1
|
Bashir S, Hussain SZ, Jan N, Naseer B, Zargar IA, Murtaza I, Yaseen M. Structural integrity, bioactive components, and physico-chemical characteristics of Kashmiri saffron (Crocus sativus L.) as affected by different drying techniques. Food Chem 2025; 476:143511. [PMID: 39999502 DOI: 10.1016/j.foodchem.2025.143511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/30/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
This research investigated the effects of shade drying (SD), freeze drying (FD), vacuum drying (VD) and cabinet drying (CD) on saffron stigmas. Results showed FD was most effective in preserving quality, followed by VD, CD, and SD. Drying methods had no significant (p ≥ 0.05) effects on ash, moisture, and acid-insoluble ash contents. Freeze-dried saffron had the lowest water activity (0.533), bulk density (0.145 g/mL), and volume shrinkage ratio (28), with superior color retention (a* 40.09, b* 17.43) and anthocyanin content (0.73 mg C3GE/g DM). FTIR analysis indicated better crocin preservation with FD. Freeze-dried saffron also exhibited highest DPPH radical scavenging capacity (59.63 %), FRAP values (47.26 mmol/kg), ABTS+ values (75.51 %), total phenolics (72.41 mg GAE/g), crocin (901.44 mg/g), picrocrocin (9.48 mg/g) and safranal (1.80 mg/g) contents. Microstructural analysis confirmed better cellular integrity with FD, making it the most effective method for preserving saffron quality at -80 °C for 44 h.
Collapse
Affiliation(s)
- Shubli Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India.
| | - Imtiyaz A Zargar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Imtiyaz Murtaza
- Division of Basic Sciences and Humanities, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, J&K 190025, India
| |
Collapse
|
2
|
Mansour NE, Metwally KA, Tantawy AA, Elbeltagi A, Salem A, Dewidar AZ, Okasha AM, Moustapha ME, Elwakeel AE. Automated vacuum drying kinetics, thermodynamics, and economic analysis of sage leaves. Sci Rep 2025; 15:18779. [PMID: 40437068 PMCID: PMC12119850 DOI: 10.1038/s41598-025-03367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/20/2025] [Indexed: 06/01/2025] Open
Abstract
Vacuum drying of sage leaves is important for preserving their essential oils, flavor, and medicinal properties by reducing oxidation and thermal degradation, but previous research has not investigated its impact on drying speed, thermodynamic properties, mathematical modeling, or economic viability. This study employed an automatic vacuum dryer at temperatures of 40 °C, 50 °C, and 60 °C under different pressure conditions (atmospheric, -5 kPa, and - 10 kPa) with a 1 cm layer thickness. Results showed that increasing temperature and decreasing pressure significantly improved drying efficiency, reducing the process time to just 90 min while achieving a drying rate of 22.34 kg water/kg dry matter/h and an effective moisture diffusivity of 6.716 × 10⁻⁹ m²/s under optimal conditions (60 °C and - 10 kPa). The Page model was identified as the most suitable for describing the thin-layer drying behavior. Thermodynamic analysis revealed activation energy values between 19.4 and 37.7 kJ/mol, with activation enthalpy decreasing at higher temperatures and lower pressures. The negative activation entropy values indicated chemical adsorption or structural modifications during drying. From an economic perspective, the most efficient drying conditions reduced the payback period to less than two months, demonstrating strong commercial potential. These findings highlight the industrial promise of vacuum drying for herb processing, with future research opportunities in process optimization, application to other herbs, and sustainability assessments to further enhance efficiency and economic benefits.
Collapse
Affiliation(s)
- Nabil Eldesokey Mansour
- Agricultural Engineering Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Khaled A Metwally
- Soil and Water Sciences Department, Faculty of Technology and Development, Zagazig University, Zagazig, 44519, Egypt.
| | - Aml Abubakr Tantawy
- Food Science Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 65211, Egypt
| | - Ahmed Elbeltagi
- Agricultural Engineering Department, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Salem
- Civil Engineering Department, Faculty of Engineering, Minia University, Minia 61111, Egypt.
- Structural Diagnostics and Analysis Research Group, Faculty of Engineering and Information Technology, University of Pécs, Pécs 7622, Hungary.
| | - Ahmed Z Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Abdelaziz M Okasha
- Department of Agricultural Engineering, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Moustapha Eid Moustapha
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Abdallah Elshawadfy Elwakeel
- Agricultural Engineering Department, Faculty of Agriculture and Natural Resources, Aswan University, Aswan, 81528, Egypt
| |
Collapse
|
3
|
Zhao Y, Zhang W, Yang H, Xu Z, Wang X, Zhang Z, Deng J. Effects of drying methods on phytochemicals and antioxidant activity of broccoli by-products. Food Res Int 2025; 208:116284. [PMID: 40263865 DOI: 10.1016/j.foodres.2025.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
The application of drying technology can rationally utilize fruit and vegetable resources and improve their economic benefits. To expand the application range of broccoli stems and leaves and enrich product varieties, drying them is a feasible high-value utilization method. This study aimed to identify the influences of freeze drying, microwave drying, and hot air drying on the metabolite and antioxidant activity of by-products. Phytochemical analysis revealed freeze-dried samples closely resembled fresh samples, while microwave and hot air drying increased phenolic acids, glucosinolates, and alkaloids. Random forest analysis identified the key differential compounds: the top three contributing compounds in leaves were alkaloids, phenolic acids, and glucosinolates, while the top three contributing compounds in stems were phenolic acids, alkaloids, and amino acids. Differences in antioxidant enzyme activities and free radical scavenging rates were linked to changes in flavonoid and glucosinolate content. These results offer novel insights into metabolite profiles of broccoli by-products under various drying methods, highlighting their potential in food applications.
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Ghorbani A, Eghlima G, Farzaneh M, Rezghiyan A. Effect of drying methods on mucilage, anthocyanin content, and antioxidant activity of black hollyhock (Alcea rosea var. nigra). BMC PLANT BIOLOGY 2025; 25:478. [PMID: 40234760 PMCID: PMC11998403 DOI: 10.1186/s12870-025-06524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
This study investigates the impact of different drying methods on the phytochemical composition, antioxidant activity, anthocyanin content, and mucilage percentage of Alcea rosea var. nigra. Drying techniques, including shade drying, sun drying, oven drying (40 °C and 60 °C), and microwave drying (540 W, 720 W and 900 W), were evaluated. The results demonstrated that shade drying preserved the highest levels of total phenol (171.75 mg GAE/g DW in flowers), flavonoids (68.97 mg RE/g DW in flowers), and antioxidant activity (59.61 µmol Fe(II)/g DW in flowers). However, it required the longest drying duration (up to 89 h for roots). Oven drying at 40 °C effectively retained phytochemicals while significantly reducing drying time. Microwave drying (540 W) offered the fastest drying process with acceptable retention of bioactive compounds, whereas higher microwave power (900 W) led to a decline in mucilage content. Overall, shade drying and low-temperature oven drying (40 °C) were the most effective methods for preserving bioactive compounds, while microwave drying provided a rapid alternative with some compromise in quality. These findings offer practical insights for optimizing post-harvest processing to enhance the pharmaceutical and nutritional value of A. rosea var. nigra.
