotransmitter system crosstalk in the brain is a major challenge in neurobiology. Several intracellular and genomic cascades have been identified in this crosstalk. However, the discovery that neurotransmitter receptors are highly diffusive in the plasma membrane of neurons, where they form heterocomplexes with other proteins, has profoundly changed our view of neurotransmitter signaling. Here, we review new insights into neurotransmitter crosstalk at the plasma membrane. We focus on the membrane organization and interactome of the ionotropic glutamate N-methyl-D-aspartate receptor (NMDAR) that plays a central role in excitatory synaptic and network physiology and is involved in the etiology of several major neuropsychiatric disorders. The nanoscale organization and dynamics of NMDAR is a key regulatory process for glutamate synapse transmission, plasticity, and crosstalk with other neurotransmitter systems, such as the monoaminergic ones. The plasma membrane appears to be a prime regulatory compartment for spatial and temporal crosstalk between neurotransmitter systems in the healthy and diseased brain. Understanding the molecular mechanisms regulating membrane neurotransmitter receptor crosstalk will likely open research avenues for innovative therapeutical strategies.
Collapse
Affiliation(s)
- Mar Petit-Pedrol
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| | - Laurent Groc
- Université de Bordeaux, Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Unité Mixte de Recherche 5297, Bordeaux, France
| |
Collapse
|
17
|
Kukuia KKE, Mensah JA, Amoateng P, Osei-Safo D, Koomson AE, Torbi J, Adongo DW, Ameyaw EO, Ben IO, Amponsah SK, Bugyei KA, Asiedu-Gyekye IJ. Glycine/NMDA Receptor Pathway Mediates the Rapid-onset Antidepressant Effect of Alkaloids From Trichilia Monadelpha. Basic Clin Neurosci 2021; 12:395-408. [PMID: 34917298 PMCID: PMC8666917 DOI: 10.32598/bcn.12.3.2838.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Major depressive disorder is often associated with suicidal tendencies, and this condition accentuates the need for rapid-acting antidepressants. We previously reported that Alkaloids (ALK) from Trichilia monadelpha possess antidepressant action in acute animal models of depression and that this effect is mediated through the monoamine and L-arginine-NO-cGMP pathways. This study investigated the possible rapid-onset antidepressant effect of ALK from T. monadelpha and its connection with the glycine/NMDA receptor pathway. METHODS The onset of ALK action from T. monadelpha was evaluated using the Open Space Swim Test (OSST), a chronic model of depression. The modified forced swimming and tail suspension tests were used to assess the effect of the ALK on the glycine/NMDA receptor pathway. The Instutute of Cancer Research (ICR) mice were treated with either ALK (30-300 mg/kg, orally [PO]), imipramine (3-30 mg/kg, PO), fluoxetine (3-30 mg/kg, PO), or saline. To identify the role of glycine/NMDA receptor pathway in the effect of ALK, we pretreated mice with a partial agonist of the glycine/NMDA receptor, D-cycloserine (2.5 mg/kg, intraperitoneally [IP]), and an agonist of glycine/NMDA receptor, D-serine (600 mg/kg, IP), before ALK administration. RESULTS ALK reversed immobility in mice after the second day of drug treatment in the OSST. In contrast, there was a delay in the effects induced by fluoxetine and imipramine. ALK also increased mean swimming and climbing scores in mice. ALK was more efficacious than imipramine and fluoxetine in reducing immobility and increasing distance traveled. It is noteworthy that ALK was less potent than fluoxetine and imipramine. D-cycloserine potentiated mobility observed in the ALK- and fluoxetine-treated mice. In contrast, D-serine decreased mobility in the ALK-treated mice. CONCLUSION The study results suggest that ALK from T. monadelpha exhibits rapid antidepressant action in mice, and the glycine/NMDA receptor pathway possibly mediates the observed effect.
Collapse
Affiliation(s)
- Kennedy Kwami Edem Kukuia
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Jeffrey Amoako Mensah
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, U.S. A
| | - Patrick Amoateng
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Awo Efua Koomson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Joseph Torbi
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| | - Donatus Wewura Adongo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Elvis Ofori Ameyaw
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Inemesit Okon Ben
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Korle Bu-Accra, Ghana
| | - Isaac Julius Asiedu-Gyekye
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon-Accra, Ghana
| |
Collapse
|
18
|
Zheng W, Zhou YL, Wang CY, Lan XF, Zhang B, Zhou SM, Yan S, Ning YP. Plasma BDNF concentrations and the antidepressant effects of six ketamine infusions in unipolar and bipolar depression. PeerJ 2021; 9:e10989. [PMID: 33850645 PMCID: PMC8015784 DOI: 10.7717/peerj.10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 11/20/2022] Open
Abstract
Objectives Accumulating evidence has implicated that brain derived neurotrophic factor (BDNF) is thought to be involved in the pathophysiology of depression, but its correlation with ketamine's antidepressant efficacy focusing on Chinese individuals with depression is not known. This study was aim to determine the correlation of plasma BDNF (pBDNF) concentrations and ketamine's antidepressant efficacy. Methods Ninety-four individuals with depression received six intravenous infusions ketamine (0.5 mg/kg). Remission and response were defined as Montgomery-Asberg Depression Rating Scale (MADRS) scores less than 10 and a reduction of 50% or more in MADRS scores, respectively. Plasma was collected at baseline and at 24 h and 2 weeks after completing six ketamine infusions (baseline, 13 d and 26 d). Results A significant improvement in MADRS scores and pBDNF concentrations was found after completing six ketamine infusions compared to baseline (all ps < 0.05). Higher baseline pBDNF concentrations were found in ketamine responders/remitters (11.0 ± 6.2/10.1 ± 5.8 ng/ml) than nonresponders/nonremitters (8.0 ± 5.5/9.2 ± 6.4 ng/ml) (all ps < 0.05). Baseline pBDNF concentrations were correlated with MADRS scores at 13 d (t = - 2.011, p = 0.047) or 26 d (t = - 2.398, p = 0.019) in depressed patients (all ps < 0.05). Subgroup analyses found similar results in individuals suffering from treatment refractory depression. Conclusion This preliminary study suggests that baseline pBDNF concentrations appeared to be correlated with ketamine's antidepressant efficacy in Chinese patients with depression.
Collapse
Affiliation(s)
- Wei Zheng
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yan-Ling Zhou
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cheng-Yu Wang
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiao-Feng Lan
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Bin Zhang
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Su-Miao Zhou
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Su Yan
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Psychiatry, The first School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Intra-prefrontal cyclosporine potentiates ketamine-induced fear extinction in rats. Exp Brain Res 2021; 239:1401-1415. [PMID: 33666692 DOI: 10.1007/s00221-021-06050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/25/2021] [Indexed: 10/22/2022]
Abstract
Several brain regions, including the medial prefrontal cortex (mPFC), are important in the process of fear extinction learning. Ketamine is a glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, which is shown to play a role in extinction modulation. Ketamine and calcineurin (CN), an intracellular protein phosphatase, have several common targets in the cells. Therefore, in the present study, our aim is to investigate the possible role of calcineurin in the mPFC on the enhancing effects of ketamine in fear extinction. First, different doses of a CN inhibitor, cyclosporine-A (CsA), were micro-injected into the infralimbic (IL) region of the mPFC prior to extinction training in a classical conditioning model in rats. Next, sub-effective doses of CsA (Intra-mPFC) and ketamine (i.p.) were co-administered in another cohort of rats to find their possible interactions. Enzymatic activity of calcineurin was measured in the IL-mPFC following drug administration. We used the elevated plus-maze (EPM) and open field (OF) test for further behavioral assessments. The results showed that CsA can enhance the extinction of conditioned fear and inhibit the enzyme CN at a dose of 20 nM. The combination of sub-effective doses of CsA (5 nM) and ketamine (10 mg/kg) could again enhance the extinction of fear and reduce CN activity in the region. Our results propose that inhibition of CN in the IL-mPFC is involved in the extinction of fear and ketamine enhancement of extinction is probably mediated by reducing CN activity in this part of the brain.
