1
|
Luca T, Malfa GA, Siracusa L, La Mantia A, Bianchi S, Napoli E, Puleo S, Sergi A, Acquaviva R, Castorina S. Redox State Modulatory Activity and Cytotoxicity of Olea europaea L. (Oleaceae) Leaves Extract Enriched in Polyphenols Using Macroporous Resin. Antioxidants (Basel) 2024; 13:73. [PMID: 38247497 PMCID: PMC10812475 DOI: 10.3390/antiox13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/23/2024] Open
Abstract
The food products derived from Olea europaea are a fundamental part of the Mediterranean diet, and their health-promoting effects are well known. In this study, we analyzed the phytochemical characteristics, the redox state modulatory activity, and the cytotoxic effect of an olive leaf aqueous extract enriched by macroporous resin on different tumor and normal cell lines (LNCaP, PC3, HFF-1). HPLC-DAD analysis, the Folin-Ciocalteu and aluminum chloride methods confirmed the qualitatively and quantitatively high content of phenolic compounds (130.02 ± 2.3 mg GAE/g extract), and a DPPH assay (IC50 = 100.00 ± 1.8 μg/mL), the related antioxidant activity. The biological investigation showed a significant cytotoxic effect, highlighted by an MTT test and the evident cellular morphological changes, on two prostate cancer cell lines. Remarkably, the extract was practically non-toxic on HFF-1 at the concentrations (100, 150, 300 µg/mL) and exposure times tested. Hence, the results are selective for tumor cells. The underlying cytotoxicity was associated with the decrease in ROS production (55% PC3, 42% LNCaP) and the increase in RSH levels (>50% PC3) and an LDH release assay (50% PC3, 40% LNCaP, established necrosis as the main cell death mechanism.
Collapse
Affiliation(s)
- Tonia Luca
- Department of Medical, Surgical Sciences and Advanced Technology, University of Catania, Via Santa Sofia, 95123 Catania, Italy; (T.L.); (S.C.)
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Laura Siracusa
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| | - Alfonsina La Mantia
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, Italian National Research Council ICB-CNR, Via Paolo Gaifami 18, 95126 Catania, Italy; (L.S.); (E.N.)
| | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy;
| | - Angelo Sergi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (A.L.M.); (S.B.); (A.S.); (R.A.)
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Sergio Castorina
- Department of Medical, Surgical Sciences and Advanced Technology, University of Catania, Via Santa Sofia, 95123 Catania, Italy; (T.L.); (S.C.)
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy;
| |
Collapse
|
2
|
Treatment effects in prostate cancer. Mod Pathol 2018; 31:S110-121. [PMID: 29297495 DOI: 10.1038/modpathol.2017.158] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/24/2017] [Accepted: 09/24/2017] [Indexed: 02/01/2023]
Abstract
Nonsurgical treatments for prostate cancer include androgen-deprivation therapy (ADT), radiation therapy (RT), ablative therapies, chemotherapy, and newly emerging immunotherapies. These approaches can be used alone or in combination depending on the clinical scenario. ADT is typically reserved for high-risk locally or systemically advanced disease that is not amenable to curative surgery. Radiation therapy can be used instead of surgery as primary therapy with curative intent for low-intermediate-risk disease as well as for control of locally advanced disease not suitable for surgery. Ablative therapies can be used as primary therapy for low-intermediate-risk disease or as salvage therapy for clinically localized disease where RT has failed. Chemotherapy and immune-based therapies are currently used for androgen-independent disease, although the indications for these approaches may well change as new data from clinical trials accrue. Pathologists should be able to recognize tissue changes associated with these treatments to provide information that will optimize patient management. This is particularly true in situations where clinical history of recent or remote nonsurgical treatment is not provided with the specimen. In the absence of this information, pathologists encountering the features described herein are encouraged to review patient records or communicate directly with clinical colleagues to determine how a given patient was treated and when.
Collapse
|