Collapse
Affiliation(s)
- Abbas Ghorbani
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Ayyub Rezghiyan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
5
|
Yang KM, Chen HC, Chuang CH, Chiang YC, Lin LY. Effects of Fingered Citron (Citrus medica var. sarcodactylis) Essential Oil on Improvement in Diet-Induced Hyperlipidemia Syrian Hamsters. J Oleo Sci 2025; 74:321-328. [PMID: 40024785 DOI: 10.5650/jos.ess24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025] Open
Abstract
Preventing hyperlipidemia and the risk of cardiovascular disease are attractive to public health. Essential oils are extremely promising nutrients for use in the treatment of hyperlipidemia, whose effectiveness is closely related to its volatile composition. We extracted fingered citron essential oil (FCEO) with steam distillation, analyzed the chemical composition, and evaluated its effects on hyperlipidemia. We identified 25 volatile compounds of FCEO with GC/MS, of which the main constituents were limonene and γ-terpinene. This study explored the protective effects of FCEOs against diet-induced hyperlipidemia Syrian hamsters. FCEOs treatment ranges from 0.03% to 0.05% with a daily diet. As of 12 weeks later, we found that the administration of the FCEOs improved the serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) levels (p < 0.05). Further, LDL-C/HDL-C (high-density lipoprotein cholesterol) ratios were significantly reduced (39.02-68.07 vs. 80.27). Simultaneously, the FCEOs had improved lipid metabolism and histopathology in the liver. These actions suggest the potential of FCEO as a valuable source of nutraceuticals in diet-based therapies.
Collapse
Affiliation(s)
- Kai-Min Yang
- Department of Food Science, National Quemoy University
| | | | | | - Yi-Chan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University
| | - Li-Yun Lin
- Department of Food Science and Technology, Hungkuang University
| |
Collapse
|
6
|
Xylia P, Chrysargyris A, Tomou EM, Goumenos C, Skaltsa H, Tzortzakis N. Quality Characteristics and Essential Oil Properties of Thymus capitatus, Mentha piperita, and Sideritis cypria Dried under Different Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:3150. [PMID: 39599359 PMCID: PMC11598204 DOI: 10.3390/plants13223150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The drying of medicinal and aromatic plants (MAPs) is one of the main preservation methods for these products that can prolong their shelf life, if performed properly. The current study aimed to examine the effects of different drying conditions (sun, shade, and oven drying at 42 °C) on the quality characteristics of Thymus capitatus, Mentha piperita, and Sideritis cypria; their essential oil (EO) yield; and their biological properties (antioxidant and antibacterial activities). According to the results of the current study, oven drying resulted in faster moisture loss for all investigated species and slightly darker products. For T. capitatus, sun drying resulted in higher EO carvacrol content, whereas EOs obtained from shade and oven drying (at 42 °C) presented high total phenolic content and great antimicrobial activity. For M. piperita, shade drying resulted in a higher EO yield and higher iso-menthone content, whilst the EO obtained from oven-dried mint plants presented great antibacterial activity against the investigated foodborne pathogens. S. cypria plants dried in an air-ventilated oven produced an EO rich in β-caryophyllene and α-pinene, which also presented great antioxidant and antibacterial activity. The findings of the current study indicate that traditional drying methods, such as sun and shade, can result in good-quality dried MAPs that can yield EOs with significant biological activities, along with minimum energy consumption and lower carbon dioxide production (lower environmental carbon footprint), as opposed to oven drying. However, the drying-process duration could be a limitation at the industrial scale.
Collapse
Affiliation(s)
- Panayiota Xylia
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Antonios Chrysargyris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Ekaterina-Michaela Tomou
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Christos Goumenos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Helen Skaltsa
- Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Nikolaos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
7
|
Spadafora ND, Felletti S, Chenet T, Sirangelo TM, Cescon M, Catani M, De Luca C, Stevanin C, Cavazzini A, Pasti L. The influence of drying and storage conditions on the volatilome and cannabinoid content of Cannabis sativa L. inflorescences. Anal Bioanal Chem 2024; 416:3797-3809. [PMID: 38702447 PMCID: PMC11180634 DOI: 10.1007/s00216-024-05321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The increasing interest in hemp and cannabis poses new questions about the influence of drying and storage conditions on the overall aroma and cannabinoids profile of these products. Cannabis inflorescences are subjected to drying shortly after harvest and then to storage in different containers. These steps may cause a process of rapid deterioration with consequent changes in precious secondary metabolite content, negatively impacting on the product quality and potency. In this context, in this work, the investigation of the effects of freeze vs tray drying and three storage conditions on the preservation of cannabis compounds has been performed. A multi-trait approach, combining both solid-phase microextraction (SPME) two-dimensional gas chromatography coupled to mass spectrometry (SPME-GC × GC-MS) and high-performance liquid chromatography (HPLC), is presented for the first time. This approach has permitted to obtain the detailed characterisation of the whole cannabis matrix in terms of volatile compounds and cannabinoids. Moreover, multivariate statistical analyses were performed on the obtained data, helping to show that freeze drying conditions is useful to preserve cannabinoid content, preventing decarboxylation of acid cannabinoids, but leads to a loss of volatile compounds which are responsible for the cannabis aroma. Furthermore, among storage conditions, storage in glass bottle seems more beneficial for the retention of the initial VOC profile compared to open to air dry tray and closed high-density polyethylene box. However, the glass bottle storage condition causes formation of neutral cannabinoids at the expenses of the highly priced acid forms. This work will contribute to help define optimal storage conditions useful to produce highly valuable and high-quality products.
Collapse
Affiliation(s)
- Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy.
| | - Simona Felletti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tiziana Maria Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123, Rome, Italy
| | - Mirco Cescon
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Chiara De Luca
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Claudia Stevanin
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
- Council for Agricultural Research and Economics, CREA, Via Della Navicella 2/4, 00184, Rome, Italy
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
8
|
Hayani M, Benabbouha T, Naceiri Mrabti N, Eljebri S, Sabiri M, Zair T. Bioactive Profiling, Antibacterial Efficacy and Computational Modelling of Myrtus Communis Essential Oil (Morocco). Chem Biodivers 2024; 21:e202302114. [PMID: 38686775 DOI: 10.1002/cbdv.202302114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
In the context of investigations into molecules of natural origin with biological activities. This study focuses on the development of Myrtus communis L., a medicinal plant found in the mountains of Morocco. The first, an analysis carried out on leaves using the inductively coupled plasma spectrometry technique, showed the almost total absence of heavy metals. Furthermore, we aim to identify the chemical composition of its essential oils by gas chromatography-mass spectrometry (GC/MS) analysis and assess its antibacterial efficacy in vitro and in silico. The average yield of essential oils was 0.9 %±0.06, and GC/MS analysis identified 35 constituents, with myrcene (27,38 %), limonene (16,51 %), α-pinene (7,32 %) being the major compounds. Remarkably, the essential oils displayed considerable antibacterial activity against various tested bacteria, including Escherichia coli (0.7 μL/mL), Escherichia pseudocoloides (2.8 μl/ml), Escherichia vekanda (2.8 μl/ml). Molecular docking has contributed to our understanding of the mechanism of antibacterial action of the main compounds in this essential oil.