Collapse
|
20
|
Desfossés CY, Blier P. [A review of the antidepressant properties of ketamine]. Med Sci (Paris) 2021; 37:27-34. [PMID: 33492215 DOI: 10.1051/medsci/2020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Major depression is a frequent and disabling disorder. Despite great developments in the field of psychopharmacology since the 1950's, delayed onset of action and treatment resistance to current pharmacological options, such as serotonin reuptake inhibitors, remain a therapeutic challenge. The recent discovery of the rapid antidepressant action of ketamine, an NMDA (N-methyl-D-aspartate) receptor antagonist, has brought a revolution to this field. This paper presents a comprehensive review of the clinical research on the antidepressant properties of ketamine as well as its presumed mechanisms of action.
Collapse
Affiliation(s)
- Charles Y Desfossés
- The Royal's Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada
| | - Pierre Blier
- The Royal's Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada - Department of Psychiatry, University of Ottawa, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada - Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
21
|
Gagne C, Piot A, Brake WG. Depression, Estrogens, and Neuroinflammation: A Preclinical Review of Ketamine Treatment for Mood Disorders in Women. Front Psychiatry 2021; 12:797577. [PMID: 35115970 PMCID: PMC8804176 DOI: 10.3389/fpsyt.2021.797577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
Ketamine has been shown to acutely and rapidly ameliorate depression symptoms and suicidality. Given that women suffer from major depression at twice the rate of men, it is important to understand how ketamine works in the female brain. This review explores three themes. First, it examines our current understanding of the etiology of depression in women. Second, it examines preclinical research on ketamine's antidepressant effects at a neurobiological level as well as how ovarian hormones present a unique challenge in interpreting these findings. Lastly, the neuroinflammatory hypothesis of depression is highlighted to help better understand how ovarian hormones might interact with ketamine in the female brain.
Collapse
Affiliation(s)
- Collin Gagne
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Alexandre Piot
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioural Neurobiology Concordia University, Montreal, QC, Canada
| |
Collapse
|
22
|
Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J Affect Disord 2021; 278:542-555. [PMID: 33022440 PMCID: PMC7704936 DOI: 10.1016/j.jad.2020.09.071] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ketamine appears to have a therapeutic role in certain mental disorders, most notably depression. However, the comparative performance of different formulations of ketamine is less clear. OBJECTIVES This study aimed to assess the comparative efficacy and tolerability of racemic and esketamine for the treatment of unipolar and bipolar major depression. DESIGN Systematic review and meta-analysis. DATA SOURCES We searched PubMed, MEDLINE, Embase, PsycINFO, the Cochrane Central Register of Controlled Clinical Trials, and the Cochrane Database of Systematic Reviews for relevant studies published since database inception and December 17, 2019. STUDY ELIGIBILITY CRITERIA We considered randomized controlled trials examining racemic or esketamine for the treatment of unipolar or bipolar major depression. OUTCOMES Primary outcomes were response and remission from depression, change in depression severity, suicidality, retention in treatment, drop-outs, and drop-outs due to adverse events. ANALYSIS Evidence from randomized controlled trials was synthesized as rate ratios (RRs) for treatment response, disorder remission, adverse events, and withdrawals and as standardized mean differences (SMDs) for change in symptoms, via random-effects meta-analyses. FINDINGS 24 trials representing 1877 participants were pooled. Racemic ketamine relative to esketamine demonstrated greater overall response (RR = 3.01 vs. RR = 1.38) and remission rates (RR = 3.70 vs. RR = 1.47), as well as lower dropouts (RR = 0.76 vs. RR = 1.37). CONCLUSIONS Intravenous ketamine appears to be more efficacious than intranasal esketamine for the treatment of depression.
Collapse
|
23
|
Zou L, Min S, Chen Q, Li X, Ren L. Subanesthetic dose of ketamine for the antidepressant effects and the associated cognitive impairments of electroconvulsive therapy in elderly patients-A randomized, double-blind, controlled clinical study. Brain Behav 2021; 11:e01775. [PMID: 33305900 PMCID: PMC7821612 DOI: 10.1002/brb3.1775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES We previously confirmed that low-dose ketamine, as an adjunctive anesthetic for electroconvulsive therapy (ECT) in adult patients with depression, accelerates the effects of ECT and reduces the ECT-induced learning and memory deficits. This study explored the efficacy and safety of low-dose ketamine in elderly patients with depression. METHODS Elderly patients with depression (N = 157) were randomly divided into two groups: propofol anesthesia group (group P) and propofol combined with ketamine anesthesia group (group KP). Patients in group KP were given low-dose ketamine (0.3 mg/kg) for each ECT treatment; patients in group P were given the same amount of normal saline. Depressive symptoms and global cognitive functions were assessed using the 24-item Hamilton Depression Rating Scale and Mini-Mental State Examination, respectively, at baseline, 1 day after the 1st, 2nd, 4th, and 6th ECT sessions, and 1 day after the end of the ECT course. ECT effects of and complications were recorded. RESULTS In total, 67 patients in group KP and 70 in group P completed the study. After the ECT, the response and remission rates were 82.09% and 73.13%, respectively, in group KP, and 81.43% and 68.57%, respectively, in group P; there was no statistical difference between groups. However, the incidence of cognitive function impairment was lower in group KP (10.4%) than in group P (25.7%), while different electrical dose and seizure duration were required during the course of treatment between the two groups. There was no difference in the complications of ECT between groups. CONCLUSIONS Low-dose ketamine is safe as an adjunct anesthetic for elderly patients subjected to ECT. It has a protective effect on cognitive function and may accelerate the antidepressant effects of ECT.
Collapse
Affiliation(s)
- Lei Zou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Departments of Psychiatry, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Małgorzata P, Paweł K, Iwona ML, Brzostek T, Andrzej P. Glutamatergic dysregulation in mood disorders: opportunities for the discovery of novel drug targets. Expert Opin Ther Targets 2020; 24:1187-1209. [PMID: 33138678 DOI: 10.1080/14728222.2020.1836160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recently, a considerable attention has been paid to glutamatergic conception of mood disorders. The development of new treatment strategies targeted at glutamate provides new opportunities for the treatment of mood disorders. It is expected that these novel therapeutic options will provide a fast and sustained antidepressant effect and will be better tolerated by patients than the currently available antidepressants. AREAS COVERED This paper discusses glutamatergic abnormalities in mood disorders and reviews novel glutamate-based drugs developed for the treatment of these disorders. We have searched the PubMed and EMBASE databases, presented the results of relevant clinical studies and also describe novel glutamate-based agents that are under investigation. EXPERT OPINION The glutamatergic system plays many important roles in energy metabolism of the brain and neurotransmission; therefore, any attempt to identify novel therapeutic targets within this system seems justified. The effective development of new glutamate-based drugs requires, among others, a more in-depth exploration and understanding of the anatomy, function, and localization of different glutamatergic receptors in the brain. In our opinion, novel glutamate-based antidepressants will find application in the treatment of mood disorders and present an option will be widely used in clinical practice in the future.
