1
|
Murrell-Smith ZN, Alabdullah MM, Zhang F, Jennings LM, Astill SL, Liu A. Knee biomechanics during rehabilitation exercise in individuals with and without anterior cruciate ligament reconstruction: A systematic review. Clin Biomech (Bristol, Avon) 2025; 126:106559. [PMID: 40393328 DOI: 10.1016/j.clinbiomech.2025.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/09/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
BACKGROUND Post-traumatic osteoarthritis rates are similar in individuals with anterior cruciate ligament injury who receive surgical reconstruction and those who opt for non-surgical management, indicating continuing changes in knee biomechanics post-surgery. There is no gold standard rehabilitation strategy for the post-reconstruction patient, however investigating the biomechanics of the knee during rehabilitation exercises will drive the development of more efficacious rehabilitation paradigms. This systematic review aimed to synthesise biomechanical data from healthy participants and participants with anterior cruciate ligament reconstruction during rehabilitation exercises to provide insights into knee biomechanical changes induced by injury and surgery. METHODS A systematic literature search was conducted in Web of Science, MEDLINE, EMBASE, PubMed, CINAHL and Scopus, using key terms relating to anterior cruciate ligament reconstruction, lower limb rehabilitation exercises, and knee biomechanics. 34 articles matching the inclusion criteria were identified following abstract and full text screening. FINDINGS The included studies reported data on 607 healthy participants and 175 participants with an anterior cruciate ligament reconstruction across five different exercises. Peak knee flexion angle was the most reported variable, whereas tibial anterior translation and adduction biomechanics were reported infrequently, despite their relevance to the ligament injury status. INTERPRETATION There is limited biomechanical data of rehabilitation exercise in the knee, with the exception of knee flexion angles. Furthermore, variations in data collection and reporting methods across studies cause difficulties in systematic analysis of results and demonstrate inconsistent kinematic results between articles.
Collapse
Affiliation(s)
- Zhané N Murrell-Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK; Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Meernah Mohammed Alabdullah
- School of Electronic and Electrical Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK; Biomedical Engineering, Imam Abdurahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fengtao Zhang
- Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Louise M Jennings
- Institute of Medical and Biological Engineering, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Sarah L Astill
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Aiqin Liu
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Fortin AG, Naguib N, Secor EJ, Reesink HL, Wiesner UB, Bonassar LJ. Multiscale characterization of ultrasmall fluorescent core-shell silica nanoparticles in cartilage and synovial joints reveals rapid cartilage penetration and sustained joint residence. Acta Biomater 2025:S1742-7061(25)00356-3. [PMID: 40349899 DOI: 10.1016/j.actbio.2025.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/15/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Development of non-surgical disease-modifying interventions for knee osteoarthritis (OA) remains a persistent challenge despite decades of efforts. Therapeutic transport to cartilage in synovial joints is hindered by the dense, negatively charged cartilage matrix, and further challenged by rapid synovial fluid clearance within hours to days. In this study, we investigated ultrasmall (dh ∼ 6 nm) fluorescent core-shell silica nanoparticles (Cornell Prime Dots, or C' Dots), which have received FDA-investigational new drug approval for multiple human clinical trials in oncology, as cartilage-penetrating delivery vehicles for applications in knee OA. Across multiple length and time scales, we examined the relationship between C' Dot tissue and cellular transport kinetics and whole joint clearance. In vitro, C' Dots penetrated cartilage explants within 30 min (D ∼ 2 µm2/s). C' Dots were internalized by chondrocytes within 24 h and were retained in vesicular structures for up to 5 days. In vivo, C' Dot clearance following intra-articular knee injection was well described by two distinct time constants (τ1 ∼ 18 hours, τ2 ∼ 3 weeks), consistent with mechanisms of synovial- and tissue-mediated clearance. C' Dot clearance rates were not affected by surgically-induced cruciate ligament transection. Notably, C' Dots remained in the knee longer than 3 months after a single injection and were localized to cartilage, meniscus, ligaments, and synovium. Collectively, these results illustrate the potential of C' Dots for long-term delivery of conjugated therapeutics in the knee. STATEMENT OF SIGNIFICANCE: This research explores a cartilage-penetrating platform nanotechnology for applications in drug delivery for arthritis. The properties inherent to this particle system enabled rapid tissue penetration, chondrocyte internalization and retention, and persistence in rat knees for longer than 3 months after a single injection. The study demonstrates that ultrasmall nanoparticle delivery platforms can use tissue localization to partially avoid clearance by the synovium, while simultaneously enabling chondrocyte targeting. When paired with a therapeutic, C' Dots may be a versatile platform in early-stage OA and PTOA to protect cartilage from further degeneration. These findings inform future design and engineering of biocompatible drug delivery vehicles for other applications where access to dense tissues is needed.
Collapse
Affiliation(s)
- Aiyana G Fortin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nada Naguib
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Erica J Secor
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Heidi L Reesink
- College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Ulrich B Wiesner
- Materials Science and Engineering, Cornell University, Ithaca, NY, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
3
|
Gopinatth V, Tartibi S, Smith MV, Matava MJ, Brophy RH, Knapik DM. Long-term Results of Bone-Patellar Tendon-Bone Versus Hamstring Tendon Autograft for Primary Anterior Cruciate Ligament Reconstruction: A Meta-analysis of Randomized Controlled Trials. Orthop J Sports Med 2025; 13:23259671251330307. [PMID: 40297041 PMCID: PMC12034979 DOI: 10.1177/23259671251330307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 04/30/2025] Open
Abstract
Background Bone-patellar tendon-bone (BTB) and hamstring tendon (HT) autografts are the most commonly utilized grafts for primary anterior cruciate ligament reconstruction (ACLR). While previous studies have compared outcomes using BTB and HT grafts for ACLR at short- and mid-term follow-ups, outcomes at long-term follow-ups remain unclear. Purpose To perform a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating BTB versus HT autografts for primary ACLR at a minimum 10-year follow-up. Study Design Systematic review; Level of evidence, 2. Methods A systematic review was performed in accordance with the 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by querying 5 databases from inception through May 2024 to identify level 1 and 2 RCTs evaluating outcomes of BTB versus HT autografts for primary ACLR at a minimum 10-year follow-up. A meta-analysis was performed using random-effects models with risk ratios (RRs) for discrete outcomes and mean differences (MDs) for continuous outcomes. Results Six RCTs-consisting of 495 (BTB, n = 235; HT, n = 260) patients-were identified. The mean age at the follow-up was 41.3 ± 7.4 years, with men comprising 64% (n = 316/495) of patients. The mean final follow-up time was 14.6 ± 0.7 years (range, 10-17 years). No significant differences were observed in ACL graft rupture or revision rates (RR, 0.88; P = .70), contralateral ACL rupture rates (RR, 1.27; P = .46), Lysholm scores (MD, -1.27; P = .45), Tegner scores (MD, -0.01; P = .97), extension deficits (RR, 2.67; P = .23), or KT-1000 side-to-side differences (MD, -0.56; P = .10). There was a significantly greater risk of osteoarthritis (OA) progression in ACLR knees compared with the contralateral knee (RR, 3.64; P < .0001); however, there was no difference in OA progression between BTB and HT groups (RR, 1.01; P = .91). Conclusion BTB and HT autografts for primary ACLR demonstrate similar outcomes and rates of OA progression at long-term follow-ups. Knees undergoing ACLR have a greater risk of OA progression compared with healthy contralateral knees.
Collapse
Affiliation(s)
- Varun Gopinatth
- Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Sina Tartibi
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthew V. Smith
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthew J. Matava
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Derrick M. Knapik
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Wainwright JD, Gay SS, Nguyen A, Weiss WM, Wenke JC. Corticosteroid Injection up to 8 Weeks Before Anterior Cruciate Ligament Reconstruction Doubles the Incidence of Postoperative Infection. Arthroscopy 2025:S0749-8063(25)00148-3. [PMID: 40056948 DOI: 10.1016/j.arthro.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/04/2025] [Accepted: 02/13/2025] [Indexed: 03/24/2025]
Abstract
PURPOSE To determine whether at least 1 corticosteroid injection (CSI) within 8 weeks before anterior cruciate ligament reconstruction (ACLR) increases the incidence of postoperative infection. METHODS A large globally federated research database (TriNetX) containing more than 200 million patient records was queried retrospectively for patients undergoing ACLR between October 1, 2010, and January 1, 2024, using diagnosis and procedure codes. A cohort of patients receiving CSI up to 8 weeks before ACLR were compared with a cohort of patients who did not receive a CSI before ACLR. One-to-one propensity score matching was performed on the basis of preoperative characteristics and comorbid diagnoses. Outcomes examined were incidence of postoperative infection at 90 days and 180 days. Postoperative infection was defined as a formal infection diagnosis or need for a washout surgery. Comparisons were performed using Pearson χ2 tests. RESULTS After matching, 2,439 patients were analyzed in each cohort with matched preoperative characteristics and comorbid diagnoses. Patients receiving a CSI in the 8 weeks before ACLR had a 90-day infection rate of 1.2% (30/2,439) compared with a control group infection rate of 0.6% (14/2,439) represented as an odds ratio of 2.1 (95% confidence interval 1.1-4.0, P = .015). After 180 days, the infection rates grew to 1.3% (33/2,439) for patients receiving CSI and 0.6% (15/2,439) for the control group with an odds ratio of 2.2 (95% confidence interval 1.2-4.1, P = .009). CONCLUSIONS CSIs given within 8 weeks of ACL-R approximately double the incidence of postoperative infection. LEVEL OF EVIDENCE Level III, retrospective cohort study.
Collapse
Affiliation(s)
- Jared D Wainwright
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, U.S.A.; Shriners Children's Texas, Galveston, Texas, U.S.A
| | - Samuel S Gay
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, U.S.A.; Shriners Children's Texas, Galveston, Texas, U.S.A..
| | - Adam Nguyen
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, U.S.A.; Shriners Children's Texas, Galveston, Texas, U.S.A
| | - William M Weiss
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, U.S.A
| | - Joseph C Wenke
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, Texas, U.S.A.; Shriners Children's Texas, Galveston, Texas, U.S.A
| |
Collapse
|
5
|
Stańczak M, Swinnen B, Kacprzak B, Pacek A, Surmacz J. Neurophysiology of ACL Injury. Orthop Rev (Pavia) 2025; 17:129173. [PMID: 39980496 PMCID: PMC11842161 DOI: 10.52965/001c.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/06/2024] [Indexed: 02/22/2025] Open
Abstract
The neurophysiology of ACL injury extends beyond the mechanical rupture of the ligament to encompass profound alterations in the central and peripheral nervous systems, impacting sensorimotor integration and neuromuscular control. The ACL, densely populated with mechanoreceptors, plays a critical role in joint proprioception, dynamically regulating knee stability through complex neural circuits that connect to the spinal cord and brain. When disrupted by injury, these neural pathways contribute to delayed muscular activation, altered motor planning, and compromised joint stability. Such neuromechanical deficits increase the likelihood of reinjury and highlight the need for comprehensive neuroplastic rehabilitation. Neuroplastic therapy, employing tools like external focus strategies, stroboscopic glasses, smartboards, and virtual reality, aims to restore and enhance neural connectivity, sensory integration, and motor coordination. These advanced tools target distinct phases of motor learning, promoting automaticity and resilience in movement patterns. By integrating visual-cognitive, proprioceptive, and reflexive controls, this therapeutic approach not only accelerates recovery but also optimizes performance and reduces the risk of re-injury, representing a paradigm shift in ACL rehabilitation.
Collapse
Affiliation(s)
- Mikołaj Stańczak
- AECC University College, Bournemouth, United Kingdom
- Rehab Performance, Lublin, Poland
| | - Bram Swinnen
- Integrated Performance Training, Hasselt, Belgium
| | | | - Artur Pacek
- University of Zielona Góra, Zielona Góra, Poland
| | | |
Collapse
|
6
|
Dhaniya G, Mulay V, Kothari P, Sardar A, Chutani K, Parul, Verma S, Shukla S, Hingorani L, Trivedi R. Enrichment of the major bioavailable molecule glucuronated flavone TMMG in Spinacia oleracea ameliorates cartilage degeneration at a lower dose in ACLT-induced osteoarthritis. Food Funct 2025; 16:1469-1485. [PMID: 39898820 DOI: 10.1039/d4fo02128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Spinacia oleracea extract (SOE) showed a protective effect on cartilage against osteoarthritis, with one of its compounds, 5,3',4'-trihydroxy-3-methoxy-6,7-methylenedioxy-flavone4'-glucuronide (TMMG), identified as a major bioavailable molecule with chondroprotective properties. Our recent study aimed to assess the potential of Spinacia oleracea enriched extract (SOEE) containing TMMG in alleviating osteoarthritis symptoms, facilitating easier determination of the human equivalent dose. Using an animal model simulating post-traumatic osteoarthritis, rats underwent anterior cruciate ligament transection (ACLT), with untreated animals serving as controls. Four weeks post-surgery, ACLT rats were randomly assigned for treatment with SOEE orally administered at doses of 10 and 20 mg kg-1 d-1 for four weeks. A positive control group was administered with crude SOE (125 mg kg-1 d-1; ∼1% TMMG). Two days prior to the termination of the animal study, behavioural analysis was done through open field activity and rotarod tests to assess the locomotive activity. Furthermore, data analysis was done through HPLC (high-performance liquid chromatography). Additional investigations corroborated chondroprotective effects via gross morphology of the knee joint, histological assessment of tibial articular cartilage, serum biochemical analysis of cartilage degradation markers, and micro-CT (micro-computed tomography). In conclusion, SOEE at 10 mg kg-1 d-1 demonstrated superior chondroprotective efficacy when compared to its 20 mg kg-1 d-1 dosage as well as SOE alone. Further investigation could lead to establishing a human equivalent dose of 1.522 mg kg-1 for osteoarthritis treatment.