Collapse
Affiliation(s)
- Mouhcine Hayani
- Research team of Chemistry of Bioactive Molecules and the Environment, Faculty of Science, Moulay Ismail University, BP 50000, Meknes, Morocco
| | - Tariq Benabbouha
- Team of Thermodynamics, Surfaces and Catalysis, Laboratory of Chemistry of Coordination and Analytics LCCA, Faculty of Sciences, Chouaib Doukkali University, BP 24000, El Jadida, Morocco
| | - Nidal Naceiri Mrabti
- Engineering Materials, Modeling and Environmental Laboratory, Faculty of Science, University Sidi Mohammed Ben Abdellah, Dhar Mehraz, Atlas, BP 1796, Fes, Morocco
| | - Said Eljebri
- Team of Ecology and Valorization of Natural Substances, Department of Biology, Faculty of Sciences, Chouaib Doukkali University, BP 24000, El Jadida, Morocco
| | - Maryame Sabiri
- Molecular Chemistry and Natural Substances Laboratory, Moulay Ismail University, Faculty of Sciences, Zitoune, BP 11201, Meknes, Morocco
| | - Touriya Zair
- Research team of Chemistry of Bioactive Molecules and the Environment, Faculty of Science, Moulay Ismail University, BP 50000, Meknes, Morocco
| |
Collapse
|
9
|
Lechkova B, Benbassat N, Karcheva-Bahchevanska D, Ivanov K, Peychev L, Peychev Z, Dyankov S, Georgieva-Dimova Y, Kraev K, Ivanova S. A Comparison between Bulgarian Tanacetum parthenium Essential Oil from Two Different Locations. Molecules 2024; 29:1969. [PMID: 38731460 PMCID: PMC11085318 DOI: 10.3390/molecules29091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tanacetum parthenium L. (Asteraceae) is a perennial herbaceous plant with a long-standing historical use in traditional medicine. Recently Tanacetum parthenium L. essential oil has been associated with a promising potential for future applications in the pharmaceutical industry, in the cosmetics industry, and in agriculture. Investigations on the essential oil (EO) have indicated antimicrobial, antioxidant, and repellent activity. The present study aimed to evaluate the chemical composition of Bulgarian T. parthenium essential oil from two different regions, to compare the results to those reported previously in the literature, and to point out some of its future applications. The essential oils of the air-dried flowering aerial parts were obtained by hydrodistillation using a Clevenger-type apparatus. The chemical composition was evaluated using gas chromatography with mass spectrometry (GC-MS). It was established that the oxygenated monoterpenes were the predominant terpene class, followed by the monoterpene hydrocarbons. Significant qualitative and quantitative differences between both samples were revealed. Camphor (50.90%), camphene (16.12%), and bornyl acetate (6.05%) were the major constituents in the feverfew EO from the western Rhodope Mountains, while in the EO from the central Balkan mountains camphor (45.54%), trans-chrysanthenyl acetate (13.87%), and camphene (13.03%) were the most abundant components.
Collapse
Affiliation(s)
- Borislava Lechkova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Niko Benbassat
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Diana Karcheva-Bahchevanska
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Zhivko Peychev
- Department of Medical Informatics, Biostatistics and E-Learning, Faculty of Public Health, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislav Dyankov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Yoana Georgieva-Dimova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (B.L.); (N.B.); (D.K.-B.); (K.I.); (S.D.); (Y.G.-D.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
10
|
Khalil MNA, Afifi SM, Eltanany BM, Pont L, Benavente F, El-Sonbaty SM, Sedeek MS. Assessment of the effect of drying on Brassica greens via a multiplex approach based on LC-QTOF-MS/MS, molecular networking, and chemometrics along with their antioxidant and anticancer activities. Food Res Int 2024; 180:114053. [PMID: 38395547 DOI: 10.1016/j.foodres.2024.114053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Turnip (Brassica rapa var rapa L.) leaves are a rich source of versatile bioactive phytochemicals with great potential in the food and herbal industries. However, the effect of drying on its constituents has never been studied before. Hereto, three drying techniques were compared, namely, lyophilization (LY), vacuum oven (VO), and shade drying (SD). Chemical profiling utilizing liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS) combined with chemometrics showed the different impacts of the drying methods on the phytochemical composition of the alcoholic leaf extracts. Unsupervised principal component analysis (PCA) and supervised partial least squares-discriminant analysis (PLS-DA) of the LC-QTOF-MS/MS data showed distinct distant clustering across the three drying techniques. Loading plots and VIP scores demonstrated that sinapic acid, isorhamnetin glycosides, and sinapoyl malate were key markers for LY samples. Meanwhile, oxygenated and polyunsaturated fatty acids were characteristic for SD samples and oxygenated polyunsaturated fatty acids and verbascoside were characteristic for VO samples. LY resulted in the highest total phenolics (TP) and total flavonoid (TF) contents followed by SD and VO. LY and SD samples had much higher antioxidant activity than VO measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC), and iron metal chelation assays. According to the anticancer activity, the drying methods were ranked in descending order as SD > LY ≫ VO when tested against colon, breast, liver, and lung cancer cell lines. Among the identified compounds, flavonoids and omega-3 fatty acids were key metabolites responsible for the anticancer activity as revealed by partial least squares (PLS) regression and correlation analyses. In conclusion, compared to LY, SD projected out as a cost-effective drying method without compromising the phytochemical and biological activities of Brassica greens. The current findings lay the foundation for further studies concerned with the valorization of Brassica greens.
Collapse
Affiliation(s)
- Mohammed N A Khalil
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Sherif M Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Basma M Eltanany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona 08028, Spain; Serra Húnter Program, Generalitat de Catalunya, Barcelona 08007, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona 08028, Spain.
| | - Sawsan M El-Sonbaty
- Department of Radiation Microbiology, The National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Nasr City 11787, Egypt
| | - Mohamed S Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Setareh R, Mohammadi-Ghermezgoli K, Ghaffari-Setoubadi H, Alizadeh-Salteh S. The effectiveness of hot-air, infrared and hybrid drying techniques for lemongrass: appearance acceptability, essential oil yield, and volatile compound preservation. Sci Rep 2023; 13:18820. [PMID: 37914737 PMCID: PMC10620145 DOI: 10.1038/s41598-023-44934-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Lemongrass is a fragrant herb with lengthy, thin leaves that contains myrcene (an aromatic compound) as well as citral and geraniol (antimicrobial compounds). Therefore, identifying an appropriate drying method for this plant is crucial for maintaining aromatic and antimicrobial compounds and enhancing the shelf life of the product. This investigation seeks to assess the influence of various drying tactics involving hot air at temperatures of 40, 50, and 60 °C, infrared radiation at intensities of 0.5, 0.6, and 0.8 [Formula: see text], sequential hot-air/infrared, as well as simultaneous hot air-infrared, on the drying mechanism, color, appearance, yield, and essential oil constituents of lemongrass leaves, with the objective of enhancing the marketability of the product. The essential oils of lemongrass were extracted through the process of hydro-distillation, and subsequently, the volatile compounds present were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The findings indicated: (a) The most appropriate technique for preserving optimal color quality of lemongrass leaves was through the application of hot air drying solely at a temperature of 60 °C; (b) To optimize the retention and amplification of the essential oil content in lemongrass, our study recommends the employment of a simultaneous hybrid drying technique involving hot air drying at a temperature of 50 °C in conjunction with infrared drying set at a radiation intensity level of 0.6 [Formula: see text]; and (c) The data analysis demonstrated that in order to achieve elevated levels of volatile compounds, specifically neral and geranial, infrared drying with a radiation intensity of 0.6 and 0.8 [Formula: see text], respectively, was found to be optimal.