Collapse
Affiliation(s)
- Panek Małgorzata
- Department of Biotechnology and General Technology of Food, Faculty of Food Technology, University of Agriculture , Kraków, Poland
| | - Kawalec Paweł
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland
| | - Malinowska Lipień Iwona
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Tomasz Brzostek
- Department of Internal Medicine and Community Nursing, Faculty of Health Sciences, Jagiellonian University Medical College , Kraków, Poland
| | - Pilc Andrzej
- Department of Nutrition and Drug Research, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University , Kraków, Poland.,Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences , Kraków, Poland
| |
Collapse
|
25
|
Andronis C, Silva JP, Lekka E, Virvilis V, Carmo H, Bampali K, Ernst M, Hu Y, Loryan I, Richard J, Carvalho F, Savić MM. Molecular basis of mood and cognitive adverse events elucidated via a combination of pharmacovigilance data mining and functional enrichment analysis. Arch Toxicol 2020; 94:2829-2845. [PMID: 32504122 PMCID: PMC7395038 DOI: 10.1007/s00204-020-02788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023]
Abstract
Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.
Collapse
Affiliation(s)
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | | | | | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Yang Hu
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate Member of SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate Member of SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jacques Richard
- Sanofi R&D, 371 avenue Professeur Blayac, 34000, Montpellier, France
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| |
Collapse
|
26
|
A randomized placebo-controlled PET study of ketamine´s effect on serotonin 1B receptor binding in patients with SSRI-resistant depression. Transl Psychiatry 2020; 10:159. [PMID: 32475989 PMCID: PMC7261801 DOI: 10.1038/s41398-020-0844-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/26/2020] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
The glutamate N-methyl-D-aspartate receptor antagonist ketamine has a rapid antidepressant effect. Despite large research efforts, ketamine's mechanism of action in major depressive disorder (MDD) has still not been determined. In rodents, the antidepressant properties of ketamine were found to be dependent on both the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and the serotonin (5-HT)1B receptor. Low 5-HT1B receptor binding in limbic brain regions is a replicated finding in MDD. In non-human primates, AMPA-dependent increase in 5-HT1B receptor binding in the ventral striatum (VST) has been demonstrated after ketamine infusion. Thirty selective serotonin reuptake inhibitor-resistant MDD patients were recruited via advertisement and randomized to double-blind monotherapy with 0.5 mg/kg ketamine or placebo infusion. The patients were examined with the 5-HT1B receptor selective radioligand [11C]AZ10419369 and positron emission tomography (PET) before and 24-72 h after treatment. 5-HT1B receptor binding did not significantly alter in patients treated with ketamine compared with placebo. An increase in 5-HT1B receptor binding with 16.7 % (p = 0.036) was found in the hippocampus after one ketamine treatment. 5-HT1B receptor binding in VST at baseline correlated with MDD symptom ratings (r = -0.426, p = 0.019) and with reduction of depressive symptoms with ketamine (r = -0.644, p = 0.002). In conclusion, reduction of depressive symptoms in MDD patients after ketamine treatment is correlated inversely with baseline 5-HT1B receptor binding in VST. Further studies examining the role of 5-HT1B receptors in the antidepressant mechanism of action of ketamine should be conducted, homing in on the 5-HT1B receptor as an MDD treatment response marker.
Collapse
|
27
|
Binge and Subchronic Exposure to Ketamine Promote Memory Impairments and Damages in the Hippocampus and Peripheral Tissues in Rats: Gallic Acid Protective Effects. Neurotox Res 2020; 38:274-286. [DOI: 10.1007/s12640-020-00215-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
|
28
|
Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. ACS Chem Neurosci 2020; 11:864-871. [PMID: 32133835 DOI: 10.1021/acschemneuro.9b00493] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Psilocybin shows efficacy to alleviate depression in human clinical trials for six or more months after only one or two treatments. Another hallucinogenic drug, esketamine, has recently been U.S. Food and Drug Administration (FDA)-approved as a rapid-acting antidepressant. The mechanistic basis for the antidepressant effects of psilocybin and ketamine appear to be conserved. The efficacy of these two medications has not, however, been directly compared either clinically or preclinically. Further, whether or not a profound subjective existential experience is necessary for psilocybin to have antidepressant effects is unknown. To address these questions, we tested psilocybin, lysergic acid diethylamide (LSD), and ketamine in a rat model for depression. As in humans, a single administration of psilocybin or LSD produced persistent antidepressant-like effects in our model. In contrast, ketamine produced only a transient antidepressant-like effect. Our results indicate that classic psychedelics may have therapeutic efficacy that is more persistent than that of ketamine, and also suggest that a subjective existential experience may not be necessary for therapeutic effects.
Collapse
Affiliation(s)
- Meghan Hibicke
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Alexus N. Landry
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Hannah M. Kramer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Zoe K. Talman
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| |
Collapse
|
29
|
Rashidian H, Rosenblat JD, McIntyre RS, Mansur RB. Leptin, obesity, and response to ketamine. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109773. [PMID: 31672525 DOI: 10.1016/j.pnpbp.2019.109773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/06/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Houman Rashidian
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Gruenbaum BF, Kutz R, Zlotnik A, Boyko M. Blood glutamate scavenging as a novel glutamate-based therapeutic approach for post-stroke depression. Ther Adv Psychopharmacol 2020; 10:2045125320903951. [PMID: 32110376 PMCID: PMC7026819 DOI: 10.1177/2045125320903951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
Post-stroke depression (PSD) is a major complication of stroke that significantly impacts functional recovery and quality of life. While the exact mechanism of PSD is unknown, recent attention has focused on the association of the glutamatergic system in its etiology and treatment. Minimizing secondary brain damage and neuropsychiatric consequences associated with excess glutamate concentrations is a vital part of stroke management. The blood glutamate scavengers, oxaloacetate and pyruvate, degrade glutamate in the blood to its inactive metabolite, 2-ketoglutarate, by the coenzymes glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT), respectively. This reduction in blood glutamate concentrations leads to a subsequent shift of glutamate down its concentration gradient from the blood to the brain, thereby decreasing brain glutamate levels. Although there are not yet any human trials that support blood glutamate scavengers for clinical use, there is increasing evidence from animal research of their efficacy as a promising new therapeutic approach for PSD. In this review, we present recent evidence in the literature of the potential therapeutic benefits of blood glutamate scavengers for reducing PSD and other related neuropsychiatric conditions. The evidence reviewed here should be useful in guiding future clinical trials.