Collapse
Affiliation(s)
- Geeta Dhaniya
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| | - Vallabh Mulay
- Pharmanza Herbal Pvt Ltd, Anand, Gujarat, 388435, India
| | - Priyanka Kothari
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anirban Sardar
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Chutani
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parul
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shikha Verma
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lal Hingorani
- Pharmanza Herbal Pvt Ltd, Anand, Gujarat, 388435, India
| | - Ritu Trivedi
- Endocrinology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Pringle S, D’Août K. Gait Asymmetry and Post-Traumatic Osteoarthritis Following Anterior Cruciate Ligament Rupture: A Preliminary Study. BIOLOGY 2025; 14:208. [PMID: 40001975 PMCID: PMC11851828 DOI: 10.3390/biology14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Knee post-traumatic osteoarthritis (PTOA) often develops in younger populations following anterior cruciate ligament (ACL) rupture, accounting for 12% of all symptomatic osteoarthritis (OA). The current literature implicates gait asymmetry in late-stage knee OA progression; however, early-knee PTOA development involvement is ill defined. This study explored gait asymmetry involvement in early-stage knee PTOA following ACL ruptures. Gait asymmetry, measured as asymmetry in duty factor (relative contact time), and joint loading data were collected, using infrared-camera motion capture and Kistler force plates for participants exhibiting either historical ACL ruptures (ACL+; n = 4) or no previous joint trauma (ACL-; n = 11). Joint loading measures included external knee adduction moment (EKAM) and external knee flexion moment (KFM), early (peak 1; EKAMp1 and KFMp1) and late (peak 2; EKAMp2 and KFMp2), stance peaks (Nm/kg), and respective time integrals (Nm·ms/kg; iEKAMp1, iEKAMp2, iKFMp1, and iKFMp2). ACL+ exhibited greater asymmetrical duty factor (78% difference) and greater joint load differences: EKAMp1 (26%), EKAMp2 (49%), KFMp1 (37%), iKFMp1 (44%), and iKFMp2 (60%). Significant relationships were found between duty factor asymmetry and both KFMp2 (R2 = 0.665) and iKFMp2 (R2 = 0.504). These preliminary data suggest gait asymmetry-induced joint loading may contribute to knee PTOA progression, but further research with increased sample sizes and the quantitative assessment of cartilage status is required.
Collapse
Affiliation(s)
| | - Kristiaan D’Août
- Department of Musculoskeletal & Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK;
| |
Collapse
|
8
|
Crutchfield CR, Lowenstein NA, Leite CB, Lattermann C, Matzkin EG. Evaluating Donor-Recipient Sex Mismatch in Anterior Cruciate Ligament Reconstruction With Allograft: Outcomes at 2 Years Postoperatively. Orthop J Sports Med 2025; 13:23259671241307559. [PMID: 39926588 PMCID: PMC11806466 DOI: 10.1177/23259671241307559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/17/2024] [Indexed: 02/11/2025] Open
Abstract
Background Female patients tend to suffer a greater risk of reinjury and worse patient-reported outcome measures (PROMs) after anterior cruciate ligament reconstruction (ACLR) than male patients, regardless of the graft type used. Purpose/Hypothesis This study explored the role of donor-recipient sex mismatching to help explain these sex-based disparities in outcomes after ACLR with an allograft. The hypothesis was that allograft donor-recipient sex mismatch would adversely affect surgical outcomes at a 2-year follow-up, with male-to-female graft donations yielding the lowest rates of success. Study Design Cohort study; Level of evidence, 3. Methods Patients who underwent primary ACLR with an allograft between 2012 and 2022 were eligible for recruitment. The following PROMs were collected from baseline through a 2-year follow-up: Knee injury and Osteoarthritis Outcome Score subscales, Marx activity rating scale, visual analog scale for pain, and Veterans RAND 12-Item Health Survey. Demographic and graft-specific variables were also collected. Sex-matched cases were compared with sex-mismatched cases and an identical subgroup analysis was performed for female patients only. Results Of the 112 included patients (N = 70 women), 59 (52.7%) were sex mismatched. The mean patient age was 40.7 ± 10.9 years, and the mean body mass index was 26.8 ± 4.7 kg/m2. Most reconstructions (89.3%) used a semitendinosus tendon graft, with a mean implanted graft diameter of 9.7 ± 0.5 mm (quadrupled). Of the mismatched cases, 96.6% involved a male allograft donated to female recipients. Overall, the matched group demonstrated higher PROM scores across all time points compared with the mismatched group, although statistical significance was only reached for the Marx score at baseline (P = .012) and 1 year postoperatively (P = .022). In the female-only subgroup analysis, a larger graft diameter was measured in the mismatched cases (receiving male allografts) compared with the matched female cases (9.7 ± 0.6 vs 9.2 ± 0.4 mm, respectively; P = .002). Moreover, the mismatched cases tended to report better postoperative PROM scores, although this trend was not statistically significant. Conclusion The study findings indicated that male donors provided larger allografts than female donors, and that donor-recipient allograft sex matching did not contribute significantly to ACLR outcomes. Other factors may be more important to outcomes in female patients.
Collapse
Affiliation(s)
- Connor R. Crutchfield
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Natalie A. Lowenstein
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chilan B.G. Leite
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth G. Matzkin
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Cherelstein RE, Kuenze C, Harkey MS, Walaszek MC, Grozier C, Brumfield ER, Lewis JN, Hughes GA, Chang ES. Evaluating Gait with Force Sensing Insoles 6 Months after Anterior Cruciate Ligament Reconstruction: An Autograft Comparison. Med Sci Sports Exerc 2025; 57:210-216. [PMID: 39283230 DOI: 10.1249/mss.0000000000003554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Aberrant knee mechanics during gait 6 months after anterior cruciate ligament reconstruction (ACLR) are associated with markers of knee cartilage degeneration. The purpose of this study was to compare loading during walking gait in quadriceps tendon, bone-patellar tendon-bone (BPTB), and hamstring tendon autograft patients 6 months post-ACLR using loadsol single sensor insoles, and to evaluate associations between loading and patient-reported outcomes. METHODS Seventy-two patients (13 to 40 yr) who underwent unilateral, primary ACLR with BPTB, quadriceps tendon, or hamstring tendon autograft completed treadmill gait assessment, the International Knee Documentation Committee (IKDC) survey, and the ACL-Return to Sport after Injury (ACL-RSI) survey 6 ± 1 months post-ACLR. Ground reaction forces were collected using loadsols. Limb symmetry indices (LSI) for peak impact force (PIF), loading response instantaneous loading rate (ILR), and loading response average loading rate (ALR) were compared between groups using separate analyses of covariance. Survey scores were compared between groups using one-way ANOVAs. The relationships between IKDC, ACL-RSI, and LSI were compared using Pearson's product moment correlation coefficients. RESULTS There were no significant differences between graft sources for LSI in PIF, ILR, ALR, or impulse. Patient-reported knee function was significantly different between graft source groups with the BPTB group reporting the highest IKDC scores; however, there was no significant difference between groups for ACL-RSI score. There were no significant associations between IKDC score, ACL-RSI score, and biomechanical symmetry among any of the graft source groups. CONCLUSIONS Autograft type does not influence PIF, ILR, ALR, or impulse during walking 6 months post-ACLR. Limb symmetry during gait is not strongly associated with patient-reported outcomes regardless of graft source. Loadsols appear to be a suitable tool for use in the clinical rehabilitation setting.
Collapse
Affiliation(s)
| | | | - Matthew S Harkey
- Michigan State University Department of Kinesiology, East Lansing, MI
| | | | - Corey Grozier
- Michigan State University Department of Kinesiology, East Lansing, MI
| | | | | | | | | |
Collapse
|
10
|
Cruz CA, Pruneski JA, McAllister RN, Riopelle D, Bottoni CR. Fifteen-Year Radiographic Follow-up Comparison of Early Versus Delayed ACL Reconstruction: A Retrospective Review of a Previous Prospective Randomized Clinical Trial. Orthop J Sports Med 2024; 12:23259671241298753. [PMID: 39669710 PMCID: PMC11635895 DOI: 10.1177/23259671241298753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 12/14/2024] Open
Abstract
Background Posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament injury and reconstruction (ACLR) is a prevalent cause of long-term disability. Few studies have compared the effect of ACLR timing on the development of PTOA. Purpose/Hypothesis The purpose of this study was to compare the rate of PTOA at a long-term follow-up between patients who underwent early ACLR (<21 days after injury) versus delayed ACLR (>6 weeks after injury). The authors hypothesized that patients who underwent early ACLR would have lower rates of PTOA compared with the delayed ACLR cohort. Study Design Cohort study; Level of evidence, 2. Methods The authors contacted patients from a previous prospective randomized controlled trial who were randomized to undergo either early (<21 days) or delayed (>6 weeks) ACLR with hamstring tendon autografts. Weightbearing radiographs were obtained at a minimum 15-year follow-up, and radiographic PTOA was evaluated using the Kellgren-Lawrence (K-L) classification system. The prevalence of pathologies was compared between the early and delayed groups using appropriate testing, and logistic regression was used to evaluate for associations with failure-a K-L grade of ≥2 or conversion to total knee arthroplasty (TKA). Results At a mean follow-up of 15.6 years, radiographs were obtained for 58 (28 early, 30 delayed) of the original 69 (84.1%) patients. High rates of PTOA (K-L grade ≥2) were observed in the early (82.1%) and delayed (86.7%) cohorts (P = .634). Two (7.1%) patients in the early cohort converted to TKA compared with 4 (13.3%) patients in the delayed cohort (P = .44). Surgical timing did not affect arthritis severity (P≥ .4), and no factors predicted developing radiographic PTOA in either cohort (P > .2). Increased time from injury decreased the odds of failure in the early ACLR cohort (odds ratio, 0.79; P = .041). Conclusion In this study, >80% of patients who underwent ACLR with hamstring tendon autografts had radiographic evidence of PTOA at a mean 15.6-year follow-up, with no difference in the prevalence or severity of PTOA between the early and delayed groups. In addition, 11% of patients had converted to TKA by the time of the final follow-up, and the conversion rate did not differ according to the timing of ACLR.
Collapse
Affiliation(s)
| | - James A. Pruneski
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Rebecca N. McAllister
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - David Riopelle
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, California, USA. Presented at the AOSSM Annual Meeting, Washington, District of Columbia, July 2023
| | - Craig R. Bottoni
- Department of Orthopaedic Surgery, Tripler Army Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
11
|
Yang Z, Feng Y, Zhang M, Liu Y, Xiong Y, Wang X, Shi Y, Chen B, Wang Z, Ge H, Zhan H, Shen Z, Du G. The Molecular Mechanism Investigation of HBP-A Slows Down Meniscus Hypertrophy and Mineralisation by the Damage Mechanical Model. J Cell Mol Med 2024; 28:e70271. [PMID: 39656450 PMCID: PMC11629809 DOI: 10.1111/jcmm.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
HBP-A is the main active component of a traditional Chinese medicine Huaizhen Yanggan Capsule, for the remarkable treatment of knee osteoarthritis (KOA). This study aimed to elucidate the ameliorative effect of HBP-A on meniscus hypertrophy and mineralisation in KOA and the molecular mechanism of its action. An Hartley guinea pig model of KOA that underwent anterior cruciate ligament transection (ACLT) and a model of rat primary meniscus fibrochondrocytes (PMFs) were used to investigate the ameliorative effect of HBP-A on meniscal hypertrophy and calcification and its signal transduction mechanism of action. The results show that Guinea pig's meniscus width, as well as the area of meniscus calcification and meniscus and articular cartilage injury score, were significantly reduced in the HBP-A intervention group compared to the ACLT group. The expression levels of mtrix metalloproteinase 13 (MMP13), runt-related transcription factor 2 (Runx2), Indian hedgehog (Ihh), alkaline phosphatase (ALP), and ankylosis homologue (ANKH) at the protein and gene level significantly decreased in the HBP-A intervention group compared to the ACLT group. In vitro study, apoptosis, hypertrophy, and calcification of rat PMFs after 10% stretch force were significantly improved with HBP-A intervention. Western blot and RT-qPCR showed that hypertrophy, calcification, and p38 MAPK signalling pathway-related markers of PMFs were incredibly depressed in the HBP-A intervention group compared to the 10% stretch force group. In conclusion, HBP-A can slow down meniscus hypertrophy and mineralisation induced by abnormal mechanical loading, and its mechanism of action may be through the p38-MAPK signalling pathway.