Collapse
Affiliation(s)
- Roghayeh Setareh
- Department of Biosystems Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | | | | | - Saeideh Alizadeh-Salteh
- Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Wang Z, Zhong T, Mei X, Chen X, Chen G, Rao S, Zheng X, Yang Z. Comparison of different drying technologies for brocade orange (Citrus sinensis) peels: Changes in color, phytochemical profile, volatile, and biological availability and activity of bioactive compounds. Food Chem 2023; 425:136539. [PMID: 37290238 DOI: 10.1016/j.foodchem.2023.136539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of freeze drying (FD), heat pump drying (HPD), microwave drying (MD), and far-infrared drying (FID) on the quality of brocade orange peels (BOPs). Although the most attractive appearance, maximum levels of ascorbic acid (0.46 mg/g dry weight (DW)), carotenoids (total 16.34 μg/g DW), synephrine (15.58 mg/g DW), limonoids (total 4.60 mg/g DW), phenols (total 9142.80 μg/g DW), and antioxidant activity were observed in FD-BOPs, many aroma components in FD-BOPs were in the minimum levels. HPD-, and MD-BOPs depicted similar trends to FD-BOPs, but they contained the highest concentrations of limonene and β-myrcene. Phenols and ascorbic acid in MD-BOPs generally featured the highest levels of bioavailability, being to 15.99% and 63.94%, respectively. In comparison, FID was not beneficial for the preservation of bioactive compounds and volatile. Therefore, considering time and energy costs, HPD and particularly MD are more appropriate for the commercial production of dried BOPs.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Tao Zhong
- Sichuan Guojian Inspection Co., Ltd., Luzhou, Sichuan 646000, PR China
| | - Xiaofei Mei
- Chongqing Vocational Institute of Engineering, Jiangjin, Chongqing 402260, PR China
| | - Xuhui Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Guangjing Chen
- College of Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, Guizhou 550005, PR China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Xiangfeng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
13
|
Maoloni A, Cardinali F, Milanović V, Reale A, Boscaino F, Di Renzo T, Ferrocino I, Rampanti G, Garofalo C, Osimani A, Aquilanti L. Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel ( Crithmum maritimum L.) Leaves. Molecules 2023; 28:7207. [PMID: 37894688 PMCID: PMC10609079 DOI: 10.3390/molecules28207207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Sea fennel (Crithmum maritimum L.) is a strongly aromatic herb of the Apiaceae family, whose full exploitation by the modern food industry is of growing interest. This study aimed at investigating the microbiological quality, volatile profile, and sensory traits of sea fennel spices produced using room-temperature drying, oven drying, microwave drying, and freeze drying. All the assayed methods were able to remove moisture up until water activity values below 0.6 were reached; however, except for microwave drying, none of the assayed methods were effective in reducing the loads of contaminating microorganisms. The metataxonomic analysis highlighted the presence of phytopathogens and even human pathogens, including members of the genera Bacillus, Pseudomonas, Alternaria, and Cryptococcus. When compared to fresh leaves, dried leaves showed increased L* (lightness) and c* (chroma, saturation) values and reduced hue angle. Dried leaves were also characterized by decreased levels of terpene hydrocarbons and increased levels of aldehydes, alcohols, and esters. For the sensory test, the microwave-dried samples obtained the highest appreciation by the trained panel. Overall, the collected data indicated microwave drying as the best option for producing sea fennel spices with low microbial loads, brilliant green color, and high-quality sensory traits.
Collapse
Affiliation(s)
- Antonietta Maoloni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Anna Reale
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Floriana Boscaino
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Tiziana Di Renzo
- Istituto di Scienze dell’Alimentazione (ISA), Consiglio Nazionale delle Ricerche (CNR), 83100 Avellino, Italy; (A.R.); (F.B.); (T.D.R.)
| | - Ilario Ferrocino
- Department of Agricultural, Forest, and Food Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095 Turin, Italy;
| | - Giorgia Rampanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (A.M.); (F.C.); (V.M.); (G.R.); (C.G.); (A.O.)
| |
Collapse
|
14
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Nawawi NIM, Ijod G, Abas F, Ramli NS, Mohd Adzahan N, Mohamad Azman E. Influence of Different Drying Methods on Anthocyanins Composition and Antioxidant Activities of Mangosteen ( Garcinia mangostana L.) Pericarps and LC-MS Analysis of the Active Extract. Foods 2023; 12:2351. [PMID: 37372562 DOI: 10.3390/foods12122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Mangosteen pericarps (MP) often end up as agricultural waste despite being rich in powerful natural antioxidants such as anthocyanins and xanthones. This study compared the effect of different drying processes and times on phenolic compounds and antioxidant activities of MP. Fresh MP were subjected to 36 and 48 h of freeze-drying (-44 ± 1 °C) and oven-drying (45 ± 1 °C), and 30 and 40 h of sun-drying (31 ± 3 °C). The samples were analyzed for anthocyanins composition, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activities, and color characteristics. Analysis of liquid chromatography-mass spectrometry (LC-MS) with electrospray ionization identified two anthocyanins in MP: cyanidin-3-O-sophoroside and cyanidin-3-O-glucoside. Overall, the drying process, time, and their interactions significantly (p < 0.05) influenced the phenolic compounds, antioxidant activities, and color in MP extracts. Both freeze-drying after 36 h (FD36) and 48 h (FD48) possessed significantly (p < 0.05) higher total anthocyanins (2.1-2.2 mg/g) than other samples. However, FD36 was associated with significantly (p < 0.05) higher TPC (~94.05 mg GAE/g), TFC (~621.00 mg CE/g), and reducing power (~1154.50 μmol TE/g) compared to FD48. Moreover, FD36 is more efficient for industrial applications due to less time and energy consumption. Subsequently, obtained dried MP extracts could be further utilized as an alternative to synthetic food colorants.
Collapse
Affiliation(s)
- Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
16
|
Łyczko J, Kiełtyka-Dadasiewicz A, Issa-Issa H, Skrzyński M, Galek R, Carbonell-Barrachina ÁA, Szumny A. Chemistry behind Quality-Emission of Volatile Enantiomers from Mentha spp. Plant Tissue in Relationship to Odor Sensory Quality. Foods 2023; 12:foods12102057. [PMID: 37238875 DOI: 10.3390/foods12102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The quality of food, considering increasing consumer demands and competition among producers, is a highly important issue. Quality concerns are also applicable to the odor quality of herbs and spices (HSs). Meanwhile, HSs commonly are graded based on their essential oils (EOs) content and analysis; but does the instrumental analysis really provide general information about the HSs sensory quality? Three chemotypes of Mentha spp. were used in the present study. From samples diversified by convective drying at different temperatures, EOs were hydrodistillated and analyzed by enantioselective GC-MS; moreover, the source plant material's volatile profile was analyzed by the HS-SPME technique. The instrumental analysis was confronted with the results of the sensory panel. Changes in enantiomeric composition were observed during the drying process, although no clear correlations or trends could be found for individual chiral components. Furthermore, even with significant differences in particular volatiles' contribution to plants' EOs and their volatile profiles, judges were not able to match the sample EOs and plant samples with sufficient effectiveness (~40%). Based on those results, we suggest that volatile enantiomeric distribution does not have an actual influence on odor quality and that the sensory analysis should not be replaced with instrumental analysis, which cannot predict general sensory quality.