Collapse
Affiliation(s)
- Benjamin F Gruenbaum
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Kutz
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Zlotnik
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Matthew Boyko
- Division of Anesthesiology and Critical Care, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| |
Collapse
|
31
|
Matraszek-Gawron R, Chwil M, Terlecka P, Skoczylas MM. Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the Genera Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals (Basel) 2019; 12:ph12040172. [PMID: 31775329 PMCID: PMC6958339 DOI: 10.3390/ph12040172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Herbal therapy is a potential alternative applied to pharmacological alleviation of depression symptoms and treatment of this disorder, which is predicted by the World Health Organization (WHO) to be the most serious health problem worldwide over the next several years. It has been well documented that many herbs with psychotropic effects have far fewer side effects than a variety of pharmaceutical agents used by psychiatrists for the treatment of depression. This systematic review presents literature data on the antidepressant activity of representatives of the genera Hemerocallis (H. fulva and H. citrina Baroni, family Xanthorrhoeaceae) and Gladiolus (G. dalenii, family Iridaceae) and on biologically active compounds and their mechanisms of action to consider the application of herbal preparations supporting the treatment of depression.
Collapse
Affiliation(s)
- Renata Matraszek-Gawron
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Mirosława Chwil
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-445-66-24
| | - Paulina Terlecka
- Chair and Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland;
| | - Michał M. Skoczylas
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej Street, 71-252 Szczecin, Poland;
| |
Collapse
|
32
|
Schimites PI, Segat HJ, Teixeira LG, Martins LR, Mangini LT, Baccin PS, Rosa HZ, Milanesi LH, Burger ME, Soares AV. Gallic acid prevents ketamine-induced oxidative damages in brain regions and liver of rats. Neurosci Lett 2019; 714:134560. [PMID: 31622649 DOI: 10.1016/j.neulet.2019.134560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Ketamine (KET) is an anesthetic agent widely used in human and veterinary medicine. According to studies, KET is associated to direct neutorotoxic damages due to its capacity to induce oxidative stress. Because of the free radical generation in the organism and its relation with diseases' development, there is a growing interest to study antioxidant molecules, such as gallic acid (GA), a natural phenolic compound. AIM Evaluate the GA antioxidant potential for the prevention of oxidative damage in the brain and liver tissue of rats exposed to acute KET administration. MATERIAL AND METHODS 32 Wistar male rats received GA (by gavage, 13.5 mg/kg) for three consecutive days, 24 h after the last GA dose, animals were anesthetized with KET (50 mg/kg, i.m.). All animals were euthanized by decapitation 60 min after KET administration. The liver, brain cortex and hippocampus were removed and homogenized for biochemical analysis. RESULTS In brain cortex, KET increased reactive species (RS) generation, protein carbonyls (PC) levels and reduced non-protein thiols (NPSH) levels, while GA pre-treatment reduced PC and increased NPSH levels. KET increased PC and decreased NPSH levels in the hippocampus, and GA reduced PC and NPSH levels. In the liver, no difference was observed in the RS generation, while KET induced and increase of PC levels and decreased NPSH levels, while GA pre-treatment prevented it. CONCLUSION GA administration can prevent oxidative damage caused by acute KET administration and minimize its noxious effects. Further studies are needed to evidence GA antioxidant properties regarding KET chronic use.
Collapse
Affiliation(s)
- P I Schimites
- Pós-Graduação em Medicina Veterinária; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - H J Segat
- Departamento de Patologia; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - L G Teixeira
- Pós-Graduação em Ciências Veterinárias; Universidade Federal do Rio Grande do Sul-UFRGS-RS, Brazil
| | - L R Martins
- Pós-Graduação em Medicina Veterinária; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - L T Mangini
- Residência Multidisciplinar em anestesiologia, Universidade Federal do Rio Grande do Sul-UFRGS-RS, Brazil
| | - P S Baccin
- Departamento de Pequenos animais; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - H Z Rosa
- Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - L H Milanesi
- Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - M E Burger
- Pós-Graduação em Farmacologia; Universidade Federal de Santa Maria-UFSM-RS, Brazil
| | - A V Soares
- Pós-Graduação em Medicina Veterinária; Universidade Federal de Santa Maria-UFSM-RS, Brazil.
| |
Collapse
|
33
|
Skrajnowska D, Bobrowska-Korczak B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019; 11:E2273. [PMID: 31546724 PMCID: PMC6835436 DOI: 10.3390/nu11102273] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
The human body cannot store zinc reserves, so a deficiency can arise relatively quickly, e.g., through an improper diet. Severe zinc deficiency is rare, but mild deficiencies are common around the world. Many epidemiological studies have shown a relationship between the zinc content in the diet and the risk of cancer. The anti-cancer effect of zinc is most often associated with its antioxidant properties. However, this is just one of many possibilities, including the influence of zinc on the immune system, transcription factors, cell differentiation and proliferation, DNA and RNA synthesis and repair, enzyme activation or inhibition, the regulation of cellular signaling, and the stabilization of the cell structure and membranes. This study presents selected issues regarding the current knowledge of anti-cancer mechanisms involving this element.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland.
| | | |
Collapse
|
34
|
Lorigooini Z, Salimi N, Soltani A, Amini-Khoei H. Implication of NMDA-NO pathway in the antidepressant-like effect of ellagic acid in male mice. Neuropeptides 2019; 76:101928. [PMID: 31078318 DOI: 10.1016/j.npep.2019.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Depression is one the common psychiatric disorders through the world. Nitric oxide (NO) and N-methyl-d-aspartate receptor (NMDA-R) are involved in the pathophysiology of depression. Previous studies have been reported various pharmacological properties for ellagic acid (EA). We aimed to evaluate possible involvement of NMDA-NO pathway in the antidepressant-like effect of EA. To do this, we used relevant behavioral tests to evaluate depressive-like behavior. In order to find effective and sub-effective doses of agents, mice treated with EA (6.25, 12.5, 25, 50 and 100 mg/kg), L-NAME (5 and 10 mg/kg), L-arg (25 and 50 mg/kg), NMDA (75 and 150 mg/kg) and ketamine (0.25 and 0.5 mg/kg). Furthermore, mice were treated with combination of sub-effective dose of EA plus sub-effective doses of L-NAME and/or ketamine as well as treated with effective dose of EA in combination of effective doses of L-arg and/or NMDA. Level of NO and gene expression of NR2A and NR2B subunits of NMDA-R were assessed in the hippocampus. Results showed that EA dose dependently provoked antidepressant-like effects and also decreased the hippocampal NO level as well as expression of NMDA-Rs. Co-administration of sub-effective doses of L-NAME or ketamine with sub-effective dose of EA potentiated the effect of EA on behaviors, NO level as well as NMDA-Rs gene expression in the hippocampus. However, co-treatment of effective dose of EA with effective doses of L-arg or NMDA mitigated effects of EA. In conclusion, our data suggested that NMDA-NO, partially at least, are involved in the antidepressant-like effect of EA.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Salimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
35
|
Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, Zarate CA. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry 2019; 24:1040-1052. [PMID: 29487402 PMCID: PMC6111001 DOI: 10.1038/s41380-018-0028-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023]
Abstract
Ketamine's mechanism of action was assessed using gamma power from magnetoencephalography (MEG) as a proxy measure for homeostatic balance in 35 unmedicated subjects with major depressive disorder (MDD) and 25 healthy controls enrolled in a double-blind, placebo-controlled, randomized cross-over trial of 0.5 mg/kg ketamine. MDD subjects showed significant improvements in depressive symptoms, and healthy control subjects exhibited modest but significant increases in depressive symptoms for up to 1 day after ketamine administration. Both groups showed increased resting gamma power following ketamine. In MDD subjects, gamma power was not associated with the magnitude of the antidepressant effect. However, baseline gamma power was found to moderate the relationship between post-ketamine gamma power and antidepressant response; specifically, higher post-ketamine gamma power was associated with better response in MDD subjects with lower baseline gamma, with an inverted relationship in MDD subjects with higher baseline gamma. This relationship was observed in multiple regions involved in networks hypothesized to be involved in the pathophysiology of MDD. This finding suggests biological subtypes based on the direction of homeostatic dysregulation and has important implications for inferring ketamine's mechanism of action from studies of healthy controls alone.
