1
|
Abe N, Kono M, Iwata I, Atsumi T. Lupus-induced autoimmune chloride channelopathy like myotonia congenita, successfully treated with immunosuppression. Rheumatology (Oxford) 2021; 61:e4-e5. [PMID: 34382064 DOI: 10.1093/rheumatology/keab648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Nobuya Abe
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Michihito Kono
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Zhao C, Tang D, Huang H, Tang H, Yang Y, Yang M, Luo Y, Tao H, Tang J, Zhou X, Shi X. Myotonia congenita and periodic hypokalemia paralysis in a consanguineous marriage pedigree: Coexistence of a novel CLCN1 mutation and an SCN4A mutation. PLoS One 2020; 15:e0233017. [PMID: 32407401 PMCID: PMC7224471 DOI: 10.1371/journal.pone.0233017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
Myotonia congenita and hypokalemic periodic paralysis type 2 are both rare genetic channelopathies caused by mutations in the CLCN1 gene encoding voltage-gated chloride channel CLC-1 and the SCN4A gene encoding voltage-gated sodium channel Nav1.4. The patients with concomitant mutations in both genes manifested different unique symptoms from mutations in these genes separately. Here, we describe a patient with myotonia and periodic paralysis in a consanguineous marriage pedigree. By using whole-exome sequencing, a novel F306S variant in the CLCN1 gene and a known R222W mutation in the SCN4A gene were identified in the pedigree. Patch clamp analysis revealed that the F306S mutant reduced the opening probability of CLC-1 and chloride conductance. Our study expanded the CLCN1 mutation database. We emphasized the value of whole-exome sequencing for differential diagnosis in atypical myotonic patients.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - DongFang Tang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haiyan Tang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Intensive Care Unit, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Yang
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingying Luo
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huai Tao
- Depatment of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (XZ); (XLS)
| |
Collapse
|
3
|
Zhou HY, Zhan FX, Tian WT, Zhang C, Wang Y, Zhu ZY, Liu XL, Xu YQ, Luan XH, Huang XJ, Chen SD, Cao L. The study of exercise tests in paroxysmal kinesigenic dyskinesia. Clin Neurophysiol 2018; 129:2435-2441. [PMID: 30293034 DOI: 10.1016/j.clinph.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/14/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To unravel if there was muscular ion channel dysfunction in paroxysmal kinesigenic dyskinesia (PKD) patients using the exercises tests (ET). METHODS Sixty PKD patients including 28 PRRT2 mutations carriers were enrolled in this study, as well as 19 hypokalaemic periodic paralysis (HypoPP) patients as the positive controls and 45 healthy subjects as the negative controls. ET including long exercise test (LET) and short exercise test (SET) was performed in the corresponding subjects. RESULTS In the LET, both the overall PKD patients and HypoPP patients had greater CMAP amplitude and area increments during exercise than healthy controls. At most 25% of PKD patients were identified from the normality with greater amplitude increment than the area. On the contrary, 50% of HypoPP patients were differentiated with greater area increment than the amplitude. More percentage of PRRT2- patients than PRRT2+ patients had abnormal average amplitude increment. Unexpectedly, five PKD patients had abnormal maximum CMAP amplitude decrements after exercise in the LET, and one had abnormal maximum immediate amplitude decrement in the SET. CONCLUSIONS Distinct ET manifestations were found in PKD patients compared to normal controls and HypoPP patients. SIGNIFICANCE Abnormal muscle membrane excitability might be involved in the mechanisms responsible for PKD.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Xia Zhan
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wo-Tu Tian
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Yu Zhu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Yang-Qi Xu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Hua Luan
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jun Huang
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Li Cao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Paroxysmal kinesigenic dyskinesia and myotonia congenita in the same family: coexistence of a PRRT2 mutation and two CLCN1 mutations. Neurosci Bull 2014; 30:1010-1016. [PMID: 25205014 DOI: 10.1007/s12264-014-1467-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/28/2014] [Indexed: 10/24/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) and myotonia congenita (MC) are independent disorders that share some clinical features. We aimed to investigate the sequences of PRRT2 and CLCN1 in a proband diagnosed with PKD and suspected MC. Clinical evaluation and auxiliary examinations were performed. Direct sequencing of the entire coding regions of the PRRT2 and CLCN1 genes was conducted. Haplotype analysis confirmed the relationships among the family members. The proband suffered choreoathetosis attacks triggered by sudden movements, and lower-limb weakness and stiffness that worsened in cold weather. Carbamazepine monotherapy completely controlled his choreoathetosis and significantly relieved his limb weakness and stiffness. His father, when young, had similar limb stiffness, while his mother and brother were asymptomatic. Genetic analysis revealed that the proband and his father harbored a PRRT2 c.649dupC mutation, and CLCN1 c.1723C>T and c.2492A>G mutations. His brother carried only the two CLCN1 mutations. None of these mutations were identified in his mother and 150 unrelated controls. This is the first report showing the coexistence of PRRT2 and CLCN1 mutations. Our results also indicate that both the PRRT2 and CLCN1 genes need to be screened if we fail to identify PRRT2 mutations in PKD patients or CLCN1 mutations in MC patients.