Collapse
Affiliation(s)
- Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Anna Kiełtyka-Dadasiewicz
- Department of Plant Production Technology and Commodity Science, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Garden of Cosmetic Plants and Raw Materials, Research and Science Innovation Center, 20-819 Lublin, Poland
| | - Hanán Issa-Issa
- Research Group 'Food Quality and Safety', Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain
| | - Mariusz Skrzyński
- Department of Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Renata Galek
- Department of Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, 50-363 Wrocław, Poland
| | - Ángel A Carbonell-Barrachina
- Research Group 'Food Quality and Safety', Department of Agro-Food Technology, Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche (UMH), 03312 Orihuela, Spain
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| |
Collapse
|
17
|
Dilucia F, Rutigliano M, Libutti A, Quinto M, Spadaccino G, Liberatore MT, Lauriola M, di Luccia A, la Gatta B. Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva sylvestris L., Calendula officinalis L., and Asparagus officinalis L. Infusions. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
18
|
Razola-Díaz MDC, Verardo V, Gómez-Caravaca AM, García-Villanova B, Guerra-Hernández EJ. Mathematical Modelling of Convective Drying of Orange By-Product and Its Influence on Phenolic Compounds and Ascorbic Acid Content, and Its Antioxidant Activity. Foods 2023; 12:foods12030500. [PMID: 36766029 PMCID: PMC9914427 DOI: 10.3390/foods12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Orange peel is one of the main by-products from juice processing, and is considered as a promising source of phenolic compounds with anti-carcinogenic, anti-inflammatory, anti-microbial and antioxidant properties. The drying is an essential step to ensure the storage of this by-product at an industrial level, in order to use it as a functional ingredient or as a nutraceutical. Thus, this research focuses on the evaluation of the effect of the convective air-drying process in orange by-products at three different temperatures (40, 60 and 80 °C) and air flows (0, 0.8 and 1.6 m/s) on the phenolic content (measured by HPLC-MS), the antioxidant activity (measured by DPPH, ABTS and FRAP), and the vitamin C content (measured by HPLC-UV/VIS). Moreover, the mathematical modelling of its drying kinetics was carried out to examine the orange by-product behavior. Among the tested mathematical models, the Page model reported the highest fit and the best drying conditions, which showed the lowest reductions were at 60 °C with an air flow of 1.6 m/s and taking 315 min.
Collapse
Affiliation(s)
- María del Carmen Razola-Díaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Correspondence:
| | - Ana María Gómez-Caravaca
- Institute of Nutrition and Food Technology ‘José Matáix’, Biomedical Research Centre, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18011 Granada, Spain
| | | |
Collapse
|
19
|
Feng Z, Zheng X, Ying Z, Feng Y, Wang B, Dou B. Drying of Chinese medicine residues (CMR) by hot air for potential utilization as renewable fuels: drying behaviors, effective moisture diffusivity, and pollutant emissions. BIOMASS CONVERSION AND BIOREFINERY 2023; 14:1-18. [PMID: 36627933 PMCID: PMC9815893 DOI: 10.1007/s13399-022-03722-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High moisture in Chinese medicine residues (CMR) can decrease the energy efficiency of thermochemical conversion, which necessitates the pre-drying. Owing to the complex constituents and decoction, CMR may possess distinct drying characteristics. It is necessary to understand its drying behaviors, effective moisture diffusivity, and pollutant emissions for future design and optimization of an industrial-level dryer. In this study, the drying of four types of typical CMR in hot nitrogen was performed. Their condensate and exhaust gas were collected and characterized. The results indicated that their drying process was dominated by internal moisture transport mechanism with a long falling rate stage. Drying temperature influenced their drying process more greatly than N2 velocity did. Residual sum of squares, root mean square error, and coefficient of determination indicated that Weibull model demonstrated their drying process best. Their effective moisture diffusivity was in the range of 1.224 × 10-8 to 4.868 × 10-8 m2/s, while their drying activation energy ranged from 16.93 to 30.39 kJ/mol. The acidic condensate had high chemical oxygen demand and total nitrogen concentration and yet low total phosphorus concentration. The concentration of total volatile organic compounds, non-methane hydrocarbons, H2S, and NH3 in the exhaust gas met the national emission limitation, while the deodorization of exhaust gas was required to remove odor smell. Supplementary information The online version contains supplementary material available at 10.1007/s13399-022-03722-4.
Collapse
Affiliation(s)
- Zhenyang Feng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xiaoyuan Zheng
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Zhi Ying
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Yuheng Feng
- Thermal and Environment Engineering Institute, School of Mechanical Engineering, Tongji University, Shanghai, 200092 China
| | - Bo Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Binlin Dou
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
| |
Collapse
|
20
|
Tkaczewska J, Jamróz E, Kasprzak M, Zając M, Pająk P, Grzebieniarz W, Nowak N, Juszczak L. Edible Coatings Based on a Furcellaran and Gelatin Extract with Herb Addition as an Active Packaging for Carp Fillets. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
This is the first such study in which a gelatin extract obtained from carp skins enriched with dry herbs (thyme or rosemary) has been prepared. Extracts prepared in such a manner were added to furcellaran coatings. Coatings were tested for their mechanical properties and the obtained results showed that the control coatings, and those with the addition of rosemary, had the best strength-related parameters. A new ready-to-cook product was evaluated with regard to the preservative effects of carp skin gelatin coatings containing rosemary and thyme extracts in terms of pH, biogenic amine formulation, microbial changes and sensorial characteristics. The coatings with added rosemary proved effective in inhibiting the formation of biogenic amines, and slowing down the microbial deterioration of carp fillets (reduction by 0.53 and 0.29 log cfu/g). The evaluated herb coatings changed the characteristic taste of fish. Interestingly, the coatings emphasized the natural saltiness of fish meat.
Collapse
|
21
|
Influence of the Drying Method on the Volatile Component Profile of Hypericum perforatum Herb: A HS-SPME-GC/MS Study. Processes (Basel) 2022. [DOI: 10.3390/pr10122593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Hypericum perforatum L. (St. John’s wort) is one of the most popular medicinal plants in the world. Due to its documented antimicrobial and antioxidant properties, it is used in the treatment of bacterial and viral infections as well as inflammations. It is also used to treat gastrointestinal diseases and mild to moderate depression. In recent years, there has been an increase in the popularity of herbal medicine. Many people collect their own herbs and dry them at home. A common choice for quick drying of fruits, vegetables and herbs at home are food dehydrator machines. There are not many publications in the scientific literature examining the quality of dried herbal material obtained in such dryers. We characterized St. John’s wort harvested in southern Poland and investigated the effect of specific drying methods on the volatile component profile. The herbal raw material was dried using three methods: indoors at room temperature, in an incubator at 37 °C and in a food dehydrator machine. Volatile components were analysed by HS-SPME GC/MS. The herb dried in a food dehydrator, compared to other drying methods, retained similar or slightly smaller amounts of the compounds from the mono- and sesquiterpenes group, aromatic monoterpenes, aromatic monoterpenoids, sesquiterpenoids, aromatic sesquiterpenes and alkanes. However, monoterpenoids and compounds coming from decomposition reactions, such as alcohols, short-chain fatty acids and esters, were noticed in larger quantities. Usage of a food dehydrator at home can be a convenient alternative to drying herbs. However, due to a different profile of volatile components depending on the drying method, the amount of biologically active substances needs to be considered. By using various methods of drying, the medical effects of herbs can be enhanced or weakened; therefore, further research in this direction should be continued.