Collapse
Affiliation(s)
- Allison C Nugent
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Nancy E Brutsche
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
36
|
Kheirabadi G, Vafaie M, Kheirabadi D, Mirlouhi Z, Hajiannasab R. Comparative Effect of Intravenous Ketamine and Electroconvulsive Therapy in Major Depression: A Randomized Controlled Trial. Adv Biomed Res 2019; 8:25. [PMID: 31123668 PMCID: PMC6477832 DOI: 10.4103/abr.abr_166_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Achieving a rapid onset and durable methods of treatment for major depressive disorders is an issue pursuing in psychiatry. This study was designed to assess the therapeutic efficacy of intravenous (IV) ketamine injection in controlling depressive symptoms in comparison with electroconvulsive therapy (ECT) in major depressed disordered patients. Materials and Methods Thirty-two patients over 18 years of age who were candidates for ECT were enrolled in the study. They were allocated into two groups using block design randomization. Sixteen patients received IV infusion of 0.5-mg/kg ketamine and 16 patients underwent a bitemporal ECT. To evaluate the changes in depression severity, researchers administered Hamilton Depression Rating Scale (HDRS) at baseline, before each treatment session, and four time points posttreatment (week 1 and months 1, 2, and 3). The Wechsler Memory Scale was used to evaluate the cognitive state of patients in week 1, month 1, and month 3 of the treatment. Results The HDRS showed improvement in depressive symptoms in both the groups with no statistically significant difference. Cognitive state was more favorable (but not significant) in the ketamine group (P > 0.5). Conclusion Treatment with IV ketamine in depressed people has the same antidepressant effects as ECT treatment without any memory deficiency.
Collapse
Affiliation(s)
- Gholamreza Kheirabadi
- Department of Psychiatry, School of Medicine, Behavioral Sciences Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Vafaie
- Department of Psychiatry, School of Medicine, Behavioral Sciences Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dorna Kheirabadi
- Department of psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mirlouhi
- Department of Psychiatry, School of Medicine, Behavioral Sciences Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasam Hajiannasab
- School of Medicine, Azad University of Iran, Najafabad Unite, Najafabad, Iran
| |
Collapse
|
37
|
Cohen K, Weizman A, Weinstein A. Modulatory effects of cannabinoids on brain neurotransmission. Eur J Neurosci 2019; 50:2322-2345. [DOI: 10.1111/ejn.14407] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Koby Cohen
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| | | | - Aviv Weinstein
- Department of Behavioral Science Ariel University Science Park 40700 Ariel Israel
| |
Collapse
|
38
|
de Carvalho Cartágenes S, Fernandes LMP, Carvalheiro TCVS, de Sousa TM, Gomes ARQ, Monteiro MC, de Oliveira Paraense RS, Crespo-López ME, Lima RR, Fontes-Júnior EA, Prediger RD, Maia CSF. "Special K" Drug on Adolescent Rats: Oxidative Damage and Neurobehavioral Impairments. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5452727. [PMID: 31001375 PMCID: PMC6437740 DOI: 10.1155/2019/5452727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/19/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Ketamine is used in clinical practice as an anesthetic that pharmacologically modulates neurotransmission in postsynaptic receptors, such as NMDA receptors. However, widespread recreational use of ketamine in "party drug" worldwide since the 1990s quickly spread to the Asian orient region. Thus, this study aimed at investigating the behavioral and oxidative effects after immediate withdrawal of intermittent administration of ketamine in adolescent female rats. For this, twenty female Wistar rats were randomly divided into two groups: control and ketamine group (n = 10/group). Animals received ketamine (10 mg/kg/day) or saline intraperitoneally for three consecutive days. Three hours after the last administration, animals were submitted to open field, elevated plus-maze, forced swim tests, and inhibitory avoidance paradigm. Twenty-four hours after behavioral tests, the blood and hippocampus were collected for the biochemical analyses. Superoxide dismutase, catalase, nitrite, and lipid peroxidation (LPO) were measured in the blood samples. Nitrite and LPO were measured in the hippocampus. The present findings demonstrate that the early hours of ketamine withdrawal induced oxidative biochemistry unbalance in the blood samples, with elevated levels of nitrite and LPO. In addition, we showed for the first time that ketamine withdrawal induced depressive- and anxiety-like profile, as well as short-term memory impairment in adolescent rodents. The neurobehavioral deficits were accompanied by the hippocampal nitrite and LPO-elevated levels.
Collapse
Affiliation(s)
- Sabrina de Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luanna Melo Pereira Fernandes
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Thais Miranda de Sousa
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Antônio Rafael Quadros Gomes
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Laboratory of Microbiology and Immunology of Teaching and Research, Pharmacy Faculty, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | | | - Maria Elena Crespo-López
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rui Daniel Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cristiane Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Pharmacy Faculty, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
39
|
Effect of Electroacupuncture at Different Acupoints on the Expression of NMDA Receptors in ACC and Colon in IBS Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4213928. [PMID: 30854008 PMCID: PMC6377955 DOI: 10.1155/2019/4213928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/05/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Objective To observe the effects of electroacupuncture (EA) at different acupoints on the expression of N-methyl-D-aspartate receptor (NMDA receptor ) and behaviors in irritable bowel syndrome (IBS) rats. Methods Wistar rats were randomly divided into blank control group (blank group, n=10) and model preparation group (n=50); experimental rat model of IBS was established by the “neonatal maternal separation and acetic acid enema” combined with “colorectal distension stimulation” method. A total of 50 IBS rats were randomly assigned to five groups of 10 each: model group, Yintang (GV29) group, Neiguan (PC6) group, Tianshu (ST25) group, and Zusanli (ST36) group. Rats in four treatment groups, aged 9 weeks old, were treated with EA by HANS with a sparse-dense wave with a frequency of 2/100 Hz, current of 0.1-0.3mA, and 20 min/stimulation, every other day for a total of 5 sessions. After treatment, the abdominal visceral sensitivity was evaluated by abdominal withdrawal reflex (AWR), and the psychological and emotional behavior of rats were evaluated by the open-field test (OFT). The expression of NMDA receptors in anterior cingulate cortex (ACC) was detected by Quantitative Real-time PCR, and the positive expression of NMDA receptors in colon was detected by immunohistochemistry. Results The IBS rat's abdomen is more sensitive and irritable; NR1, NR2A, and NR2B in ACC and NR1 and NR2B in colon of rats significantly increased in the model group versus the normal group (P<0.01) and were inhibited in all treatment groups (P<0.01, P<0.05). Additionally, NR2A and NR2B in ACC reduced more in GV29 group (P<0.01) than in other treatment groups (P all<0.05) compared with the model group. The expression of NR2B in colon was significantly inhibited in ST36 group (P<0.01) and inhibited in GV29 group and ST25 group (P all <0.05) compared with the model group. And the expression of NR2B in colon was more inhibited in ST36 group than in PC6 group (P<0.01). Conclusions EA at different acupoints could obviously relieve abdominal pain and abnormal behaviors in IBS rats in different degrees of effects. The effect of abdominal pain-relief, from greatest to least, is ST25, ST36, GV29, and PC6, while the effect of relieving abnormal behaviors caused by IBS, from greatest to least, is GV29, PC6, ST36, and ST25. There are significant differences in the expressions of NMDA receptors in ACC and colon among different acupoints. This difference should be related to the location distribution and indications of acupoints.