Collapse
Affiliation(s)
- Zongrui Yang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yuanyuan Feng
- Department of Medical OncologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingcai Zhang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yongming Liu
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Yizhe Xiong
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Xiang Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Ying Shi
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Bo Chen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Zhengming Wang
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Haiya Ge
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Hongsheng Zhan
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Zhibi Shen
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| | - Guoqing Du
- Shi's Center of Orthopedics and TraumatologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Traumatology & OrthopedicsShanghai Academy of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
12
|
Leite CBG, Smith R, Lavoie-Gagne OZ, Görtz S, Lattermann C. Biologic Impact of Anterior Cruciate Ligament Injury and Reconstruction. Clin Sports Med 2024; 43:501-512. [PMID: 38811124 DOI: 10.1016/j.csm.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Surgical intervention after anterior cruciate ligament (ACL) tears is typically required because of the limited healing capacity of the ACL. However, mechanical factors and the inflammatory response triggered by the injury and surgery can impact patient outcomes. This review explores key aspects of ACL injury and reconstruction biology, including the inflammatory response, limited spontaneous healing, secondary inflammation after reconstruction, and graft healing processes. Understanding these biologic mechanisms is crucial for developing new treatment strategies and enhancing patient well-being. By shedding light on these aspects, clinicians and researchers can work toward improving quality of life for individuals affected by ACL tears.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Richard Smith
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ophelie Z Lavoie-Gagne
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Simon Görtz
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Herdea A, Dragomirescu MC, Burcan V, Ulici A. Pediatric ACL Reconstruction in Children-An Evaluation of the Transphyseal Technique's Efficacy and Safety. CHILDREN (BASEL, SWITZERLAND) 2024; 11:545. [PMID: 38790540 PMCID: PMC11119618 DOI: 10.3390/children11050545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Injuries of the anterior cruciate ligament (ACL) are commonly found in the general population, both among adult and pediatric patients, and their incidence has been increasing in recent years. Most of the late literature agrees that surgical reconstruction of the ACL is effective in improving long-term outcomes in pediatric patients, while others in the past have pleaded for non-surgical management. PURPOSE/HYPOTHESIS Our study aims to verify if ACL reconstruction (ACLR) using transphyseal technique in skeletally immature patients will provide angular deviations or growth restrictions. STUDY DESIGN Retrospective cohort study; Level of evidence 4. METHODS We perfomed a retrospective study to verify if transphyseal ACLR in children with less than or equal to 2 years of remaining growth leads to either limb length discrepancies or axis deviations. RESULTS Most patients who were treated using transphyseal technique showed significant improvements in their functional scores. There were statistically significant differences in lateral distal femoral angles (LDFA) and medial proximal tibial angles (MPTA), with no clinical impact. There was no significant limb length discrepancy (LLD) during the 2-year follow-up. CONCLUSIONS Transphyseal ACLR is safe among children who have less than or equal to 2 years of remaining growth and brings no risk of axis deviations or limb length discrepancy.
Collapse
Affiliation(s)
- Alexandru Herdea
- 11th Department of Pediatric Orthopedics, “Carol Davila” University of Medicine and Pharmacy, Bd. Eroii Sanitari Nr. 8, 050474 Bucharest, Romania;
- Pediatric Orthopedics Department, “Grigore Alexandrescu” Children’s Emergency Hospital, 011743 Bucharest, Romania; (M.-C.D.); (V.B.)
| | - Mihai-Codrut Dragomirescu
- Pediatric Orthopedics Department, “Grigore Alexandrescu” Children’s Emergency Hospital, 011743 Bucharest, Romania; (M.-C.D.); (V.B.)
| | - Valentin Burcan
- Pediatric Orthopedics Department, “Grigore Alexandrescu” Children’s Emergency Hospital, 011743 Bucharest, Romania; (M.-C.D.); (V.B.)
| | - Alexandru Ulici
- 11th Department of Pediatric Orthopedics, “Carol Davila” University of Medicine and Pharmacy, Bd. Eroii Sanitari Nr. 8, 050474 Bucharest, Romania;
- Pediatric Orthopedics Department, “Grigore Alexandrescu” Children’s Emergency Hospital, 011743 Bucharest, Romania; (M.-C.D.); (V.B.)
| |
Collapse
|
14
|
Lai H, Chen X, Huang W, Xie Z, Yan Y, Kang M, Zhang Y, Huang J, Zeng X. Whether Patients with Anterior Cruciate Ligament Reconstruction Walking at a Fast Speed Show more Kinematic Asymmetries? Orthop Surg 2024; 16:864-872. [PMID: 38384169 PMCID: PMC10984808 DOI: 10.1111/os.14017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Knee kinematic asymmetries after anterior cruciate ligament reconstruction (ACLR) are correlated with poor clinical outcomes, such as the progression of knee cartilage degenerations or reinjuries. Fast walking in patients with knee conditions may exacerbate knee kinematic asymmetries, but its impact on ACLR patients is uncertain. The aim of this study is to investigate if fast walking induces more knee kinematic asymmetries in unilateral ACLR patients. METHODS This cross-sectional study enrolled 55 patients with unilateral ACLR from January 2020 to July 2022. There were 48 males and seven females with an average age of 30.6 ± 6.4 years. Knee kinematic data were collected at three walking speeds: self-selected, fast (150% normal), and slow (50% normal). A 3D knee kinematic analysis system measured the data, and self-reported outcomes assessed comfort levels during walking. We used SPM1D for two-way repeated ANOVA and posthoc paired t-tests to analyze kinematic differences in groups. RESULTS In fast walking, ACLR knees exhibited more transverse kinematic asymmetries than intact knees, including greater external rotation angle (1.8°, 38%-43%; gait cycle [GC], p < 0.05 & 1.8-2.7°, 50%-61% GC, p < 0.05) and increased proximal tibial translation (2.1-2.5 mm, 2%-6% GC, p < 0.05 & 2.5-3.2 mm, 92%-96% GC, p < 0.05). Additionally, ACLR knees showed greater posterior tibial translation than intact knees (3.6-3.7 mm, 7%-8% GC, p < 0.05) during fast walking. No posterior tibial translation asymmetries were observed in slow walking compared to normal walking levels. ACLR knees have the most comfortable feelings in slow walking speed, and the most uncomfortable feelings in fast walking speed levels (29%). CONCLUSIONS Fast walking induces additional external tibial rotation and proximal and posterior tibial translation asymmetries in ACLR patients. This raises concerns about long-term safety and health during fast walking. Fast walking, not self-selected speed, is beneficial for identifying postoperative gait asymmetries in ACLR patients.
Collapse
Affiliation(s)
- Huahao Lai
- Department of Bone OncologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Xiaoling Chen
- Department of Rehabilitation MedicineHuizhou Central People's HospitalHuizhouChina
| | - Wenhan Huang
- Department of Bone OncologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Zhenyan Xie
- Department of Bone OncologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Yuan Yan
- Department of Orthopaedic SurgeryHuizhou Central People's HospitalHuizhouChina
| | - Ming Kang
- Department of Orthopaedic SurgeryHuizhou Central People's HospitalHuizhouChina
| | - Yu Zhang
- Department of Bone OncologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical UniversityGuangzhouChina
| | - Jiehua Huang
- Department of Orthopaedic SurgeryHuizhou Central People's HospitalHuizhouChina
| | - Xiaolong Zeng
- Department of OrthopaedicsGuangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
15
|
Holers VM, Frank RM, Zuscik M, Keeter C, Scheinman RI, Striebich C, Simberg D, Clay MR, Moreland LW, Banda NK. Decay-Accelerating Factor Differentially Associates With Complement-Mediated Damage in Synovium After Meniscus Tear as Compared to Anterior Cruciate Ligament Injury. Immune Netw 2024; 24:e17. [PMID: 38725672 PMCID: PMC11076301 DOI: 10.4110/in.2024.24.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
We have reported that anterior cruciate ligament (ACL) injury leads to the differential dysregulation of the complement system in the synovium as compared to meniscus tear (MT) and proposed this as a mechanism for a greater post-injury prevalence of post traumatic osteoarthritis (PTOA). To explore additional roles of complement proteins and regulators, we determined the presence of decay-accelerating factor (DAF), C5b, and membrane attack complexes (MACs, C5b-9) in discarded surgical synovial tissue (DSST) collected during arthroscopic ACL reconstructive surgery, MT-related meniscectomy, osteoarthritis (OA)-related knee replacement surgery and normal controls. Multiplexed immunohistochemistry was used to detect and quantify complement proteins. To explore the involvement of body mass index (BMI), after these 2 injuries, we examined correlations among DAF, C5b, MAC and BMI. Using these approaches, we found that synovial cells after ACL injury expressed a significantly lower level of DAF as compared to MT (p<0.049). In contrast, C5b staining synovial cells were significantly higher after ACL injury (p<0.0009) and in OA DSST (p<0.039) compared to MT. Interestingly, there were significantly positive correlations between DAF & C5b (r=0.75, p<0.018) and DAF & C5b (r=0.64 p<0.022) after ACL injury and MT, respectively. The data support that DAF, which should normally dampen C5b deposition due to its regulatory activities on C3/C5 convertases, does not appear to exhibit that function in inflamed synovia following either ACL injury or MT. Ineffective DAF regulation may be an additional mechanism by which relatively uncontrolled complement activation damages tissue in these injury states.
Collapse
Affiliation(s)
- V. Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel M. Frank
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Zuscik
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carson Keeter
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert I. Scheinman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Striebich
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael R. Clay
- Department of Pathology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Larry W. Moreland
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Orthopedics and the Colorado Program for Musculoskeletal Research, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nirmal K. Banda
- Division of Rheumatology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Chen H, Li J, Li S, Wang X, Xu G, Li M, Li G. Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear. Heliyon 2024; 10:e26070. [PMID: 38420419 PMCID: PMC10900419 DOI: 10.1016/j.heliyon.2024.e26070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Anterior cruciate ligament (ACL) tear is a common sports-related injury, and cartilage injury always emerges as a serious complication following ACL tear, significantly impacting the physical and psychological well-being of affected individuals. Over the years, efforts have been directed toward finding strategies to repair cartilage injury after ACL tear. In recent times, procyanidins, known for their anti-inflammatory and antioxidant properties, have emerged as potential key players in addressing this concern. This article focuses on summarizing the research progress of procyanidins in repairing cartilage injury after ACL tear. It covers the roles, mechanisms, and clinical significance of procyanidins in repairing cartilage injury following ACL tear and explores the future prospects of procyanidins in this domain. This review provides novel insights and hope for the repair of cartilage injury following ACL tear.
Collapse
Affiliation(s)
- Hanlin Chen
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jingrui Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Shaofei Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoqi Wang
- Major in Clinical Medicine, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ge Xu
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Molan Li
- The First Hospital of Lanzhou University, Lanzhou, China
- Major in Clinical Medicine, First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
17
|
Jiang S, Xie W, Knapstein PR, Donat A, Albertsen LC, Sevecke J, Erdmann C, Appelt J, Fuchs M, Hildebrandt A, Maleitzke T, Frosch KH, Baranowsky A, Keller J. Transcript-dependent effects of the CALCA gene on the progression of post-traumatic osteoarthritis in mice. Commun Biol 2024; 7:223. [PMID: 38396204 PMCID: PMC10891124 DOI: 10.1038/s42003-024-05889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Osteoarthritis represents a chronic degenerative joint disease with exceptional clinical relevance. Polymorphisms of the CALCA gene, giving rise to either a procalcitonin/calcitonin (PCT/CT) or a calcitonin gene-related peptide alpha (αCGRP) transcript by alternative splicing, were reported to be associated with the development of osteoarthritis. The objective of this study was to investigate the role of both PCT/CT and αCGRP transcripts in a mouse model of post-traumatic osteoarthritis (ptOA). WT, αCGRP-/- and CALCA-/- mice were subjected to anterior cruciate ligament transection (ACLT) to induce ptOA of the knee. Mice were sacrificed 4 and 8 weeks post-surgery, followed by micro-CT and histological evaluation. Here we show that the expression of both PCT/CT and αCGRP transcripts is induced in ptOA knees. CALCA-/- mice show increased cartilage degeneration and subchondral bone loss with elevated osteoclast numbers compared to αCGRP-/- and WT mice. Osteophyte formation is reduced to the same extent in CALCA-/- and αCGRP-/- mice compared to WT controls, while a reduced synovitis score is noticed exclusively in mice lacking CALCA. Our data show that expression of the PCT/CT transcript protects from the progression of ptOA, while αCGRP promotes osteophyte formation, suggesting that CALCA-encoded peptides may represent novel targets for the treatment of ptOA.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Weixin Xie
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Richard Knapstein
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Donat
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilly-Charlotte Albertsen
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sevecke
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Erdmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jessika Appelt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Melanie Fuchs
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Alexander Hildebrandt
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
| | - Tazio Maleitzke
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
- Department of Orthopaedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl-Heinz Frosch
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Trauma Surgery, Orthopedics and Sports Traumatology, BG Hospital Hamburg, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
18
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
19
|
Spierings J, Van den Hengel M, Janssen RPA, Van Rietbergen B, Ito K, Foolen J. Knee instability caused by altered graft mechanical properties after anterior cruciate ligament reconstruction: the early onset of osteoarthritis? Front Bioeng Biotechnol 2023; 11:1244954. [PMID: 37691908 PMCID: PMC10484411 DOI: 10.3389/fbioe.2023.1244954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a very common knee joint injury. Torn ACLs are currently reconstructed using tendon autografts. However, half of the patients develop osteoarthritis (OA) within 10 to 14 years postoperatively. Proposedly, this is caused by altered knee kine(ma)tics originating from changes in graft mechanical properties during the in vivo remodeling response. Therefore, the main aim was to use subject-specific finite element knee models and investigate the influence of decreasing graft stiffness and/or increasing graft laxity on knee kine(ma)tics and cartilage loading. In this research, 4 subject-specific knee geometries were used, and the material properties of the ACL were altered to either match currently used grafts or mimic in vivo graft remodeling, i.e., decreasing graft stiffness and/or increasing graft laxity. The results confirm that the in vivo graft remodeling process increases the knee range of motion, up to >300 percent, and relocates the cartilage contact pressures, up to 4.3 mm. The effect of remodeling-induced graft mechanical properties on knee stability exceeded that of graft mechanical properties at the time of surgery. This indicates that altered mechanical properties of ACL grafts, caused by in vivo remodeling, can initiate the early onset of osteoarthritis, as observed in many patients clinically.