Collapse
|
22
|
Oduola AA, Bruce RM, Shafiekhani S, Atungulu GG. Impacts of Industrial Microwave and Infrared Drying Approaches on Hemp (Cannabis sativa L.) Quality and Chemical Components. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Successive Two-Stage Hot Air-Drying with Humidity Control Combined Radio Frequency Drying Improving Drying Efficiency and Nutritional Quality of Amomi fructus. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Engelhardt L, Pöhnl T, Neugart S. Edible Wild Vegetables Urtica dioica L. and Aegopodium podagraria L.-Antioxidants Affected by Processing. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202710. [PMID: 36297734 PMCID: PMC9610176 DOI: 10.3390/plants11202710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 05/26/2023]
Abstract
Urtica dioica L. and Aegopodium podagraria L., also known as stinging nettle and ground elder, are edible wild green vegetables rich in bioactive and antioxidant polyphenols, vitamins, and minerals. Antioxidant activity assays (TEAC-, DPPH-, and TPC-assay) in combination with HPLC measurements, to qualify and quantify their chemical compositions, were used. Firstly, the drying methods affected the antioxidant activity of further processing stages, and outcomes were dependent on the species. Secondly, cooking increased the antioxidant activity due to higher concentrations of bioactive compounds, and released bound compounds through the rupture of cell structures. Furthermore, fridge storage (3 days at 7 °C) resulted in the lowest antioxidant activity, compared to freezer storage (30 days at -20 °C). Added 5-caffeoylquinic acid (0.3 mM) led to an increased antioxidant activity, most noticeably in freeze-dried samples. Synergistic effects of 5-caffeoylquinic acid were primary found in freeze-dried samples, analyzed fresh or after storage in the fridge. Metal-chelates can lower the antioxidant activity in plant matrices. Edible wild green vegetables are rich in polyphenols and processing can even increase their concentrations to boost the potential health effects. In general, selected quantified phenolics are not solely responsible for the antioxidant activity; minerals, processing, and interactions in plant matrices also contribute decisively.
Collapse
|
25
|
Bobasa EM, Srivarathan S, Phan ADT, Netzel ME, Cozzolino D, Sultanbawa Y. Influence of blanching on the bioactive compounds of Terminalia ferdinandiana Exell fruit during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractChanges in quality of fruits and vegetables during processing and storage might impact on the nutritional and economical value of food products. The present study aimed to evaluate the influence of blanching on the content of vitamin C and ellagic acid (EA) as the main bioactive compounds present in Kakadu plum (KP) fruits (Terminalia ferdinandiana) during storage at 40oC to mimic typical temperature when wild harvested. Changes in the profile of fatty acids, malondialdehyde (MDA) production, as a biomarker for lipid peroxidation, and antioxidant properties of KP fruits were evaluated. The results revealed that vitamin C decreased between 25 and 52% over the storage period. Statistically significant differences in the concentration of vitamin C were associated with temperature (p < 0.05) and blanching (p < 0.05), whereas no significant differences in EA during storage were observed. DPPH radical scavenging capacity and total phenolic content of both blanched and control samples decreased by 80% and 35%, respectively, at the end of the storage period compared to day 0. In addition, the change in DPPH activity is significantly correlated (Pearson R2 = 0.829, p ˂ 0.01) with the breakdown of ellagitannins. Furthermore, KP fruit demonstrated excellent antioxidative properties by reducing MDA production. It was concluded that blanching causes significant vitamin C loss whereas neither blanching nor long-term storage at elevated temperature affect the EA content. The results also indicate that the antioxidant compounds present in the KP fruits provided considerable protection against fatty acid oxidation during storage.
Collapse
|
26
|
Vo TP, Nguyen LNH, Le NPT, Mai TP, Nguyen DQ. Optimization of the ultrasonic-assisted extraction process to obtain total phenolic and flavonoid compounds from watermelon (Citrullus lanatus) rind. Curr Res Food Sci 2022; 5:2013-2021. [PMID: 36337913 PMCID: PMC9626904 DOI: 10.1016/j.crfs.2022.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
This context presents the study of ultrasonic-assisted extraction (UAE) to obtain phenolic and flavonoid compounds from watermelon rind powder (WRP). The antioxidant activity of the extracts was investigated using DPPH and ABTS+ assays. One-factor experiments were conducted to examine the effect of each factor (solid-to-liquid ratio (SLR), acetone concentration (AC), temperature, and time) on the UAE of WRP. Box-Behnken Design (BDD) model was employed to optimize the UAE conditions based on total phenolic contents (TPC), total flavonoid content (TFC), and their antioxidant activities. The optimal conditions were 1:30.50 SLR, 70.71% AC, 29.78 °C, and 10.65 min extraction time. There were no significant differences between predicted and experimental results (less than 6.0%), recommending a feasible and innovative process of deploying UAE to extract phenolics and flavonoids effectively from watermelon rind. Sonication increases the extraction of total phenolic and flavonoid contents. Sonication increases the antioxidant activity of watermelon rind extracts. Box-Behnken Design model is used to optimize ultrasonic-assisted extraction conditions.
Collapse
Affiliation(s)
- Tan Phat Vo
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
- Biobeau Lab Company, Binh Hung Ward, Binh Chanh District, Ho Chi Minh City, Viet Nam
| | - Le Ngoc Huong Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Nguyen Phuc Thien Le
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thanh Phong Mai
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Dinh Quan Nguyen
- Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
- Corresponding author. Laboratory of Biofuel and Biomass Research, Faculty of Chemical Engineering, Ho Chi Minh University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
27
|
Effects of Origanum vulgare and Scutellaria baicalensis on the Physiological Activity and Biochemical Parameters of the Blood in Rats on a High-Fat Diet. Sci Pharm 2022. [DOI: 10.3390/scipharm90030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pharmacological effects of medicinal plants play a primary role in the mild correction of body weight in humans and animals, reducing the accumulation of fat in their bodies during a state of obesity. Origanum vulgare L. and Scutellaria baicalensis Georgi are widely used as food additives and medicinal plants, but their comprehensive physiological evaluation in model animals in a state of obesity has not been carried out. In a 30-day laboratory experiment on male rats which had developed obesity through a hypercaloric diet, the effects of adding the dry crushed grass O. vulgare or dry crushed roots of S. baicalensis to their feed was evaluated. During the experiment, the rats fed with O. vulgare increased in body weight to only 105.5% of their initial weight, while the body weight of the control group increased to 111.5%, and that of animals fed on S. baicalensis increased to 124.0% of their initial body weight. The average daily increase in the rats’ body weight when O. vulgare was added to their diet decreased to 205 mg/day, and when S. baicalensis was added, on the contrary, it increased to 1417 mg/day, compared to 700 mg/day among the control group. Under the influence of O. vulgare, the lipid metabolism of the rats normalized: the atherogenic index decreased to 33.7%, compared with the values of the control group, due to an increase in the concentration of high-density lipoproteins from cholesterol. The concentration of triglycerides decreased, and the concentration of glucose decreased. The roots of S. baicalensis being added into the diet of rats increased the activity of alkaline phosphatase and decreased the concentration of urea. The atherogenic index also decreased (by up to 35.5% in the control group) and the concentration of high-density lipoprotein cholesterol increased, while the concentrations of triglycerides and glucose decreased. The physical activity of the rats showed a slight tendency to decrease when both O. vulgare and S. baicalensis were added to their diet. Both plant species contributed to a decrease in the emotional status of animals, which was most pronounced when the O. vulgare grass was added to the feed. The results of the study demonstrate the potential of the use of O. vulgare and S. baicalensis as herbal supplementations for the correction of hyperlipidemia and type-2 diabetes mellitus in overweight patients.