Collapse
|
40
|
Shin SY, Baek NJ, Han SH, Min SS. Chronic administration of ketamine ameliorates the anxiety- and aggressive-like behavior in adolescent mice induced by neonatal maternal separation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 23:81-87. [PMID: 30627013 PMCID: PMC6315094 DOI: 10.4196/kjpp.2019.23.1.81] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 11/29/2022]
Abstract
Ketamine has long been used as an anesthetic agent. However, ketamine use is associated with numerous side effects, including flashbacks, amnesia, delirium, and aggressive or violent behavior. Ketamine has also been abused as a cocktail with ecstasy, cocaine, and methamphetamine. Several studies have investigated therapeutic applications of ketamine, demonstrating its antidepressant and anxiolytic effects in both humans and rodents. We recently reported that neonatal maternal separation causes enhanced anxiety- and aggressive-like behaviors in adolescent. In the present study, we evaluated how acute and chronic ketamine administration affected the behavioral consequences of neonatal maternal separation in adolescent mice. Litters were separated from dams for 4 hours per day for 19 days beginning after weaning. Upon reaching adolescence (post-natal day 35–49), mice were acutely (single injection) or chronically (7 daily injections) treated with a sub-anesthetic dose (15 mg/kg) of ketamine. At least 1 h after administration of ketamine, mice were subjected to open-field, elevated-plus maze, and resident-intruder tests. We found that acute ketamine treatment reduced locomotor activity. In contrast, chronic ketamine treatment decreased anxiety, as evidenced by increased time spent on open arms in the elevated-plus maze, and remarkably reduced the number and duration of attacks. In conclusion, the present study suggests that ketamine has potential for the treatment of anxiety and aggressive or violent behaviors.
Collapse
Affiliation(s)
- Sang Yep Shin
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Nam Jun Baek
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Seung Ho Han
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| | - Sun Seek Min
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 34824, Korea
| |
Collapse
|
41
|
Huang CC, Tsai MH, Wu YC, Chen KT, Chuang HW, Chen Y, Tseng GW, Fu PI, Wei IH. Activity Dependent Mammalian Target of Rapamycin Pathway and Brain Derived Neurotrophic Factor Release Is Required for the Rapid Antidepressant Effects of Puerarin. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-16. [PMID: 30284466 DOI: 10.1142/s0192415x18500787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Puerarin is a traditional Chinese medicine with beneficial effects of reduced depression-like behaviors in mice with stress. Previous studies also show that puerarin can produce neuroprotective effect via activating the Akt or increased brain-derived neurotrophic factor (BDNF) expression. Interestingly, BDNF and Akt downstream target, mammalian target of rapamycin (mTOR) mediate the fast-acting antidepressant properties of ketamine. Until now, the involvement of the mTOR signaling pathway or BDNF on puerarin-induced antidepressant effect remains unknown. We aimed to investigate whether the antidepressant-like effect induced by puerarin would associate mTOR signaling pathway and BDNF release. The antidepressant-like effects of puerarin were evaluated using the forced swim test. The activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptor (AMPAR)-mTOR signaling pathway and release of BDNF in the prefrontal cortex were determined. We also investigated the effect of puerarin on AMPAR trafficking through measuring the PKA phosphorylation of AMPAR subunit GluR1. Our present results show that puerarin exerted antidepressant-like responses that was mediated by AMPAR-induced mTOR signaling pathway and associated with increased BDNF release. Moreover, a significant increase in the GluR1 phosphorylation at its PKA site was noted following puerarin treatment. Our findings are the first to demonstrate that the antidepressant-like actions of puerarin require AMPAR-mTOR signaling pathway activation, are associated with an increased BDNF level and facilitate AMPAR membrane insertion. These findings provide preclinical evidence that puerarin may possess antidepressant property which is mediated by the glutamatergic system.
Collapse
Affiliation(s)
- Chih-Chia Huang
- * Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- ‡ Department of Psychiatry, China Medical University, Taichung, Taiwan
| | - Mang-Hung Tsai
- § Department of Anatomy, China Medical University, Taichung, Taiwan
| | - Ya-Chieh Wu
- ** Department of Nursing, Ching-Kuo Institute of Management and Health, Keelung, Taiwan
| | - Kuang-Ti Chen
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Han-Wen Chuang
- † Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yun Chen
- ¶ Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Guan-Woei Tseng
- ∥ Department of Medicine, China Medical University, Taichung, Taiwan
| | - Pin-I Fu
- ∥ Department of Medicine, China Medical University, Taichung, Taiwan
| | - I-Hua Wei
- § Department of Anatomy, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Boeker H, Kraehenmann R. Neuropsychodynamic Approach to Depression: Integrating Resting State Dysfunctions of the Brain and Disturbed Self-Related Processes. Front Hum Neurosci 2018; 12:247. [PMID: 29997487 PMCID: PMC6030717 DOI: 10.3389/fnhum.2018.00247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
A mechanism-based approach was developed focusing on the psychodynamic, psychological and neuronal mechanisms in healthy and depressed persons. In this integrative concept of depression, the self is a core dimension in depression. It is attributed to negative emotions (e.g., failure, guilt). The increased inward focus in depression is connected with a decreased environmental focus. The development of neuropsychodynamic hypotheses of the altered self-reference is based on the investigation of the emotional-cognitive interaction in depressed patients. It may be hypothesized that the increased negative self-attributions—as typical characteristics of an increased self-focus in depression—may result from altered neuronal activity in subcortical-cortical midline structures in the brain, especially from hyperactivity in the cortical-subcortical midline regions and hypoactivity in the lateral regions. The increased resting state activity in depression is especially associated with an increased resting state activity in the default mode network (DMN) and a dysbalance between DMN and executive network (EN) activity. Possible therapeutic consequences of the neuropsychodynamic approach to depression involve the necessary emotional attunement in psychotherapy of depressed patients and the adequate timing of therapeutic interventions. The hypotheses which have been developed in the context of the neuropsychodynamic model of depression may be used for more specific psychotherapeutic interventions, aiming at specific mechanisms of compensation and defence, which are related to the increased resting state activity and the disturbed resting state-stimulus-interaction.