Collapse
Affiliation(s)
- Janne Spierings
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marloes Van den Hengel
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Rob P. A. Janssen
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopaedic Surgery and Trauma, Máxima Medical Centre Eindhoven/Veldhoven, Eindhoven, Netherlands
- Department of Paramedical Sciences, Health Innovations and Technology, Fontys University of Applied Sciences, Eindhoven, Netherlands
| | - Bert Van Rietbergen
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Keita Ito
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Jasper Foolen
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
20
|
Holm PM, Juhl CB, Culvenor AG, Whittaker JL, Crossley KM, Roos EM, Patterson BE, Larsson S, Struglics A, Bricca A. The Effects of Different Management Strategies or Rehabilitation Approaches on Knee Joint Structural and Molecular Biomarkers Following Traumatic Knee Injury: A Systematic Review of Randomized Controlled Trials for the OPTIKNEE Consensus. J Orthop Sports Phys Ther 2023; 53:172-193. [PMID: 36802814 DOI: 10.2519/jospt.2023.11576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
OBJECTIVE: To summarize the effectiveness of management strategies and rehabilitation approaches for knee joint structural and molecular biomarker outcomes following anterior cruciate ligament (ACL) and/or meniscal tear. DESIGN: Intervention systematic review. LITERATURE SEARCH: We searched the MEDLINE, Embase, CINAHL, CENTRAL, and SPORTDiscus databases from their inception up to November 3, 2021. STUDY SELECTION CRITERIA: We included randomized controlled trials (RCTs) investigating the effectiveness of management strategies or rehabilitation approaches for structural/molecular biomarkers of knee joint health following ACL and/or meniscal tear. DATA SYNTHESIS: We included 5 RCTs (9 papers) with primary ACL tear (n = 365). Two RCTs compared initial management strategies (rehabilitation plus early vs optional delayed ACL surgery), reporting on structural biomarkers (radiographic osteoarthritis, cartilage thickness, meniscal damage) in 5 papers and molecular biomarkers (inflammation, cartilage turnover) in 1 paper. Three RCTs compared different post-ACL reconstruction (ACLR) rehabilitation approaches (high vs low intensity plyometric exercises, accelerated vs nonaccelerated rehabilitation, continuous passive vs active motion), reporting on structural biomarkers (joint space narrowing) in 1 paper and molecular biomarkers (inflammation, cartilage turnover) in 2 papers. RESULTS: There were no differences in structural or molecular biomarkers between post-ACLR rehabilitation approaches. One RCT comparing initial management strategies demonstrated that rehabilitation plus early ACLR was associated with greater patellofemoral cartilage thinning, elevated inflammatory cytokine response, and reduced incidence of medial meniscal damage over 5 years compared to rehabilitation with no/delayed ACLR. CONCLUSION: Very low-certainty evidence suggests that different initial management strategies (rehabilitation plus early vs optional delayed ACL surgery) but not postoperative rehabilitation approaches may influence the incidence of meniscal damage, patellofemoral cartilage loss and cytokine concentrations over 5 years post-ACL tear. J Orthop Sports Phys Ther 2023;53(4):1-22. Epub: 20 February 2023. doi:10.2519/jospt.2023.11576.
Collapse
|
21
|
Hettrich CM, Magnuson JA, Baumgarten KM, Brophy RH, Kattan M, Bishop JY, Bollier MJ, Bravman JT, Cvetanovich GL, Dunn WR, Feeley BT, Frank RM, Kuhn JE, Lansdown DA, Benjamin Ma C, Marx RG, McCarty EC, Neviaser AS, Ortiz SF, Seidl AJ, Smith MV, Wright RW, Zhang AL, Cronin KJ, Wolf BR. Predictors of Bone Loss in Anterior Glenohumeral Instability. Am J Sports Med 2023; 51:1286-1294. [PMID: 36939180 DOI: 10.1177/03635465231160286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
BACKGROUND Anterior shoulder instability can result in bone loss of both the anterior glenoid and the posterior humerus. Bone loss has been shown to lead to increased failure postoperatively and may necessitate more complex surgical procedures, resulting in worse clinical outcomes and posttraumatic arthritis. HYPOTHESIS/PURPOSE The purpose of this study was to investigate predictors of glenoid and humeral head bone loss in patients undergoing surgery for anterior shoulder instability. It was hypothesized that male sex, contact sport participation, traumatic dislocation, and higher number of instability events would be associated with greater bone loss. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS A total of 892 patients with anterior shoulder instability were prospectively enrolled in the Multicenter Orthopaedic Outcomes Network (MOON) Shoulder Instability cohort. The presence and amount of anterior glenoid bone loss and accompanying Hill-Sachs lesions were quantified. Descriptive information and injury history were used to construct proportional odds models for the presence of any bone defect, for defects >10% of the anterior glenoid or humeral head, and for combined bony defects. RESULTS Anterior glenoid bone loss and Hill-Sachs lesions were present in 185 (20.7%) and 470 (52.7%) patients, respectively. Having an increased number of dislocations was associated with bone loss in all models. Increasing age, male sex, and non-White race were associated with anterior glenoid bone defects and Hill-Sachs lesions. Contact sport participation was associated with anterior glenoid bone loss, and Shoulder Actitvity Scale with glenoid bone loss >10%. A positive apprehension test was associated with Hill-Sachs lesions. Combined lesions were present in 19.4% of patients, and for every additional shoulder dislocation, the odds of having a combined lesion was 95% higher. CONCLUSION An increasing number of preoperative shoulder dislocations is the factor most strongly associated with glenoid bone loss, Hill-Sachs lesions, and combined lesions. Early surgical stabilization before recurrence of instability may be the most effective method for preventing progression to clinically significant bone loss. Patients should be made aware of the expected course of shoulder instability, especially in athletes at high risk for recurrence and osseous defects, which may complicate care and worsen outcomes. REGISTRATION NCT02075775 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Carolyn M Hettrich
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Robert H Brophy
- Department of Orthopedics, Washington University Saint Louis, St. Louis, Missouri, USA
| | - Michael Kattan
- Cleveland Clinic Department of Quantitative Health Sciences, Cleveland, Ohio, USA
| | | | - Julie Y Bishop
- The Ohio State University Sports Medicine Center, Columbus, Ohio, USA
| | | | - Jonathan T Bravman
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Warren R Dunn
- Fondren Orthopedic Group, Orthopedic Surgery, Houston, Texas, USA
| | - Brian T Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Rachel M Frank
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - John E Kuhn
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Drew A Lansdown
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - C Benjamin Ma
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Robert G Marx
- Department of Sports Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Eric C McCarty
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Shannon F Ortiz
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Adam J Seidl
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew V Smith
- Department of Orthopedics, Washington University Saint Louis, St. Louis, Missouri, USA
| | - Rick W Wright
- Department of Orthopaedic Surgery and Rehabilitation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan L Zhang
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, California, USA
| | | | - Brian R Wolf
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.,Investigation performed at multicenter facilities and the primary site is at University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Herger S, Vach W, Nüesch C, Liphardt AM, Egloff C, Mündermann A. Dose-response relationship of in vivo ambulatory load and mechanosensitive cartilage biomarkers-The role of age, tissue health and inflammation: A study protocol. PLoS One 2022; 17:e0272694. [PMID: 35984848 PMCID: PMC9390933 DOI: 10.1371/journal.pone.0272694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To describe a study protocol for investigating the in vivo dose-response relationship between ambulatory load magnitude and mechanosensitive blood markers of articular cartilage, the influence of age, cartilage tissue health and presence of inflammation on this relationship, and its ability to predict changes in articular cartilage quality and morphology within 2 years. DESIGN Prospective experimental multimodal (clinical, biomechanical, biological) data collection under walking stress and three different load conditions varied in a randomized crossover design. EXPERIMENTAL PROTOCOL At baseline, equal numbers of healthy and anterior cruciate ligament injured participants aged 20-30 or 40-60 years will be assessed clinically and complete questionnaires regarding their knee health. Biomechanical parameters (joint kinetics, joint kinematics, and surface electromyography) will be recorded while performing different tasks including overground and treadmill walking, single leg balance and hopping tasks. Magnetic resonance images (MRI) of both of knees will be obtained. On separate stress test days, participants will perform a 30-minute walking stress with either reduced (80% body weight (BW)), normal (100%BW) or increased (120%BW) load. Serum blood samples will be taken immediately before, immediately after, 30, 120 and 210 minutes after the walking stress. Concentration of articular cartilage blood biomarkers will be assessed using enzyme linked immunosorbent assays. At 24-month follow-up, participants will be again assessed clinically, undergo an MRI, complete questionnaires, and have a blood sample taken. CONCLUSION The study design provides a standardized set up that allows to better understand the influence of ambulatory load on articular cartilage biomarkers and thereby extend current knowledge on in vivo cartilage metabolism and mechanosensitivity. Further, this study will help to elucidate the prognostic value of the load-induced cartilage biomarker response for early articular cartilage degeneration. TRIAL REGISTRATION The protocol was approved by the regional ethics committee and has been registered at clinicaltrials.gov (NCT04128566).
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Werner Vach
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 –Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
23
|
Ewing MA, Stoker AM, Leary EV, Bozynski CC, Luk J, Stannard JP, Cook JL. Treatment-Monitoring Capabilities of Serum and Urine Biomarkers for Meniscal Allograft Transplantation in a Preclinical Canine Model. Am J Sports Med 2022; 50:2714-2721. [PMID: 35834869 DOI: 10.1177/03635465221105481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Meniscal allograft transplantation (MAT) has been developed as a treatment for meniscal deficiency. Despite promising outcomes, there are no real-time methods to evaluate graft survivorship and predict functional outcomes. HYPOTHESIS Assessment of serum and urine biomarkers could be used to develop biomarker panels-prognostic (1- and 3-month postsurgical time points) and diagnostic (6-month time point)-based on strong associations with clinically relevant outcome metrics obtained 6 months after surgery. STUDY DESIGN Descriptive laboratory study. METHODS Twelve adult purpose-bred research hounds were included and underwent medial meniscal release to induce meniscal deficiency. Three months after meniscal release surgery, medial menisci were replaced with fresh-frozen meniscus (n = 4), fresh meniscus (n = 4), or fresh meniscotibial osteochondral allograft (n = 4) such that a spectrum of pain and functional outcomes could be anticipated. Serum and urine from all dogs were collected preoperatively and at 1, 3, and 6 months after MAT surgery. Dogs were assessed for pain-related and functional outcomes at the same time points. To develop a prognostic panel of biomarkers, biomarker data from the 1- and 3-month post-MAT surgery time points were used to model 6-month clinical outcomes. A diagnostic panel of biomarkers was developed using data from the 6-month post-MAT surgery to model 6-month clinical outcomes. Primary outcomes for pain and function were visual analog scale (VAS) and operated limb percentage total pressure index (%TPI), respectively. Using random subject effects, linear mixed models were used to develop prognostic biomarker panels, and linear fixed-effect models were used to develop diagnostic biomarker panels, with variance explained for each panel reported (R2) along with individual biomarker relationships. RESULTS Across prognostic biomarker panels, a panel including serum IL-6, IL-8, IL-10, and IL-18 was fit for the primary functional outcome, operated limb %TPI (R2 = 0.450), whereas a panel including serum CTX-II and OPG was fit for the primary pain-related outcome, VAS (R2 = 0.516). Across diagnostic biomarker panels, a panel including serum MMP-1 and MMP-3 and urine PINP and TIMP-1 was fit for %TPI (R2 = 0.863). Separately, a panel including urine CTX-I, CTX-II, IL-8, MMP-2, and TIMP-1 was fit as diagnostic biomarkers for the VAS for pain (R2 = 0.438). CONCLUSION Biomarker panels of selected serum and/or urine proteins can model clinically relevant metrics for function and pain in a preclinical model of MAT. CLINICAL RELEVANCE Biomarker panels could be used to provide real-time diagnostic and prognostic data regarding outcomes after MAT.