Collapse
|
28
|
Pachura N, Zimmer A, Grzywna K, Figiel A, Szumny A, Łyczko J. Chemical investigation on Salvia officinalis L. Affected by multiple drying techniques - The comprehensive analytical approach (HS-SPME, GC-MS, LC-MS/MS, GC-O and NMR). Food Chem 2022; 397:133802. [PMID: 35914462 DOI: 10.1016/j.foodchem.2022.133802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
Abstract
In light of large scale production of Salvia officinalis L. and its complex storage and delivery chain, the efficient preservation process is required. At this moment, the most popular preservation method is drying, therefore a comprehensive experiment to evaluate the influence of multiple drying techniques on sage was conducted. Convective drying at 40, 50 and 60 °C, vacuum-microwave drying with powers 240, 360 and 480 W and combined drying consisting of convective pre-drying at 50 °C followed by vacuum-microwave finish-drying with power 360 W were applied. To evaluate the effect of particular procedures chemical analyses were performed, namely evaluation of changes in bioactive volatile constituents, odour-active compounds and various groups of non-volatile bioactive constituents of sage. The obtained results shown, that to receive the product with expected quality, it is necessary to identify the designation of the product before treatment, since particular groups of phytochemicals react differently during drying.
Collapse
Affiliation(s)
- Natalia Pachura
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Aleksandra Zimmer
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Kacper Grzywna
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Antoni Szumny
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | - Jacek Łyczko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| |
Collapse
|
29
|
Mahdi N, Ridha MR, Setiawan D, Praristiya MRS, Rahayu N, Atmaja BP. Bio-efficacy of Mangifera leaf extracts on mortality of Aedes aegypti and inhibition of egg hatching. Vet World 2022; 15:1753-1758. [PMID: 36185534 PMCID: PMC9394156 DOI: 10.14202/vetworld.2022.1753-1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: To develop an environmentally friendly alternative to mosquito larvicides for vegetables, leaf extracts of Mangifera laurina, Mangifera casturi, Mangifera indica, Mangifera odorata, Mangifera caesia, and Mangifera foetida were prepared. This study aimed to determine the biological efficacy of several Mangifera leaf extracts on the mortality of Aedes aegypti mosquito and the inhibition of egg hatching.
Materials and Methods: Extraction was performed in an organic solvent (methanol) using a Soxhlet extractor. The larvicidal potential of six leaves of Mangifera essential oil was evaluated against the third instar larvae of A. aegypti at concentrations of 1500, 2000, 3000, and 5000 ppm using the World Health Organization protocol. After Probit analysis, the 48 h LC50 and LC90 values of the essential oils were determined. The inhibitory effect on egg hatching was also tested at 160, 320, 480, and 640 ppm.
Results: The extraction of essential oils from several Mangifera species had excellent larvicidal activity and inhibitory activity against A. aegypti egg hatching. The LC50/LC90 values were: M. casturi, 241/1964 ppm; M. laurina, 2739/4035 ppm; and M. caesia, 1831/2618 ppm. The inhibitory effect on hatching was 78% for M. foetida, 70% for M. caesia, and 59% for M. casturi.
Conclusion: The test results indicate the potential of some Mangifera species for use as larvicides and inhibitors of egg hatching; thus, they have the potential to control A. aegypti in the early stages of development.
Collapse
Affiliation(s)
- Nur Mahdi
- Pharmacy Program, College of Health Darul Azhar, Tanah Bumbu, South Kalimantan, Indonesia
| | - Muhammad Rasyid Ridha
- Organization Research for Health, The National Research and Innovation Agency (BRIN-Indonesia), Cibinong, West Java, Indonesia
| | - Deni Setiawan
- Pharmacy Program, Lambung Mangkurat University, Banjarbaru, South Kalimantan, Indonesia
| | | | - Nita Rahayu
- Organization Research for Health, The National Research and Innovation Agency (BRIN-Indonesia), Cibinong, West Java, Indonesia
| | - Bayu Purnama Atmaja
- Nurse Program, College of Health Darul Azhar, Tanah Bumbu, South Kalimantan, Indonesia
| |
Collapse
|
30
|
Wijaya CH, Suharta S, Hunaefi D, Hashidoko Y. Analisis Senyawa Aktif Trigeminal Andaliman dengan Variasi Metode Pengeringan dengan Pendekatan GC-MS. JURNAL TEKNOLOGI DAN INDUSTRI PANGAN 2022. [DOI: 10.6066/jtip.2022.33.1.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sanshool compounds are the trigeminal active compounds in andaliman (Zanthoxylum acantho-podium DC) with a numbing and tingling sensation. The analysis of such compounds is usually done through HPLC approach; however, limited studies have reported that the analysis of such compounds could be conducted with Gas Chromatography-Mass Spectrometry (GC-MS). This method could save research time and funding by analyzing both sanshools and volatiles simultaneously, which would describe the complete profile of andaliman flavor compounds. This study aimed to confirm the potency of GC-MS in analyzing sanshool compounds and to utilize this method in studying the impact of different drying methods towards andaliman trigeminal active compounds. Andaliman was dried with five drying methods (sun, sunshade, air, oven, and freeze-drying) and was macerated with chloroform, concentrated, and analyzed with GC-MS. The results of this study showed that GC-MS was able to analyze sanshool compounds efficiently. Drying had no statistically significant impact on sanshool quantities extracted from andaliman. Fresh andaliman contained 0.69 % (dry weight basis) of α-sanshool, the main sanshool in andaliman. On the other hand, dried andaliman contained 0.80-1.08% of α-sanshool (dry weight basis). As oven drying managed to produce andaliman with a similar concentration of α-sanshool at a faster time and more affordable cost than other drying methods, oven drying was suggested as the ideal drying method to extend the shelf life of andaliman.