Collapse
Affiliation(s)
- Heinz Boeker
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland.,Center for Psychiatry, Psychotherapy, and Psychoanalysis, Psychiatric University Hospital Zurich, Zürich, Switzerland
| | - Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| |
Collapse
|
43
|
Niciu MJ, Shovestul BJ, Jaso BA, Farmer C, Luckenbaugh DA, Brutsche NE, Park LT, Ballard ED, Zarate CA. Features of dissociation differentially predict antidepressant response to ketamine in treatment-resistant depression. J Affect Disord 2018; 232:310-315. [PMID: 29501990 PMCID: PMC5858990 DOI: 10.1016/j.jad.2018.02.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/05/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ketamine induces rapid and robust antidepressant effects, and many patients also describe dissociation, which is associated with antidepressant response. This follow-up study investigated whether antidepressant efficacy is uniquely related to dissociative symptom clusters. METHODS Treatment-resistant patients with major depressive disorder (MDD) or bipolar disorder (BD) (n = 126) drawn from three studies received a single subanesthetic (0.5 mg/kg) ketamine infusion. Dissociative effects were measured using the Clinician-Administered Dissociative States Scale (CADSS). Antidepressant response was measured using the 17-item Hamilton Depression Rating Scale (HAM-D). A confirmatory factor analysis established the validity of CADSS subscales (derealization, depersonalization, amnesia), and a general linear model with repeated measures was fitted to test whether subscale scores were associated with antidepressant response. RESULTS Factor validity was supported, with a root mean square error of approximation of .06, a comparative fit index of .97, and a Tucker-Lewis index of .96. Across all studies and timepoints, the depersonalization subscale was positively related to HAM-D percent change. A significant effect of derealization on HAM-D percent change was observed at one timepoint (Day 7) in one study. The amnesia subscale was unrelated to HAM-D percent change. LIMITATIONS Possible inadequate blinding; combined MDD/BD datasets might have underrepresented ketamine's antidepressant efficacy; the possibility of Type I errors in secondary analyses. CONCLUSIONS From a psychometric perspective, researchers may elect to administer only the CADSS depersonalization subscale, given that it was most closely related to antidepressant response. From a neurobiological perspective, mechanistic similarities may exist between ketamine-induced depersonalization and antidepressant response, although off-target effects cannot be excluded.
Collapse
Affiliation(s)
- Mark J Niciu
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - Bridget J Shovestul
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - Brittany A Jaso
- University of Miami, Department of Psychology, P.O. Box 248185-0751, Coral Gables, FL 33124-0751, USA
| | - Cristan Farmer
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - David A Luckenbaugh
- National Institutes of Health, Office of Equity, Diversity and Inclusion, 2115 E Jefferson St., Rockville, MD 20892, USA
| | - Nancy E Brutsche
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - Lawrence T Park
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - Elizabeth D Ballard
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA
| | - Carlos A Zarate
- National Institutes of Health, National Institute of Mental Health, Experimental Therapeutics and Pathophysiology Branch, Building 10/CRC, 10 Center Dr., Unit 7 Southeast, Room 7-5342, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Endocannabinoid control of glutamate NMDA receptors: the therapeutic potential and consequences of dysfunction. Oncotarget 2018; 7:55840-55862. [PMID: 27323834 PMCID: PMC5342457 DOI: 10.18632/oncotarget.10095] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/06/2016] [Indexed: 01/04/2023] Open
Abstract
Glutamate is probably the most important excitatory neurotransmitter in the brain. The glutamate N-methyl-D-aspartate receptor (NMDAR) is a calcium-gated channel that coordinates with G protein-coupled receptors (GPCRs) to establish the efficiency of the synaptic transmission. Cross-regulation between these receptors requires the concerted activity of the histidine triad nucleotide-binding protein 1 (HINT1) and of the sigma receptor type 1 (σ1R). Essential brain functions like learning, memory formation and consolidation, mood and behavioral responses to exogenous stimuli depend on the activity of NMDARs. In this biological context, endocannabinoids are released to retain NMDAR activity within physiological limits. The efficacy of such control depends on HINT1/σ1R assisting in the physical coupling between cannabinoid type 1 receptors (CB1Rs) and NMDARs to dampen their activity. Subsequently, the calcium-regulated HINT1/σ1R protein tandem uncouples CB1Rs to prevent NMDAR hypofunction. Thus, early recruitment or a disproportionate cannabinoid induced response can bring about excess dampening of NMDAR activity, impeding its adequate integration with GPCR signaling. Alternatively, this control circuit can apparently be overridden in situations where bursts of NMDAR overactivity provoke convulsive syndromes. In this review we will discuss the possible relevance of the HINT1/σ1R tandem and its use by endocannabinoids to diminish NMDAR activity and their implications in psychosis/schizophrenia, as well as in NMDAR-mediated convulsive episodes.
Collapse
|
45
|
Fantegrossi WE, Wilson CD, Berquist MD. Pro-psychotic effects of synthetic cannabinoids: interactions with central dopamine, serotonin, and glutamate systems. Drug Metab Rev 2018; 50:65-73. [PMID: 29385930 PMCID: PMC6419500 DOI: 10.1080/03602532.2018.1428343] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An association between marijuana use and schizophrenia has been noted for decades, and the recent emergence of high-efficacy synthetic cannabinoids (SCBs) as drugs of abuse has lead to a growing number of clinical reports of persistent psychotic effects in users of these substances. The mechanisms underlying SCB-elicited pro-psychotic effects is unknown, but given the ubiquitous neuromodulatory functions of the endocannabinoid system, it seems likely that agonist actions at cannabinoid type-1 receptors (CB1Rs) might modulate the functions of other neurotransmitter systems known to be involved in schizophrenia. The present review surveys what is currently known about the interactions of CB1Rs with dopamine, serotonin, and glutamate systems, because all three of those neurotransmitters are well-established in the pathophysiology of schizophrenia and psychosis. Identification of molecular mechanisms underlying the pro-psychotic effects of SCB drugs of abuse may establish certain classes of these substances as particularly dangerous, guiding regulations to control availability of these drugs. Likewise, an understanding of the pharmacological interactions which lead to schizophrenia and psychosis subsequent to SCB exposure might guide the development of novel therapies to treat afflicted users.
Collapse
Affiliation(s)
- William E Fantegrossi
- a Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences, College of Medicine , Little Rock , AR , USA
| | - Catheryn D Wilson
- a Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences, College of Medicine , Little Rock , AR , USA
| | - Michael D Berquist
- a Department of Pharmacology and Toxicology , University of Arkansas for Medical Sciences, College of Medicine , Little Rock , AR , USA
| |
Collapse
|
46
|
Duncan WC, Slonena EE, Hejazi NS, Brutsche N, Park LT, Henter ID, Ballard ED, Zarate CA. Are 24-hour motor activity patterns associated with continued rapid response to ketamine? Neuropsychiatr Dis Treat 2018; 14:2739-2748. [PMID: 30410340 PMCID: PMC6200084 DOI: 10.2147/ndt.s172089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE This study examined the links between 24-hour activity patterns (specifically, amplitude and timing of wrist activity) and the persisting qualities of clinical antidepressant response to the glutamatergic modulator ketamine. METHODS Twenty-four-hour activity patterns were compared across 5 days of 24-hour activity rhythms in patients with major depressive disorder who displayed either a brief antidepressant response (24-48 hours), a continued antidepressant response (>72 hours), or no antidepressant response to ketamine. These postinfusion-response profiles were then used retrospectively to examine cohort-specific fitted parameters at baseline, postinfusion day 1 (D1), and postinfusion D3. RESULTS Relative to the nonresponders, the cohort experiencing a brief antidepressant response had blunted 24-hour amplitude that extended from baseline through D3 and postketamine phase advance of activity on D1 that reverted to baseline on D3. Relative to the nonresponders, the cohort experiencing a continued antidepressant response to ketamine had phase-advanced activity at both baseline and D1, as well as increased amplitude on D1 and D3. CONCLUSION Taken together, the results suggest that the time course of antidepressant response to ketamine is influenced by underlying biological differences in motor activity timekeeping. These differences may provide clues that link durable mood response with the molecular machinery of the circadian system, thus leading to more effective interventions. In addition, biomarkers of preinfusion motor activity (eg, amplitude, timing) may be useful for recommending future individualized treatment interventions, to the extent that they help identify patients who may relapse quickly after treatment.