Collapse
Affiliation(s)
- Michael A Ewing
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - Aaron M Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Emily V Leary
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Chantelle C Bozynski
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - Josephine Luk
- Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| | - James P Stannard
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
24
|
Terracciano R, Carcamo-Bahena Y, Royal ALR, Demarchi D, Labis JS, Harris JD, Weiner BK, Gupta N, Filgueira CS. Quantitative high-resolution 7T MRI to assess longitudinal changes in articular cartilage after anterior cruciate ligament injury in a rabbit model of post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100259. [DOI: 10.1016/j.ocarto.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
|
25
|
Lindanger L, Strand T, Mølster AO, Solheim E, Fischer-Bredenbeck C, Ousdal OT, Inderhaug E. Predictors of Osteoarthritis Development at a Median 25 Years After Anterior Cruciate Ligament Reconstruction Using a Patellar Tendon Autograft. Am J Sports Med 2022; 50:1195-1204. [PMID: 35234531 DOI: 10.1177/03635465221079327] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Few studies have investigated the outcome ≥20 years after an anterior cruciate ligament reconstruction (ACLR) with a bone-patellar tendon-bone autograft, and there is a wide range in the reported rates of radiographic osteoarthritis (OA). PURPOSE To report on radiographic OA development and to assess risk factors of knee OA at a median 25 years after ACLR with a bone-patellar tendon-bone autograft. STUDY DESIGN Case-control study; Level of evidence, 3. METHODS Unilateral ACLRs performed at a single center from 1987 to 1994 were included (N = 235). The study population was followed prospectively with clinical testing and questionnaires. Results from the 3-month, 12-month, and median 25-year follow-up are presented. In addition, a radiographic evaluation was performed at the final follow-up. Radiographic OA was defined as Kellgren-Lawrence grade ≥2 or having undergone ipsilateral knee replacement surgery. Possible predictors of OA development included patient age, sex, time from injury to surgery, use of a Kennedy ligament augmentation device, any concomitant meniscal surgery, and return to preinjury sports after surgery. RESULTS At long-term follow-up, 60% (141/235) of patients had radiographic OA in the involved knee and 18% (40/227) in the contralateral knee (P < .001). Increased age at surgery, male sex, increased time between injury and surgery, a Kennedy ligament augmentation device, and medial and lateral meniscal surgery were significant predictors of OA development in univariate analyses. Return to preinjury level of sports after surgery was associated with less development of OA. In the multivariate model, medial meniscal surgery and lateral meniscal surgery were independently associated with OA development. The adjusted odds ratio was 1.88 (95% CI, 1.03-3.43; P = .041) for medial meniscal surgery and 1.96 (95% CI, 1.05-3.67; P = .035) for lateral meniscal surgery. Patients who had developed radiographic signs of OA had significantly lower Knee injury and Osteoarthritis Outcome Score and Lysholm scores at long-term follow-up. CONCLUSION At 25 years after ACLR, 60% of patients had developed OA in the involved knee, and these patients reported significantly lower subjective outcomes. Medial meniscal surgery and lateral meniscal surgery were independent predictors of OA development at long-term follow-up.
Collapse
Affiliation(s)
- Line Lindanger
- Department of Orthopedics, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Torbjørn Strand
- Department of Orthopedics, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Orthopedics, Haukeland University Hospital, The Coastal Hospital at Hagevik, Bergen, Norway
| | - Anders Odd Mølster
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Eirik Solheim
- Department of Orthopedics, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | | | | | - Eivind Inderhaug
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Orthopedics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Torniainen J, Ristaniemi A, Sarin JK, Prakash M, Afara IO, Finnilä MAJ, Stenroth L, Korhonen RK, Töyräs J. Near infrared spectroscopic evaluation of biochemical and crimp properties of knee joint ligaments and patellar tendon. PLoS One 2022; 17:e0263280. [PMID: 35157708 PMCID: PMC8843223 DOI: 10.1371/journal.pone.0263280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
Knee ligaments and tendons play an important role in stabilizing and controlling the motions of the knee. Injuries to the ligaments can lead to abnormal mechanical loading of the other supporting tissues (e.g., cartilage and meniscus) and even osteoarthritis. While the condition of knee ligaments can be examined during arthroscopic repair procedures, the arthroscopic evaluation suffers from subjectivity and poor repeatability. Near infrared spectroscopy (NIRS) is capable of non-destructively quantifying the composition and structure of collagen-rich connective tissues, such as articular cartilage and meniscus. Despite the similarities, NIRS-based evaluation of ligament composition has not been previously attempted. In this study, ligaments and patellar tendon of ten bovine stifle joints were measured with NIRS, followed by chemical and histological reference analysis. The relationship between the reference properties of the tissue and NIR spectra was investigated using partial least squares regression. NIRS was found to be sensitive towards the water (R2CV = .65) and collagen (R2CV = .57) contents, while elastin, proteoglycans, and the internal crimp structure remained undetectable. As collagen largely determines the mechanical response of ligaments, we conclude that NIRS demonstrates potential for quantitative evaluation of knee ligaments.
Collapse
Affiliation(s)
- Jari Torniainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- * E-mail:
| | - Aapo Ristaniemi
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jaakko K. Sarin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- Department of Medical Physics, Medical Imaging Center, Pirkanmaa Hospital District, Tampere, Finland
| | - Mithilesh Prakash
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Isaac O. Afara
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Mikko A. J. Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Lauri Stenroth
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Rami K. Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Müller S, Bühl L, Nüesch C, Pagenstert G, Mündermann A, Egloff C. RetroBRACE: clinical, socioeconomic and functional-biomechanical outcomes 2 years after ACL repair and InternalBrace augmentation in comparison to ACL reconstruction and healthy controls-experimental protocol of a non-randomised single-centre comparative study. BMJ Open 2022; 12:e054709. [PMID: 35105587 PMCID: PMC8808437 DOI: 10.1136/bmjopen-2021-054709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Despite good clinical outcomes reported in the literature, to date, scientific evidence for the functional and biomechanical benefit of primary anterior cruciate ligament (ACL) repair with augmentation is scarce. We present an experimental protocol for a detailed multimodal (clinical, socioeconomic, functional and biomechanical) comparative study in patients after primary ACL repair and InternalBrace augmentation, patients after ACL reconstruction and healthy controls. METHODS AND ANALYSIS In this non-randomised single-centre comparative study with prospective data collection with three arms (patients 2 years after ACL repair and InternalBrace augmentation; patients 2 years after ACL reconstruction using hamstring autografts; and healthy controls), 30 participants per study arm will be included. The study is designed as non-inferiority study with three arms. Required sample size was estimated based on data reported in the literature on muscle strength, proprioception and balance parameters, resulting in at least 28 participants per group. Outcome parameters include patient-reported outcome measures (EQ-5D-5L, Tegner Activity Scale, Knee Injury and Osteoarthritis Outcome Score (KOOS), International Knee Documentation Committee and ACL-Return to Sports Injury Scale), socio-economic parameters, anterior tibial translation, range of motion and functional-biomechanical data of the lower extremities. Functional-biomechanical parameters include proprioception, isokinetic muscle strength, single-leg balance, walking, running and single-leg hops with additional lower extremity 3D joint kinematics and kinetics and muscle activity. These parameters will be compared between limbs in patients, between groups and to the current literature. ETHICS AND DISSEMINATION The results of this study will be disseminated through peer-reviewed publications and presentations at national and international conferences. Ethical approval was obtained by the regional ethics board (Ethics Committee Northwest Switzerland EKNZ 2020-00551), and the study is registered at clinicaltrials.gov.Trial registration numberNCT04429165.
Collapse
Affiliation(s)
- Sebastian Müller
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Linda Bühl
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Geert Pagenstert
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Clarahof Clinic of Orthopaedic Surgery, Basel, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
28
|
Hsia AW, Jbeily EH, Mendez ME, Cunningham HC, Biris KK, Bang H, Lee CA, Loots GG, Christiansen BA. Post-traumatic osteoarthritis progression is diminished by early mechanical unloading and anti-inflammatory treatment in mice. Osteoarthritis Cartilage 2021; 29:1709-1719. [PMID: 34653605 PMCID: PMC8678362 DOI: 10.1016/j.joca.2021.09.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease initiated by injury. Early phase (0-7 days) treatments often include rest (unloading) and anti-inflammatory medications, but how those early interventions impact PTOA progression is unknown. We hypothesized that early unloading and anti-inflammatory treatment would diminish joint inflammation and slow PTOA progression. DESIGN Mice were injured with non-invasive ACL rupture followed by hindlimb unloading (HLU) or normal cage activity (ground control: GC) for 7 days, after which all mice were allowed normal cage activity. HLU and GC mice were treated with daily celecoxib (CXB; 10 mg/kg IP) or vehicle. Protease activity was evaluated using in vivo fluorescence imaging, osteophyte formation and epiphyseal trabecular bone were quantified using micro-computed tomography, and synovitis and articular cartilage were evaluated using whole-joint histology at 7, 14, 21, and 28 days post-injury. RESULTS HLU significantly reduced protease activity (-22-30% compared to GC) and synovitis (-24-50% relative to GC) at day 7 post-injury (during unloading), but these differences were not maintained at later timepoints. Similarly, trabecular bone volume was partially preserved in HLU mice at during unloading (-14-15% BV/TV for HLU mice, -21-22% for GC mice relative to uninjured), but these differences were not maintained during reloading. Osteophyte volume was reduced by both HLU and CXB, but there was not an additive effect of these treatments (HLU: -46%, CXB: -30%, HLU + CXB: -35% relative to vehicle GC at day 28). CONCLUSIONS These data suggest that early unloading following joint injury can reduce inflammation and potentially slow PTOA progression.
Collapse
Affiliation(s)
- A W Hsia
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - E H Jbeily
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - M E Mendez
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - H C Cunningham
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - K K Biris
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - H Bang
- University of California Davis Health, Department of Public Health Sciences, Sciences 1C, Suite 145, Davis, CA 95616, USA.
| | - C A Lee
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| | - G G Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, 7000 East Avenue, L-452, Livermore, CA 94550, USA.
| | - B A Christiansen
- University of California Davis Health, Department of Orthopaedic Surgery, Lawrence J. Ellison Musculoskeletal Research Center, 4635 2nd Ave, Suite 2000, Sacramento, CA 95817, USA.
| |
Collapse
|
29
|
Deloney M, Garoosi P, Dartora VFC, Christiansen BA, Panitch A. Hyaluronic Acid-Binding, Anionic, Nanoparticles Inhibit ECM Degradation and Restore Compressive Stiffness in Aggrecan-Depleted Articular Cartilage Explants. Pharmaceutics 2021; 13:1503. [PMID: 34575579 PMCID: PMC8469381 DOI: 10.3390/pharmaceutics13091503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/03/2022] Open
Abstract
Joint trauma results in the production of inflammatory cytokines that stimulate the secretion of catabolic enzymes, which degrade articular cartilage. Molecular fragments of the degraded articular cartilage further stimulate inflammatory cytokine production, with this process eventually resulting in post-traumatic osteoarthritis (PTOA). The loss of matrix component aggrecan occurs early in the progression of PTOA and results in the loss of compressive stiffness in articular cartilage. Aggrecan is highly sulfated, associates with hyaluronic acid (HA), and supports the compressive stiffness in cartilage. Presented here, we conjugated the HA-binding peptide GAHWQFNALTVRGSG (GAH) to anionic nanoparticles (hNPs). Nanoparticles conjugated with roughly 19 GAH peptides, termed 19 GAH-hNP, bound to HA in solution and increased the dynamic viscosity by 94.1% compared to an HA solution treated with unconjugated hNPs. Moreover, treating aggrecan-depleted (AD) cartilage explants with 0.10 mg of 19 GAH-hNP restored the cartilage compressive stiffness to healthy levels six days after a single nanoparticle treatment. Treatment of AD cartilage with 0.10 mg of 19 GAH-hNP inhibited the degradation of articular cartilage. Treated AD cartilage had 409% more collagen type II and 598% more GAG content than untreated-AD explants. The 19 GAH-hNP therapeutic slowed ECM degradation in AD cartilage explants, restored the compressive stiffness of damaged cartilage, and showed promise as a localized treatment for PTOA.
Collapse
Affiliation(s)
- Marcus Deloney
- Biomedical Engineering Department, 451 E. Health Sciences Dr. Room 2303, University of California Davis, Davis, CA 95616, USA; (M.D.); (P.G.); (V.F.C.D.)
| | - Parssa Garoosi
- Biomedical Engineering Department, 451 E. Health Sciences Dr. Room 2303, University of California Davis, Davis, CA 95616, USA; (M.D.); (P.G.); (V.F.C.D.)
| | - Vanessa F. C. Dartora
- Biomedical Engineering Department, 451 E. Health Sciences Dr. Room 2303, University of California Davis, Davis, CA 95616, USA; (M.D.); (P.G.); (V.F.C.D.)
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Blaine A. Christiansen
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopedic Surgery, University of California Davis Health, 4635 2nd Avenue, Suite 2000, Sacramento, CA 95817, USA;
| | - Alyssa Panitch
- Biomedical Engineering Department, 451 E. Health Sciences Dr. Room 2303, University of California Davis, Davis, CA 95616, USA; (M.D.); (P.G.); (V.F.C.D.)
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Theeuwes WF, van den Bosch MHJ, Thurlings RM, Blom AB, van Lent PLEM. The role of inflammation in mesenchymal stromal cell therapy in osteoarthritis, perspectives for post-traumatic osteoarthritis: a review. Rheumatology (Oxford) 2021; 60:1042-1053. [PMID: 33410465 DOI: 10.1093/rheumatology/keaa910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
OA is a complex and highly prevalent degenerative disease affecting the whole joint, in which factors like genetic predisposition, gender, age, obesity and traumas contribute to joint destruction. ∼50-80% of OA patients develop synovitis. OA-associated risk factors contribute to joint instability and the release of cartilage matrix fragments, activating the synovium to release pro-inflammatory factors and catabolic enzymes in turn damaging the cartilage and creating a vicious circle. Currently, no cure is available for OA. Mesenchymal stromal cells (MSCs) have been tested in OA for their chondrogenic and anti-inflammatory properties. Interestingly, MSCs are most effective when administered during synovitis. This review focusses on the interplay between joint inflammation and the immunomodulation by MSCs in OA. We discuss the potential of MSCs to break the vicious circle of inflammation and describe current perspectives and challenges for clinical application of MSCs in treatment and prevention of OA, focussing on preventing post-traumatic OA.
