1
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
2
|
Shroff SN, Das SL, Tseng HA, Noueihed J, Fernandez F, White JA, Chen CS, Han X. Voltage Imaging of Cardiac Cells and Tissue Using the Genetically Encoded Voltage Sensor Archon1. iScience 2020; 23:100974. [PMID: 32299055 PMCID: PMC7160579 DOI: 10.1016/j.isci.2020.100974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 01/19/2023] Open
Abstract
Precise measurement of action potentials (APs) is needed to observe electrical activity and cellular communication within cardiac tissue. Voltage-sensitive dyes (VSDs) are traditionally used to measure cardiac APs; however, they require acute chemical addition that prevents chronic imaging. Genetically encoded voltage indicators (GEVIs) enable long-term studies of APs without the need of chemical additions, but current GEVIs used in cardiac tissue exhibit poor kinetics and/or low signal to noise (SNR). Here, we demonstrate the use of Archon1, a recently developed GEVI, in hiPSC-derived cardiomyocytes (CMs). When expressed in CMs, Archon1 demonstrated fast kinetics comparable with patch-clamp electrophysiology and high SNR significantly greater than the VSD Di-8-ANEPPS. Additionally, Archon1 enabled monitoring of APs across multiple cells simultaneously in 3D cardiac tissues. These results highlight Archon1's capability to investigate the electrical activity of CMs in a variety of applications and its potential to probe functionally complex in vitro models, as well as in vivo systems.
Collapse
Affiliation(s)
- Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Shoshana L Das
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jad Noueihed
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Fernando Fernandez
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - John A White
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
3
|
Misner DL, Kauss MA, Singh J, Uppal H, Bruening-Wright A, Liederer BM, Lin T, McCray B, La N, Nguyen T, Sampath D, Dragovich PS, O'Brien T, Zabka TS. Cardiotoxicity Associated with Nicotinamide Phosphoribosyltransferase Inhibitors in Rodents and in Rat and Human-Derived Cells Lines. Cardiovasc Toxicol 2018; 17:307-318. [PMID: 27783203 DOI: 10.1007/s12012-016-9387-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein that functions as an enzyme, cytokine, growth factor and hormone. As a target for oncology, NAMPT is particularly attractive, because it catalyzes the rate-limiting step in the salvage pathway to generate nicotinamide adenine dinucleotide (NAD), a universal energy- and signal-carrying molecule involved in cellular energy metabolism and many homeostatic functions. Inhibition of NAMPT generally results in NAD depletion, followed by ATP reduction and loss of cell viability. Herein, we describe NAMPT inhibitor (NAMPTi)-induced cardiac toxicity in rodents following short-term administration (2-7 days) of NAMPTi's. The cardiac toxicity was interpreted as a functional effect leading to congestive heart failure, characterized by sudden death, thoracic and abdominal effusion, and myocardial degeneration. Based on exposures in the initial in vivo safety rodent studies and cardiotoxicity observed, we conducted studies in rat and human in vitro cardiomyocyte cell systems. Based on those results, combined with human cell line potency data, we demonstrated the toxicity is both on-target and likely human relevant. This toxicity was mitigated in vitro by co-administration of nicotinic acid (NA), which can enable NAD production through the NAMPT-independent pathway; however, this resulted in only partial mitigation in in vivo studies. This work also highlights the usefulness and predictivity of in vitro cardiomyocyte assays using human cells to rank-order compounds against potency in cell-based pharmacology assays. Lastly, this work strengthens the correlation between cardiomyocyte cell viability and functionality, suggesting that these assays together may enable early assessment of cardiotoxicity in vitro prior to conduct of in vivo studies and potentially reduce subsequent attrition due to cardiotoxicity.
Collapse
Affiliation(s)
- D L Misner
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA.
| | - M A Kauss
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - J Singh
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - H Uppal
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | | | - B M Liederer
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Lin
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - B McCray
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - N La
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T Nguyen
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - D Sampath
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - P S Dragovich
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T O'Brien
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| | - T S Zabka
- Genentech, 1 DNA Way, M/S 59, South San Francisco, CA, 94080, USA
| |
Collapse
|
4
|
Seale NM, Varghese S. Biomaterials for pluripotent stem cell engineering: From fate determination to vascularization. J Mater Chem B 2016; 4:3454-3463. [PMID: 27446588 DOI: 10.1039/c5tb02658j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advancements in material science and engineering may hold the key to overcoming reproducibility and scalability limitations currently hindering the clinical translation of stem cell therapies. Biomaterial assisted differentiation commitment of stem cells and modulation of their in vivo function could have significant impact in stem cell-centred regenerative medicine approaches and next gen technological platforms. Synthetic biomaterials are of particular interest as they provide a consistent, chemically defined, and tunable way of mimicking the physical and chemical properties of the natural tissue or cell environment. Combining emerging biomaterial and biofabrication advancements may finally give researchers the tools to modulate spatiotemporal complexity and engineer more hierarchically complex, physiologically relevant tissue mimics. In this review we highlight recent research advancements in biomaterial assisted pluripotent stem cell (PSC) expansion and three dimensional (3D) tissue formation strategies. Furthermore, since vascularization is a major challenge affecting the in vivo function of engineered tissues, we discuss recent developments in vascularization strategies and assess their ability to produce perfusable and functional vasculature that can be integrated with the host tissue.
Collapse
Affiliation(s)
- Nailah M Seale
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| | - Shyni Varghese
- Department of Bioengineering, University of California-San Diego, La Jolla, USA
| |
Collapse
|
5
|
Kurokawa YK, George SC. Tissue engineering the cardiac microenvironment: Multicellular microphysiological systems for drug screening. Adv Drug Deliv Rev 2016; 96:225-33. [PMID: 26212156 PMCID: PMC4869857 DOI: 10.1016/j.addr.2015.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 12/29/2022]
Abstract
The ability to accurately detect cardiotoxicity has become increasingly important in the development of new drugs. Since the advent of human pluripotent stem cell-derived cardiomyocytes, researchers have explored their use in creating an in vitro drug screening platform. Recently, there has been increasing interest in creating 3D microphysiological models of the heart as a tool to detect cardiotoxic compounds. By recapitulating the complex microenvironment that exists in the native heart, cardiac microphysiological systems have the potential to provide a more accurate pharmacological response compared to current standards in preclinical drug screening. This review aims to provide an overview on the progress made in creating advanced models of the human heart, including the significance and contributions of the various cellular and extracellular components to cardiac function.
Collapse
Affiliation(s)
- Yosuke K Kurokawa
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Steven C George
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy, Environment, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|