Collapse
|
5
|
Bandschapp O, Iaizzo PA. Pathophysiologic and anesthetic considerations for patients with myotonia congenita or periodic paralyses. Paediatr Anaesth 2013; 23:824-33. [PMID: 23802937 DOI: 10.1111/pan.12217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2013] [Indexed: 12/13/2022]
Abstract
Myotonia congenita and periodic paralyses are hereditary skeletal muscle channelopathies. In these disorders, various channel defects in the sarcolemma lead to a severely disturbed membrane excitability of the affected skeletal muscles. The clinical picture can range from severe myotonic reactions (e.g., masseter spasm, opisthotonus) to attacks of weakness and paralysis. Provided here is a short overview of the pathomechanisms behind such wide-ranging phenotypic presentations in these patients, followed by recommendations concerning the management of anesthesia in such populations.
Collapse
Affiliation(s)
- Oliver Bandschapp
- Department of Anesthesia, Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, Basel, Switzerland.
| | | |
Collapse
|
6
|
Ercolin B, Sassi FC, Mangilli LD, Mendonça LIZ, Limongi SCO, de Andrade CRF. Oral Motor Movements and Swallowing in Patients with Myotonic Dystrophy Type 1. Dysphagia 2013; 28:446-54. [DOI: 10.1007/s00455-013-9458-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/08/2013] [Indexed: 01/08/2023]
|
7
|
Albayrak İ, Bağçacı S, Karakaşlı S, Küçükşen S, Sallı A. The Association of Myotonia Congenita and Ankylosing
Spondylitis. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2013. [DOI: 10.29333/ejgm/82373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
The Effects of the KCNQ Openers Retigabine and Flupirtine on Myotonia in Mammalian Skeletal Muscle Induced by a Chloride Channel Blocker. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:803082. [PMID: 22536291 PMCID: PMC3320144 DOI: 10.1155/2012/803082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/12/2012] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to investigate the effect of KCNQ (potassium channel, voltage-gated, KQT-like subfamily) openers in preventing myotonia caused by anthracene-9-carboxylic acid (9-AC, a chloride channel blocker). An animal model of myotonia can be elicited in murine skeletal muscle by 9-AC treatment. KCNQ openers, such as retigabine and flupirtine, can inhibit the increased twitch amplitude (0.1 Hz stimulation) and reduce the tetanic fade (20 Hz stimulations) observed in the presence of 9-AC. Furthermore, the prolonged twitch duration of skeletal muscle was also inhibited by retigabine or flupirtine. Lamotrigine (an anticonvulsant drug) has a lesser effect on the muscle twitch amplitude, tetanic fade, and prolonged twitch duration as compared with KCNQ openers. In experiments using intracellular recordings, retigabine and flupirtine clearly reduced the firing frequencies of repetitive action potentials induced by 9-AC. These data suggested that KCNQ openers prevent the myotonia induced by 9-AC, at least partly through enhancing potassium conductance in skeletal muscle. Taken together, these results indicate that KCNQ openers are potential alternative therapeutic agents for the treatment of myotonia.
Collapse
|