Collapse
Affiliation(s)
- Wessel F Theeuwes
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Rogier M Thurlings
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
31
|
Hunt ER, Jacobs CA, Conley CEW, Ireland ML, Johnson DL, Lattermann C. Anterior cruciate ligament reconstruction reinitiates an inflammatory and chondrodegenerative process in the knee joint. J Orthop Res 2021; 39:1281-1288. [PMID: 32558951 DOI: 10.1002/jor.24783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) injury leads to a sustained increase in synovial fluid concentrations of inflammatory cytokines and biomarkers of cartilage breakdown. While this has been documented post-injury, it remains unclear whether ACL reconstruction surgery contributes to the inflammatory process and/or cartilage breakdown. This study is a secondary analysis of 14 patients (nine males/five females, mean age = 9, mean BMI = 28) enrolled in an IRB-approved randomized clinical trial. Arthrocentesis was performed at initial presentation (mean = 6 days post-injury), immediately prior to surgery (mean = 23 days post-injury), 1-week post-surgery, and 1-month post-surgery. Enzyme-linked immunosorbant assay kits were used to determine concentrations of carboxy-terminal telopeptides of type II collagen (CTXII), interleukin-6 (IL-6), and IL-1β in the synovial fluid. The log-transformed IL-1β was not normally distributed; therefore, changes between time points were evaluated using a non-parametric Kruskal-Wallis one-way ANOVA. IL-1β concentrations significantly increased from the day of surgery to the first postoperative time point (P ≤ .001) and significantly decreased at the 4-week postoperative visit (P = .03). IL-1β concentrations at the 4-week postoperative visit remained significantly greater than both preoperative time points (P > .05). IL-6 concentrations at 1-week post-surgery were significantly higher than at initial presentation (P = .013), the day of surgery (P < .001), and 4 weeks after surgery (P = .002). CTX-II concentrations did not differ between the first three-time points (P > .99) but significantly increased at 4 weeks post-surgery (P < .01). ACL reconstruction appears to reinitiate an inflammatory response followed by an increase in markers for cartilage degradation. ACL reconstruction appears to initiate a second "inflammatory hit" resulting in increased chondral breakdown suggesting that post-operative chondroprotection may be needed.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Cale A Jacobs
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Caitlin E-W Conley
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Mary L Ireland
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Darren L Johnson
- Department of Orthopedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
32
|
Hao X, Wang S, Zhang J, Xu T. Effects of body weight-supported treadmill training on cartilage-subchondral bone unit in the rat model of posttraumatic osteoarthritis. J Orthop Res 2021; 39:1227-1235. [PMID: 32603538 DOI: 10.1002/jor.24791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA) resulting from the integrated outcome of joint injury, accounting for more than 12% of the overall OA cases. Although current therapies restore joint kinematics and alleviate inflammation, more than 20% patients undergo the unexpected progression of PTOA. Exercise is widely recommended to patients with OA and treadmill training is effective in preventing osteoarthritic changes in PTOA animals. However, the understanding gap of modified treadmill exercise models with different exercise dose and loading weight still exists. To evaluate the effects of body weight-supported treadmill training on PTOA, 30 rats were divided into the sham group (n = 6) and the PTOA group (n = 24) which were further assigned into three subgroups including the sedentary, the treadmill walking (TW), and the body weight-supported treadmill training (BWSTT) groups. The training groups were subjected to 4-week treadmill training at the speed of 15 m/min for 30 min/d, 5 d/wk. Then the tibias were elevated by histological staining, immunohistochemical staining, and micro-computed tomography. In our results, the significant OA-relevant changes in cartilage-subchondral bone unit were observed in the PTOA groups after surgery, characterized by cartilage degradation and subchondral bone remodeling. After 4-week treadmill training, the OA-relevant changes in cartilage-subchondral bone unit were alleviated and BWSTT is more efficient to maintain cartilage integrity and attenuate the subchondral bone loss and remodeling than TW. In conclusion, BWSTT is a promising and favorable treatment of PTOA slowing down the development of PTOA by reprogramming the cartilage-subchondral unit.
Collapse
Affiliation(s)
- Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjie Wang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Rehabilitation, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, China
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Moon PM, Shao ZY, Wambiekele G, Appleton CTG, Laird DW, Penuela S, Beier F. Global Deletion of Pannexin 3 Resulting in Accelerated Development of Aging-Induced Osteoarthritis in Mice. Arthritis Rheumatol 2021; 73:1178-1188. [PMID: 33426805 DOI: 10.1002/art.41651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) results in pathologic changes in the joint tissue. The mechanisms driving disease progression remain largely unclear, and thus disease-modifying treatments are lacking. Pannexin 3 (Panx3) was identified as a potential mediator of cartilage degeneration in OA, and our previous study in mice indicated that deletion of the Panx3 gene delayed surgically induced cartilage degeneration. This study was undertaken to examine the role of Panx3 in other OA subtypes, particularly primary OA during aging, in a mouse model of aging-induced OA. METHODS Wild-type (WT) and Panx3-/- C57BL/6J (Black-6) mice, ages 18-24 months, were analyzed by micro-computed tomography to investigate bone mineral density and body composition. Joints were harvested from the mice, and histopathologic analysis of the joint tissue for OA development was conducted with a specific focus on changes in articular cartilage, subchondral bone, and synovial tissue. RESULTS Global loss of Panx3 in aging mice was not associated with increased mortality or changes in body composition. Mice lacking Panx3 had shorter appendicular skeletons than WT mice, but overall the body compositions appeared quite similar. Panx3 deletion dramatically accelerated cartilage degeneration and subchondral bone thickening with aging in both 18-month-old and 24-month-old mice, while promoting synovitis in 18-month-old mice. CONCLUSION These observations in a mouse model of OA suggest that Panx3 has a protective role against the development of primary aging-associated OA. It appears that Panx3 has opposing context-specific roles in joint health following traumatic injury versus that associated with aging. These data strongly suggest that there are differences in the molecular pathways driving different subtypes of OA, and therefore a detailed understanding of these pathways could directly improve strategies for OA diagnosis, therapy, and research.
Collapse
Affiliation(s)
- P M Moon
- University of Western Ontario, London, Ontario, Canada
| | - Z Y Shao
- University of Western Ontario, London, Ontario, Canada
| | - G Wambiekele
- University of Western Ontario, London, Ontario, Canada
| | | | - D W Laird
- University of Western Ontario, London, Ontario, Canada
| | - S Penuela
- University of Western Ontario, London, Ontario, Canada
| | - F Beier
- University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Nauta SP, Poeze M, Heeren RMA, Porta Siegel T. Clinical use of mass spectrometry (imaging) for hard tissue analysis in abnormal fracture healing. Clin Chem Lab Med 2021; 58:897-913. [PMID: 32049645 DOI: 10.1515/cclm-2019-0857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022]
Abstract
Common traumas to the skeletal system are bone fractures and injury-related articular cartilage damage. The healing process can be impaired resulting in non-unions in 5-10% of the bone fractures and in post-traumatic osteoarthritis (PTOA) in up to 75% of the cases of cartilage damage. Despite the amount of research performed in the areas of fracture healing and cartilage repair as well as non-unions and PTOA, still, the outcome of a bone fracture or articular cartilage damage cannot be predicted. Here, we discuss known risk factors and key molecules involved in the repair process, together with the main challenges associated with the prediction of outcome of these injuries. Furthermore, we review and discuss the opportunities for mass spectrometry (MS) - an analytical tool capable of detecting a wide variety of molecules in tissues - to contribute to extending molecular understanding of impaired healing and the discovery of predictive biomarkers. Therefore, the current knowledge and challenges concerning MS imaging of bone and cartilage tissue as well as in vivo MS are discussed. Finally, we explore the possibilities of in situ, real-time MS for the prediction of outcome during surgery of bone fractures and injury-related articular cartilage damage.
Collapse
Affiliation(s)
- Sylvia P Nauta
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands.,Department of Orthopedic Surgery and Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn Poeze
- Department of Surgery, Division of Traumasurgery, Maastricht University Medical Center, Maastricht, The Netherlands.,NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| | - Tiffany Porta Siegel
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
35
|
Knowles NK, Whittier DE, Besler BA, Boyd SK. Proximal Tibia Bone Stiffness and Strength in HR-pQCT- and QCT-Based Finite Element Models. Ann Biomed Eng 2021; 49:2389-2398. [PMID: 33977411 DOI: 10.1007/s10439-021-02789-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/03/2021] [Indexed: 11/25/2022]
Abstract
Injury to the ACL significantly increases the risk of developing post-traumatic osteoarthritis. Following injury, considerable focus is placed on visualizing soft tissue changes using MRI, but there is less emphasis on the alterations to the underlying bone. It has recently been shown using high-resolution peripheral quantitative computed tomography (HR-pQCT) that significant reductions in bone quality occur in the knee post ACL-injury. Despite the ability of HR-pQCT to show these changes, the availability of scanners and computational time requirements required to assess bone stiffness and strength with HR-pQCT limit its widespread clinical use. As such, the objective of this study was to determine if clinical quantitative CT (QCT) finite element models (QCT-FEMs) can accurately replicate HR-pQCT FEM proximal tibial stiffness and strength. From FEMs of 30 participants who underwent both QCT and HR-pQCT bilateral imaging, QCT-FEMs were strongly correlated with HR-pQCT FEM stiffness (R2 = 0.79). When QCT-FEM bone strength was estimated using the reaction force at 1% apparent strain, strong correlations were observed (R2 = 0.81), with no bias between HR-pQCT FEMs and non-linear QCT-FEMs. These results indicate that QCT-FEMs can accurately replicate HR-pQCT FEM stiffness and strength in the proximal tibia. Although these models are not able to replicate the trabecular structure or tissue-level strains, they require significantly reduced computational time and use widely available clinical-CT images as input, which make them an attractive choice to monitor bone density, stiffness and strength alterations, such as those that occur post ACL-injury.
Collapse
Affiliation(s)
- Nikolas K Knowles
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Danielle E Whittier
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Bryce A Besler
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Steven K Boyd
- Department of Radiology, University of Calgary, Calgary, AB, Canada. .,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
36
|
Development of supine and standing knee joint position sense tests. Phys Ther Sport 2021; 49:112-121. [PMID: 33667776 DOI: 10.1016/j.ptsp.2021.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We aimed to assess the test-retest reliability of a supine and standing knee joint position sense (JPS) test, respectively, and whether they discriminate knees with anterior cruciate ligament (ACL) injury from asymptomatic knees. DESIGN Repeated measures and cross-sectional. SETTING Research laboratory. PARTICIPANTS For test-retest reliability, 24 persons with asymptomatic knees. For discriminative analysis: 1) ACLR - 18 persons on average 23 months after unilateral ACL reconstruction, 2) CTRL - 23 less-active persons, and 3) ATHL - 21 activity level-matched athletes. MAIN OUTCOME MEASURES Absolute error (AE) and variable error (VE). RESULTS Test-retest reliability was generally highest for AE of the standing test (ICC 0.64-0.91). Errors were less for the standing compared to the supine test across groups. CTRL had greater knee JPS AE (P = 0.005) and VE (P = 0.040) than ACLR. ACLR knees showed greater VE compared to the contralateral non-injured knees for both tests (P = 0.032), albeit with a small effect size (ηp2 = 0.244). CONCLUSIONS Our standing test was more reliable and elicited lesser errors than our supine test. Less-active controls, rather than ACLR, produced significantly greater errors. Activity level may be a more predominant factor than ACLR for knee JPS ∼2 years post-reconstruction.
Collapse
|
37
|
Kawakami Y, Nonaka K, Fukase N, Amore AD, Murata Y, Quinn P, Luketich S, Takayama K, Patel KG, Matsumoto T, Cummins JH, Kurosaka M, Kuroda R, Wagner WR, Fu FH, Huard J. A Cell-free Biodegradable Synthetic Artificial Ligament for the Reconstruction of Anterior Cruciate Ligament in a Rat Model. Acta Biomater 2021; 121:275-287. [PMID: 33129986 DOI: 10.1016/j.actbio.2020.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Traditional Anterior Cruciate Ligament (ACL) reconstruction is commonly performed using an allograft or autograft and possesses limitations such as donor site morbidity, decreased range of motion, and potential infection. However, a biodegradable synthetic graft could greatly assist in the prevention of such restrictions after ACL reconstruction. In this study, artificial grafts were generated using "wet" and "dry" electrospinning processes with a biodegradable elastomer, poly (ester urethane) urea (PEUU), and were evaluated in vitro and in vivo in a rat model. Four groups were established: (1) Wet PEUU artificial ligament, (2) Dry PEUU artificial ligament, (3) Dry polycaprolactone artificial ligament (PCL), and (4) autologous flexor digitorum longus tendon graft. Eight weeks after surgery, the in vivo tensile strength of wet PEUU ligaments had significantly increased compared to the other synthetic ligaments. These results aligned with increased infiltration of host cells and decreased inflammation within the wet PEUU grafts. In contrast, very little cellular infiltration was observed in PCL and dry PEUU grafts. Micro-computed tomography analysis performed at 4 and 8 weeks postoperatively revealed significantly smaller bone tunnels in the tendon autograft and wet PEUU groups. The Wet PEUU grafts served as an adequate functioning material and allowed for the creation of tissues that closely resembled the ACL.