Collapse
Affiliation(s)
- Wallace C Duncan
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Elizabeth E Slonena
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Nadia S Hejazi
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Nancy Brutsche
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Elizabeth D Ballard
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA,
| |
Collapse
|
47
|
Taylor JH, Landeros-Weisenberger A, Coughlin C, Mulqueen J, Johnson JA, Gabriel D, Reed MO, Jakubovski E, Bloch MH. Ketamine for Social Anxiety Disorder: A Randomized, Placebo-Controlled Crossover Trial. Neuropsychopharmacology 2018; 43:325-333. [PMID: 28849779 PMCID: PMC5729569 DOI: 10.1038/npp.2017.194] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Abstract
Many patients with social anxiety disorder (SAD) experience inadequate symptom relief from available treatments. Ketamine is a potent N-methyl-D-aspartate receptor antagonist with a potentially novel mechanism of action for the treatment of anxiety disorders. Therefore, we conducted a double-blind, randomized, placebo-controlled crossover trial in 18 adults with DSM-5 SAD and compared the effects between intravenous ketamine (0.5 mg/kg over 40 min) and placebo (normal saline) on social phobia symptoms. Ketamine and placebo infusions were administered in a random order with a 28-day washout period between infusions. Ratings of anxiety were assessed 3-h post-infusion and followed for 14 days. We used linear mixed models to assess the impact of ketamine and placebo on anxiety symptoms. Outcomes were blinded ratings on the Liebowitz Social Anxiety Scale (LSAS) and self-reported anxiety on a visual analog scale (VAS-Anxiety). We also used the Wilcoxon signed-rank test to compare the proportion of treatment responders. Based on prior studies, we defined response as a greater than 35% LSAS reduction and 50% VAS-Anxiety reduction. We found ketamine resulted in a significantly greater reduction in anxiety relative to placebo on the LSAS (Time × Treatment: F9,115=2.6, p=0.01) but not the VAS-Anxiety (Time × Treatment: F10,141=0.4, p=0.95). Participants were significantly more likely to exhibit a treatment response after ketamine infusion relative to placebo in the first 2 weeks following infusion measured on the LSAS (33.33% response ketamine vs 0% response placebo, Wilcoxon signed-rank test z=2.24, p=0.025) and VAS (88.89% response ketamine vs 52.94% response placebo, Wilcoxon signed-rank test z=2.12, p=0.034). In conclusion, this proof-of-concept trial provides initial evidence that ketamine may be effective in reducing anxiety.
Collapse
Affiliation(s)
- Jerome H Taylor
- Child Study Center, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA,Department of Psychiatry, University of Pennsylvania, Neuropsychiatry Section, 3400 Spruce Street, Gates Pavilion 10th Floor, Philadelphia, PA 19104, USA, Tel: +1 267 536 9405, Fax: +1 203 907 2727, E-mail:
| | | | | | | | | | | | - Margot O Reed
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Michael H Bloch
- Child Study Center, Yale University, New Haven, CT, USA,Department of Psychiatry, Yale University, New Haven, CT, USA
| |
Collapse
|
48
|
Zhao L, Zhang Z, Zhou M, Gou X, Zeng Y, Song J, Ma W, Xu Y. A urinary metabolomics (GC-MS) strategy to evaluate the antidepressant-like effect of chlorogenic acid in adrenocorticotropic hormone-treated rats. RSC Adv 2018; 8:9141-9151. [PMID: 35541857 PMCID: PMC9078588 DOI: 10.1039/c8ra00074c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic recurring illness that seriously affects human health. Chlorogenic acid (CGA), an important polyphenol extracted from Eucommia ulmoides Oliver bark, has been reported to have anti-depression, neuroprotection, memory improvement and other pharmacological effects. However, little is known about the underlying mechanisms of CGA on the treatment of depression. Here, we investigated the antidepressant-like effects of CGA on an adrenocorticotropic hormone (ACTH)-treated rat model. Thirty-two male Wistar rats were randomly divided into four groups: normal diet group (N), ACTH-treated model group (M), memantine positive control group (M + Mem) and CGA intervened group (M + CGA). Sucrose preference tests (SPTs) and open-field tests (OFTs) were performed to evaluate depressive-like behaviors. Memantine (30 mg kg−1) and CGA (500 mg kg−1) administration dramatically increased hedonic behaviors of the rats in SPT. The scores of crossing and rearing were significantly increased in the M + Mem group and M + CGA group. These results of the behaviour tests might be suggestive of antidepressant-like effects. Moreover, memantine and CGA reversed the levels of serum 5-hydroxytryptamine (5-HT), ACTH, corticotropin-releasing hormone (CRH), and dopamine (DA) that were altered in ACTH-treated rats. Based on a GC-MS metabolomic approach, significant differences in the metabolic profile were observed in ACTH-treated rats compared with the control group, as well as the M + CGA group and M + Mem group compared with the ACTH-treated group. A total of 19 metabolites were identified for the discrimination of normal rats and ACTH-treated rats, and 12 out of 19 differential metabolites were reversed with CGA intervention. Combined with pattern recognition and bioinformatics, nine perturbed metabolic pathways, including energy metabolism, neurotransmitter metabolism, and amino acid metabolism, were identified based on these metabolites. These integrative studies might give a holistic insight into the pathophysiological mechanism of the ACTH-treated depressive rat model, and also showed that CGA has antidepressant-like activities in ACTH-treated rats, providing an important drug candidate for the prevention and treatment of tricyclic anti-depressant treatment-resistant depression. Chlorogenic acid showed antidepressant-like activity in chronic ACTH-treated rats, providing a potential drug candidate for prevention and treatment of tricyclic antidepressant treatment-resistant depression. Related metabolic pathways were shown.![]()
Collapse
Affiliation(s)
- Le Zhao
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Zixu Zhang
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- College of Chinese Pharmacy
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
- Key Laboratory of Medicinal Animal and Plant Resources in Qinghai-Tibet Plateau
| | - Xiaojun Gou
- Central Laboratory
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201999
- China
| | - Yang Zeng
- College of Life Science
- Qinghai Normal University
- Xining
- China
- Key Laboratory of Medicinal Animal and Plant Resources in Qinghai-Tibet Plateau
| | - Jing Song
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Weini Ma
- Center for Chinese Medicine Therapy and Systems Biology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| | - Ying Xu
- Department of Physiology
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- China
| |
Collapse
|
49
|
Lian YN, Lu Q, Chang JL, Zhang Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int J Neurosci 2017; 128:283-290. [DOI: 10.1080/00207454.2017.1387112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Na Lian
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jin-Long Chang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
50
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|