Collapse
Affiliation(s)
- Yohei Kawakami
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kazuhiro Nonaka
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Naomasa Fukase
- Steadman Philippon Research Institute, Vail CO 81657; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Antonio D' Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yoichi Murata
- Steadman Philippon Research Institute, Vail CO 81657
| | - Patrick Quinn
- Steadman Philippon Research Institute, Vail CO 81657
| | - Samuel Luketich
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Koji Takayama
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kunj G Patel
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213; Stem Cell Research Center, University of Pittsburgh, Pittsburgh, PA 15219
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | | | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Freddie H Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail CO 81657.
| |
Collapse
|
38
|
Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res 2020; 38:2721-2730. [PMID: 32129514 DOI: 10.1002/jor.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Animal osteoarthritis (OA) models have been developed to understand OA progression and evaluate new OA therapies. However, individual variations in joint lesions remain a critical problem in most current OA models. We established a novel rabbit model by creating a longitudinal tear in the medial meniscus body that was reproducible and similar to posttraumatic biomechanical disturbances in human OA. New Zealand rabbits underwent surgery and were assessed for 9 weeks. The rabbits were randomized into the sham control, medial meniscal tear (MMT), and anterior cruciate ligament transection (ACLT) groups. The animals were sacrificed at 4, 6, and 9 weeks posttreatment. The knee joints were harvested for histological and gene expression assessments. Both the MMT and ACLT procedures led to time-dependent degenerative changes in the femoral condyle cartilage. At each time point, the MMT group cartilage showed more severe degenerative changes than did the ACLT group cartilage. Consistently, inflammatory cytokine and catabolic gene expression were significantly higher, and anabolic gene expression was significantly lower in the MMT group than in the ACLT group. MMT treatment caused more severe structural damage to the cartilage and higher catabolic gene expression levels than the ACLT model at each time point. The MMT model may be highly beneficial in investigating posttraumatic OA (PTOA) development, especially PTOA from a meniscal injury. The MMT model replicated key features of human PTOA, including meniscal lesions, inflammatory responses, and the progression to osteoarthritic cartilage degeneration, thereby providing an exciting new avenue for translating promising treatments to clinical practice.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, China
| | - Peng-Li Zhang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
Nambi G, Abdelbasset WK, Elsayed SH, Khalil MA, Alrawaili SM, Alsubaie SF. Comparative effects of virtual reality training and sensory motor training on bone morphogenic proteins and inflammatory biomarkers in post-traumatic osteoarthritis. Sci Rep 2020; 10:15864. [PMID: 32985509 PMCID: PMC7523000 DOI: 10.1038/s41598-020-72587-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
The objective of this study is to compare the effects of virtual reality training (VRT) and sensory-motor training (SMT) in bone morphogenetic proteins (BMP) and inflammatory biomarkers expression in post-traumatic osteoarthritis (PTOA) after the anterior cruciate ligament injury. Through a simple random sampling method, 60 eligible participants were allocated into VRT (n = 20), SMT (n = 20), and control groups (n = 20). They underwent training programs for 4 weeks. Clinical (pain intensity and functional disability) and biochemical (bone morphogenic proteins and inflammatory biomarkers) values were measured at baseline, after 4 weeks, 8 weeks and 3 months follow up. Four weeks following training, the VRT group shows more significant changes in pain intensity and functional disability than SMT and control groups (P < 0.001). Bone morphogenic protein (BMP) measures such as BMP 2, 4, 6, and 7 don't show any significant changes between the groups. But at the same time, the VRT group shows positive improvement in inflammatory biomarkers (CRP, TNF-α, IL-2, IL-4, IL-6) analysis than the other two groups (P < 0.001). Our study suggests that including virtual reality training in PTOA shows beneficial changes in pain, functional disability, and modification of inflammatory biomarkers than sensory-motor training, but at the same time it shows a negligible effect on bone morphogenic proteins.
Collapse
Affiliation(s)
- Gopal Nambi
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Shereen H Elsayed
- Department of Rehabilitation Sciences, Faculty of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mona A Khalil
- Department of Biochemistry, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Saud M Alrawaili
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Saud F Alsubaie
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
40
|
King JD, Rowland G, Villasante Tezanos AG, Warwick J, Kraus VB, Lattermann C, Jacobs CA. Joint Fluid Proteome after Anterior Cruciate Ligament Rupture Reflects an Acute Posttraumatic Inflammatory and Chondrodegenerative State. Cartilage 2020; 11:329-337. [PMID: 30033738 PMCID: PMC7298591 DOI: 10.1177/1947603518790009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate changes in the synovial fluid proteome following acute anterior cruciate ligament (ACL) injury. DESIGN This study represents a secondary analysis of synovial fluid samples collected from the placebo group of a previous randomized trial. Arthrocentesis was performed twice on 6 patients with an isolated acute ACL tear at a mean of 6 and 14 days postinjury. Synovial fluid was analyzed by a highly multiplexed assay of 1129 proteins (SOMAscan version 3, SomaLogic, Inc., Boulder, CO). Pathway analysis using DAVID was performed; genes included met 3 criteria: significant change between the 2 study time points using a paired t test, significant change between the 2 study time points using a Mann-Whitney nonparametric test, and significant Benjamini post hoc analysis. RESULTS Fifteen analytes demonstrated significant increases between time points. Five of the 15 have been previously associated with the onset and/or severity of rheumatoid arthritis, including apoliopoprotein E and isoform E3, vascular cell adhesion protein 1, interleukin-34, and cell surface glycoprotein CD200 receptor 1. Chondrodegenerative enzymes and products of cartilage degeneration all increased over time following injury: MMP-1 (P = 0.08, standardized response mean [SRM] = 1.00), MMP-3 (P = 0.05, SRM = 0.90), ADAM12 (P = 0.03, SRM = 1.31), aggrecan (P = 0.08, SRM = 1.13), and CTX-II (P = 0.07, SRM = 0.56). Notable pathways that were differentially expressed following injury were the cytokine-cytokine receptor interaction and osteoclast differentiation pathways. CONCLUSIONS The proteomic results and pathway analysis demonstrated a pattern of cartilage degeneration, not only consistent with previous findings but also changes consistent with an inflammatory arthritogenic process post-ACL injury.
Collapse
Affiliation(s)
- John D. King
- Department of Orthopedic Surgery,
University of Kentucky, Lexington, KY, USA
| | - Grant Rowland
- Central Texas Sports Medicine &
Orthopedics, Bryan, TX, USA
| | | | - James Warwick
- College of Medicine, University of
Kentucky, Lexington, KY, USA
| | - Virginia B. Kraus
- Duke Molecular Physiology Institute,
Department of Medicine, Duke University School of Medicine, Durham, NC, USA,Division of Rheumatology, Department of
Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Harvard Medical School and Brigham and Women’s Hosptial, Chestnut Hill, MS,
USA
| | - Cale A. Jacobs
- Department of Orthopedic Surgery,
University of Kentucky, Lexington, KY, USA,Cale A. Jacobs, Department of Orthopedic
Surgery & Sports Medicine, University of Kentucky, 740 South Limestone
Street, Room K426, Lexington, KY 40536-0284, USA.
| |
Collapse
|
41
|
Wang LJ, Zeng N, Yan ZP, Li JT, Ni GX. Post-traumatic osteoarthritis following ACL injury. Arthritis Res Ther 2020; 22:57. [PMID: 32209130 PMCID: PMC7092615 DOI: 10.1186/s13075-020-02156-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Post-traumatic osteoarthritis (PTOA) develops after joint injury. Specifically, patients with anterior cruciate ligament (ACL) injury have a high risk of developing PTOA. In this review, we outline the incidence of ACL injury that progresses to PTOA, analyze the role of ACL reconstruction in preventing PTOA, suggest possible mechanisms thought to be responsible for PTOA, evaluate current diagnostic methods for detecting early OA, and discuss potential interventions to combat PTOA. We also identify important directions for future research. Although much work has been done, the incidence of PTOA among patients with a history of ACL injury remains high due to the complexity of ACL injury progression to PTOA, the lack of sensitive and easily accessible diagnostic methods to detect OA development, and the limitations of current treatments. A number of factors are thought to be involved in the underlying mechanism, including structural factors, biological factors, mechanical factors, and neuromuscular factor. Since there is a clear "start point" for PTOA, early detection and intervention is of great importance. Currently, imaging modalities and specific biomarkers allow early detection of PTOA. However, none of them is both sensitive and easily accessible. After ACL injury, many patients undergo surgical reconstruction of ACL to restore joint stability and prevent excessive loading. However, convincing evidence is still lacking for the superiority of ACL-R to conservative management in term of the incidence of PTOA. As for non-surgical treatment such as anti-cytokine and chemokine interventions, most of them are investigated in animal studies and have not been applied to humans. A complete understanding of mechanisms to stratify the patients into different subgroups on the basis of risk factors is critical. And the improvement of standardized and quantitative assessment techniques is necessary to guide intervention. Moreover, treatments targeted toward different pathogenic pathways may be crucial to the management of PTOA in the future.
Collapse
Affiliation(s)
- Li-Juan Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
42
|
Huang M, Li Y, Li H, Liao C, Xu H, Luo X. Predictive effects of the intercondylar notch morphology on anterior cruciate ligament injury in males: A magnetic resonance imaging analysis. Medicine (Baltimore) 2020; 99:e19411. [PMID: 32150091 PMCID: PMC7478693 DOI: 10.1097/md.0000000000019411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The effects of the intercondylar notch morphology on predicting anterior crucaite ligament (ACL) injury in males were unknown. We aimed to determine the risk factors of the intercondylar notch on ACL injury, and evaluate the predictive effects of the morphological parameters on ACL injury in males. Sixty-one patients with ACL injury and seventy-eight patients with intact ACLs were assigned to the case group and control group respectively. The notch width (NW), bicondylar width, notch width index (NWI), notch height (NH), notch cross-sectional area (CSA), notch angle (NA) and notch shape were obtained from the magnetic resonance images of male patients. Comparisons were performed between the case and control groups. Logistic regression model and the receiver operating characteristic curve were used to assess the predictive effects of these parameters on ACL injury. The NW, NWI, NH, CSA and NA in the case group were significantly smaller than those in the control group on the coronal magnetic resonance images. The NW and NWI were significantly smaller, while no significant differences of the NH and CSA were found between the 2 groups on the axial images. There was no significant difference in the notch shape between the 2 groups. The maximum value of area under the curve calculated by combining all relevant morphological parameters was 0.966. The ACL injury in males was associated with NW, NH, NWI, CSA, and NA. These were good indicators for predicting ACL injury in males.
Collapse
Affiliation(s)
- Mengquan Huang
- Department of Orthopaedics, Air Force Hospital of Southern Theater Command of PLA
| | - Yubiao Li
- Department of Orthopaedics, Air Force Hospital of Southern Theater Command of PLA
| | - Hedan Li
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University
| | - Chunlai Liao
- Department of Orthopaedics, Air Force Hospital of Southern Theater Command of PLA
| | - Haitao Xu
- Department of Orthopaedics, Qifu Hospital, Guangzhou, Guangdong Province, China
| | - Xiaowei Luo
- Department of Orthopaedics, Air Force Hospital of Southern Theater Command of PLA
| |
Collapse
|
43
|
Zhu J, Zhu Y, Xiao W, Hu Y, Li Y. Instability and excessive mechanical loading mediate subchondral bone changes to induce osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:350. [PMID: 32355794 PMCID: PMC7186756 DOI: 10.21037/atm.2020.02.103] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background To assess the diversified effects of mechanical instability, excessive mechanical loading on subchondral bone remodeling. And to investigate the underlying cartilage degeneration and osteoarthritis (OA) progression in ipsilateral and contralateral knees, given that OA progression always affects joints bilaterally. Methods Anterior cruciate ligament transection (ACLT) of the left knee was used to induce OA in C57/B6 mice for 1, 3 and 6 months. Both left (ipsilateral) and right (contralateral) knees underwent micro-computerized tomography (micro-CT) scan and morphological analysis. The subchondral bone metabolism analysis by immunostaining of tartrate-resistant acid phosphatase (TRAP) and Osterix. Behavioral analyses including von Frey test and CatWalk gait analysis were also performed. Western blot analysis was performed to assess the signaling pathways involved in OA progression. Results Analyses showed that various changes in ipsilateral and contralateral knees lead to OA progression. Articular cartilage was rapidly destroyed on the ipsilateral side but was only gradually destroyed on the contralateral side. Micro-CT data showed a rapid decrease with a subsequent partial recovery of bone volume in the late stage on the ipsilateral side, while a gradual condensation of bone density was seen on the contralateral side. Immunostaining showed increased osteoclastic and osteoblastic activity in the early stage on the ipsilateral side, but only slight osteoblastic changes on the contralateral side. Behavioral analyses including von Frey and gait analysis showed that contralateral knees compensate ipsilateral mechanical loading, but also that this mechanism failed to work in the late stage. Conclusions Diversified mechanical loading properties lead to OA progression through different mechanisms of subchondral bone remodeling. Acute ACLT led to OA through bone density reduction, while the contralateral side developed OA gradually due to subchondral bone sclerosis.
Collapse
Affiliation(s)
- Jianxi Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yong Zhu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenfeng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
44
|
Hunt ER, Villasanta-Tezanos AG, Butterfield TA, Lattermann C, Jacobs CA. Upregulation of Systemic Inflammatory Pathways Following Anterior Cruciate Ligament Injury Relates to Both Cartilage and Muscular Changes: A Pilot Study. J Orthop Res 2020; 38:387-392. [PMID: 31517396 DOI: 10.1002/jor.24467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/03/2019] [Indexed: 02/04/2023]
Abstract
In conjunction with cartilage breakdown, muscle maladaptation including atrophy and increased fibrosis have been observed in the quadriceps following anterior cruciate ligament (ACL) injury. Previously observed upregulated muscle-related proteins in the synovial fluid following ACL rupture allude to cellular communication between the joint and muscle. Therefore, the purpose of this study was to determine whether muscle-related analytes are differentially expressed in the serum. Sixteen patients with an acute ACL tear participated in this IRB-approved study. Serum was obtained at two different time points at a mean of 6 and 14 days post-injury, and serum was analyzed by a highly multiplexed assay of 1,300 proteins. Pathway analysis using DAVID was performed; genes included met three criteria: significant change between the two study time points using a paired t test, significant change between the two study time points using a Mann-Whitney non-parametric test, and significant Benjamini post hoc analysis. Twelve analytes significantly increased between time points. Proteins chitinase-3-like protein 1 (p = 0.01), insulin-like growth factor binding protein 1 (p = 0.01), insulin-like growth factor binding protein 5 (p = 0.02), renin (p = 0.004), and lymphotoxin alpha 1: beta 2 (p = 0.03) were significantly upregulated in serum following acute ACL injury. The current results confirm the inflammatory pattern previously seen in the synovial fluid thought to play a role in the progression of post-traumatic osteoarthritis after ACL injury, and this data also provides further insights into important communication between the joint and quadriceps group, whose function is important in long term health. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:387-392, 2020.
Collapse
Affiliation(s)
- Emily R Hunt
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| | | | - Timothy A Butterfield
- College of Health Sciences, Rehabilitation Science PhD Program, University of Kentucky, Lexington, Kentucky
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cale A Jacobs
- Department of Orthopedic Surgery, University of Kentucky, 740 S Limestone, Suite K401, Lexington, Kentucky, 40536-0284
| |
Collapse
|
45
|
Heilmeier U, Mamoto K, Amano K, Eck B, Tanaka M, Bullen JA, Schwaiger BJ, Huebner JL, Stabler TV, Kraus VB, Ma CB, Link TM, Li X. Infrapatellar fat pad abnormalities are associated with a higher inflammatory synovial fluid cytokine profile in young adults following ACL tear. Osteoarthritis Cartilage 2020; 28:82-91. [PMID: 31526878 PMCID: PMC6935420 DOI: 10.1016/j.joca.2019.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/08/2019] [Accepted: 09/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the degree of knee fat pad abnormalities after acute anterior cruciate ligament (ACL) tear via magnetic resonance fat pad scoring and to assess cross-sectionally its association with synovial fluid biomarkers and with early cartilage damage as quantified via T1ρ and T2 relaxation time measurements. DESIGN 26 patients with acute ACL tears underwent 3T MR scanning of the injured knee prior to ACL reconstruction. The presence and degree of abnormalities of the infrapatellar (IPFP) and the suprapatellar (SPFP) fat pads were scored on MR images along with grading of effusion-synovitis and synovial proliferations. Knee cartilage composition was assessed by 3T MR T1ρ and T2 mapping in six knee compartments. We quantified concentrations of 20 biomarkers in synovial fluid aspirated at the time of ACL reconstruction. Spearman rank partial correlations with adjustments for age and gender were employed to evaluate correlations of MR, particularly cartilage composition and fat pad abnormalities, and biomarker data. RESULTS The degree of IPFP abnormality correlated positively with the synovial levels of the inflammatory cytokine markers IFN-γ (ρpartial = 0.64, 95% CI (0.26-0.85)), IL-10 (ρpartial = 0.47, 95% CI (0.04-0.75)), IL-6 (ρpartial = 0.56, 95% CI (0.16-0.81)), IL-8 (ρpartial = 0.49, 95% CI (0.06-0.76)), TNF-α (ρpartial = 0.55, 95% CI (0.14-0.80)) and of the chondrodestructive markers MMP-1 and -3 (MMP-1: ρpartial = 0.57, 95% CI (0.17-0.81); MMP-3: ρpartial = 0.60, 95% CI (0.21-0.83)). IPFP abnormalities were significantly associated with higher T1ρ and T2 values in the trochlear cartilage (T1ρ: ρpartial = 0.55, 95% CI (0.15-0.80); T2: ρpartial = 0.58, 95% CI (0.18-0.81)) and with higher T2 values in the medial femoral, medial tibial as well as in patellar cartilage (0.45 ≤ ρpartial ≤ 0.59). Correlations between SPFP abnormalities and synovial markers were not significant except for IL-6 (ρpartial = 0.57, 95% CI (0.17-0.81)). CONCLUSIONS This exploratory study suggests that acute ACL rupture can be associated with damage to knee tissues such as the inferior fat pad of the knee. Such fat pad injury could be partially responsible for the apparent post-injury pro-inflammatory response noted in ACL-injured individuals. However, future longitudinal studies are needed to link ACL-rupture associated fat pad injury with important patient outcomes such as the development of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- U Heilmeier
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA.
| | - K Mamoto
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA; Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA; Department of Orthopaedic Surgery, Osaka City University Medical School, Osaka, Japan.
| | - K Amano
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA.
| | - B Eck
- Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA.
| | - M Tanaka
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA.
| | - J A Bullen
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA.
| | - B J Schwaiger
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA.
| | - J L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| | - T V Stabler
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| | - C B Ma
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - T M Link
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA.
| | - X Li
- Department of Radiology and Biomedical Imaging, Musculoskeletal Quantitative Imaging Research, University of California San Francisco, San Francisco, CA, USA; Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
46
|
Connizzo BK, Grodzinsky AJ. Lose-Dose Administration of Dexamethasone Is Beneficial in Preventing Secondary Tendon Damage in a Stress-Deprived Joint Injury Explant Model. J Orthop Res 2020; 38:139-149. [PMID: 31441099 PMCID: PMC7268908 DOI: 10.1002/jor.24451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/13/2019] [Indexed: 02/04/2023]
Abstract
Secondary joint damage is the process by which a single injury can lead to detrimental changes in adjacent tissue structures, typically through the spread of inflammatory responses. We recently developed an in vitro model of secondary joint damage using a murine rotator cuff explant system, in which injuries to muscle and bone cause massive cell death in otherwise uninjured tendon. The purpose of the present study was to test the ability cytokine-targeted and broad-spectrum therapeutics to prevent cell death and tissue degeneration associated with secondary joint damage. We treated injured bone-tendon-muscle explants with either interleukin-1 receptor antagonist, etanercept, or dexamethasone (DEX) for up to 7 days in culture. Only the low-dose DEX treatment was able to prevent cell death and tissue degeneration. We then identified a critical window between 24 and 72 h following injury for maximal benefit of DEX treatment through timed administration experiments. Finally, we performed two tendon-only explant studies to identify mechanistic effects on tendon health. Interestingly, DEX did not prevent cell death and degeneration in a model of cytokine-induced damage, suggesting other targets of DEX activity. Future studies will aim to identify factors in joint inflammation that may be targeted by DEX treatment, as well as to investigate novel delivery strategies. Statement of clinical significance: Overall, this work demonstrates beneficial effects of DEX administration on preventing tenocyte death and extracellular matrix degeneration in an explant model of secondary joint damage, supporting the clinical use of low-dose glucocorticoids for short-term treatment of joint inflammation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:139-149, 2020.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, United States,Correspondence: Brianne K. Connizzo,
70 Massachusetts Avenue, NE47-377, Cambridge, MA 02139, T: 617-253-2469,
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, United States,Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
47
|
Huynh RN, Pesante B, Nehmetallah G, Raub CB. Polarized reflectance from articular cartilage depends upon superficial zone collagen network microstructure. BIOMEDICAL OPTICS EXPRESS 2019; 10:5518-5534. [PMID: 31799028 PMCID: PMC6865123 DOI: 10.1364/boe.10.005518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 05/02/2023]
Abstract
Polarized reflectance from articular cartilage involves light scattering dependent on surface features, sub-surface optical properties, and collagen birefringence. To understand how surface roughness, zonal collagen microstructure, and chondrocyte organization contribute to polarized reflectance signals, experiments were conducted on bovine cartilage explants and osteochondral cores to compare polarized reflectance texture with split lines and relate these signals to cartilage zonal features and chondrocyte distribution. Texture parameter sensitivity to articular surface damage was determined from polarized reflectance maps and optimized to detect surface damage. Results indicate that polarized reflectance texture predominantly derives from the superficial zone collagen network, while the parameter average value also depends on surface roughness and total cartilage thickness.
Collapse
Affiliation(s)
- R. N. Huynh
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Ave NE., Washington, DC 20064, USA
| | - B. Pesante
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Ave NE., Washington, DC 20064, USA
| | - G. Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, 620 Michigan Ave NE., Washington, DC 20064, USA
| | - C. B. Raub
- Department of Biomedical Engineering, The Catholic University of America, 620 Michigan Ave NE., Washington, DC 20064, USA
| |
Collapse
|
48
|
Deng ZH, Cheng C, Tian J, Zhang FJ. Could The Levels of Inflammatory Biomarkers Predict Osteoarthritis? Comment on the Article by Roemer et al. Arthritis Rheumatol 2019; 71:1587-1588. [PMID: 31131979 DOI: 10.1002/art.40938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhen-Han Deng
- Shenzhen Second People's Hospital, The First Hospital Affiliated to Shenzhen University, Shenzhen, China
| | | | - Jian Tian
- Xiangya Hospital of Central South University, Changsha, China
| | - Fang-Jie Zhang
- Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
49
|
Krishnan C, Washabaugh EP, Dutt-Mazumder A, Brown SR, Wojtys EM, Palmieri-Smith RM. Conditioning Brain Responses to Improve Quadriceps Function in an Individual With Anterior Cruciate Ligament Reconstruction. Sports Health 2019; 11:306-315. [PMID: 30951444 DOI: 10.1177/1941738119835163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Persistent quadriceps weakness and activation failure are common in individuals with anterior cruciate ligament (ACL) reconstruction. A growing body of evidence indicates that this chronic quadriceps dysfunction could be partly mediated due to reduced corticospinal excitability. However, current rehabilitation approaches do not directly target corticospinal deficits, which may be critical for restoring optimal clinical outcomes after the surgery. This case study tested the feasibility of operant conditioning of torque responses evoked by transcranial magnetic stimulation (TMS) to improve quadriceps function after ACL reconstruction. HYPOTHESIS Operant conditioning of motor evoked torque responses would improve quadriceps strength, voluntary activation, and corticospinal excitability. STUDY DESIGN Case study and research report. LEVEL OF EVIDENCE Level 5. METHODS A 24-year-old male with an ACL reconstruction (6 months postsurgery) trained for 20 sessions (2-3 times per week for 8 weeks) to increase his TMS-induced motor evoked torque response (MEP torque) of the quadriceps muscles using operant conditioning principles. Knee extensor strength, voluntary quadriceps muscle activation, and quadriceps corticospinal excitability were evaluated at 3 time points: preintervention (pre), 4 weeks (mid), and immediately after the intervention (post). RESULTS The participant was able to successfully condition (ie, increase) the quadriceps MEP torque after 1 training session, and the conditioned MEP torque gradually increased over the course of 20 training sessions to reach about 500% of the initial value at the end of training. The participant's control MEP torque values and corticospinal excitability, which were measured outside of the conditioning paradigm, also increased with training. These changes were paralleled by improvements in knee extensor strength and voluntary quadriceps muscle activation. CONCLUSION This study shows that operant conditioning of MEP torque is a feasible approach to improving quadriceps corticospinal excitability and quadriceps function after ACL reconstruction and encourages further testing in a larger cohort of ACL-reconstructed individuals. CLINICAL RELEVANCE Operant conditioning may serve as a potential therapeutic adjuvant for ACL rehabilitation.
Collapse
Affiliation(s)
- Chandramouli Krishnan
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Robotics Institute, University of Michigan, Ann Arbor, Michigan
| | - Edward P Washabaugh
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Aviroop Dutt-Mazumder
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Scott R Brown
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
| | - Edward M Wojtys
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Riann M Palmieri-Smith
- Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Department of Physical Medicine and Rehabilitation, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.,School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
50
|
Weintraub S, Sebro R. Superolateral Hoffa's Fat Pad Edema and Trochlear Sulcal Angle Are Associated With Isolated Medial Patellofemoral Compartment Osteoarthritis. Can Assoc Radiol J 2018; 69:450-457. [PMID: 30390962 DOI: 10.1016/j.carj.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate whether mediopatellar plica and knee morphometric measurements obtained from magnetic resonance imaging (MRI) studies are associated with isolated medial patellofemoral osteoarthritis in young adults. METHODS MRI studies from 60 patients with isolated medial patellofemoral osteoarthritis and 90 control patients with normal knee MRI studies were reviewed. The presence of mediopatellar plica, the presence of edema in the superolateral aspect of Hoffa's fat pad and suprapatellar fat pad, quadriceps and patellar tendinosis, and axial and sagittal alignment of the patellar and trochlear morphology were assessed using MRI. The relationship between mediopatellar plica, alignment, or morphology and the presence of isolated medial patellofemoral osteoarthritis was evaluated using logistic regression. RESULTS Superolateral Hoffa's fat pad edema (odds ratio [OR] = 3.4, P = .009) and decreased trochlear sulcal angle (OR = 0.95, P = .045) were associated with increased odds of isolated medial patellofemoral osteoarthritis. Decreased lateral patellar tilt (OR = 0.93, P = .087) and patellar tendinosis (OR = 4.13, P = .103) trended toward being associated with increased odds of isolated medial patellofemoral osteoarthritis but were not statistically significant. No significant association was seen between the presence of mediopatellar plica and medial patellofemoral osteoarthritis (OR = 0.95, P = .353). CONCLUSIONS Medial patellofemoral osteoarthritis is associated with trochlear morphology and patellar alignment but not with mediopatellar plica.
Collapse
Affiliation(s)
- Sara Weintraub
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronnie Sebro
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|