Collapse
|
31
|
Assessing the Health Risk and the Metal Content of Thirty-Four Plant Essential Oils Using the ICP-MS Technique. Nutrients 2022; 14:nu14122363. [PMID: 35745094 PMCID: PMC9229550 DOI: 10.3390/nu14122363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 12/10/2022] Open
Abstract
Natural ecosystems are polluted with various contaminants, and among these heavy metals raise concerns due to their side effects on both environment and human health. An investigation was conducted on essential oil samples, comparing similar products between seven producers, and the results indicated a wide variation of metal content. The recommended limits imposed by European Union regulations for medicinal plants are exceeded only in Mentha × pipperita (Adams, 0.61 mg/kg). Except for Thymus vulgaris, the multivariate analysis showed a strong correlation between toxic and microelements (p < 0.001). We verified plant species−specific bioaccumulation patterns with non-metric multidimensional scaling analysis. The model showed that Adams, Doterra, Hypericum, and Steaua Divina essential oils originated from plants containing high micro and macroelement (Cu, Mn, Mg, Na) levels. We noted that the cancer risk values for Ni were the highest (2.02 × 10−9−7.89 × 10−7). Based on the target hazard quotient, three groups of elements were associated with a possible risk to human health, including As, Hg, and Cd in the first group, Cr, Mn, Ni, and Co in the second, and Zn and Al in the third. Additionally, the challenge of coupling inter-element relationships through a network plot analysis shows a considerable probability of associating toxic metals with micronutrients, which can address cumulative risks for human consumers.
Collapse
|
32
|
The Application of Visible and Near-Infrared Spectroscopy Combined with Chemometrics in Classification of Dried Herbs. SUSTAINABILITY 2022. [DOI: 10.3390/su14116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The fast differentiation and classification of herb samples are complicated processes due to the presence of many various chemical compounds. Traditionally, separation techniques have been employed for the identification and quantification of compounds present in different plant matrices, but they are tedious, time-consuming and destructive. Thus, a non-targeted approach would be specifically advantageous for this purpose. In the present study, spectroscopy in the visible and near-infrared range and pattern recognition techniques, including the principal component analysis (PCA), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), super k-nearest neighbor (SKNN) and support vector machine (SVM) techniques, were applied to develop classification models that enabled the discrimination of various commercial dried herbs, including mint, linden, nettle, sage and chamomile. The classification error rates in the validation data were below 10% for all the classification methods, except for SKNN. The results obtained confirm that spectroscopy and pattern recognition methods constitute a good non-destructive tool for the rapid identification of herb species that can be used in routine quality control by the pharmaceutical industry, as well as herbal suppliers, to avoid mislabeling.
Collapse
|
33
|
Khaliq A, Li WF, Ali S, Shah ST, Ma ZH, Mao J, Niaz Y, Chen BH, Haq IU, Al-Yahyai R, Ahmed MAA, Al-Ghamdi AA, Elshikh MS, Zuan ATK. Thin layer drying kinetics and quality dynamics of persimmon (Diospyros kaki) treated with preservatives and solar dried under different temperatures. PLoS One 2022; 17:e0265111. [PMID: 35353819 PMCID: PMC8967049 DOI: 10.1371/journal.pone.0265111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Poor postharvest handling, microbial infestation, and high respiration rate are some the factors are responsible for poor storage life of perishable commodities. Therefore, effective preservation of these commodities is needed to lower the damages and extend shelf life. Preservation is regarded as the action taken to maintain desired properties of a perishable commodity as long as possible. Persimmon (Diospyros kaki) is perishable fruit with high nutritive value; however, has very short shelf-life. Therefore, effective preservation and drying is needed to extend its storage life. Drying temperature and preservatives significantly influence the quality of perishable vegetables and fruits during drying. The current study investigated the effect of different temperatures and preservatives on drying kinetics and organoleptic quality attributes of persimmon. Persimmon fruits were treated with preservatives (25% honey, 25% aloe vera, 2% sodium benzoate, 1% potassium metabisulfite, and 2% citric acid solutions) under different drying temperatures (40, 45, and 50°C). All observed parameters were significantly affected by individual effects of temperatures and preservatives, except ash contents. Similarly, interactive effects were significant for all parameters except total soluble sugars, ash contents, and vitamin C. Generally, fruits treated with citric acid and dried under 50°C had 8.2% moisture loss hour-1, 14.9 drying hours, 0.030 g H2O g-1 hr-1, 1.23° Brix of total soluble solids, 6.71 pH, 1.35% acidity, and 6.3 mg vitamin C. These values were better than the rest of the preservatives and drying temperatures used in the study. Therefore, treating fruits with citric acid and drying at 50°C was found a promising technique to extend storage life of persimmon fruits. It is recommended that persimmon fruits dried at 50°C and preserved in citric acid can be used for longer storage period.
Collapse
Affiliation(s)
- Abdul Khaliq
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shahbaz Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
- * E-mail: (STS); (SA); (BHC); (ATKZ)
| | - Syed Tanveer Shah
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar, Pakistan
- * E-mail: (STS); (SA); (BHC); (ATKZ)
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yasir Niaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- * E-mail: (STS); (SA); (BHC); (ATKZ)
| | - Inzamam Ul Haq
- Department of Plant Protection, College of Crop Protection, Gansu Agricultural University, Lanzhou, China
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Crop Science, University of Reading, Reading, United Kingdom
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Science, King Saud University,Riyadh, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University,Riyadh, Saudi Arabia
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: (STS); (SA); (BHC); (ATKZ)
| |
Collapse
|
34
|
Caputo L, Amato G, de Bartolomeis P, De Martino L, Manna F, Nazzaro F, De Feo V, Barba AA. Impact of drying methods on the yield and chemistry of Origanum vulgare L. essential oil. Sci Rep 2022; 12:3845. [PMID: 35264638 PMCID: PMC8907181 DOI: 10.1038/s41598-022-07841-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Oregano (Origanum vulgare L.) is mainly cultivated, both as fresh and dried herb, for several purposes, such as ailments, drugs, and spices. To evaluate the influence of some drying methods on the chemical composition of the essential oil of oregano, its aerial parts were dehydrated by convective drying techniques (shade, static oven), microwave-assisted heating (three different treatments) and osmotic treatment. The oils were analyzed by GC-FID and GC-MS. The highest essential oil yield was achieved from microwave and shade drying methods. In total, 39 components were found, with carvacrol (ranging from 56.2 to 81.4%) being the main constituent; other compounds present in lower amounts were p-cymene (1.6-17.7%), γ-terpinene (0.8-14.2%), α-pinene (0.1-2.1%), thymol methyl ether (0.4-1.8%) and thimoquinone (0.5-3.5%). The essential oil yields varied among the different treatments as well as the relative compositions. The percentages of p-cymene, γ-terpinene and α-pinene decreased significantly in the dried sample compared with the fresh sample; on the other hand, carvacrol, isoborneol and linalool increased significantly in the dried materials. The choice of the drying method for obtaining the essential oil therefore appears crucial not only in relation to the higher yield but also and above all in reference to the percentage presence of components that can direct the essential oil toward an appropriate use.
Collapse
Affiliation(s)
- Lucia Caputo
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giuseppe Amato
- Istituto di Scienze dell'Alimentazione, CNR, Via Roma 60, 83100, Avellino, Italy
| | - Pietro de Bartolomeis
- Caselle Società Agricola Srl, Via Mare Mediterraneo 18, 84098, Pontecagnano, Salerno, Italy
| | - Laura De Martino
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy.
| | - Francesco Manna
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Filomena Nazzaro
- Istituto di Scienze dell'Alimentazione, CNR, Via Roma 60, 83100, Avellino, Italy
| | - Vincenzo De Feo
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
- Istituto di Scienze dell'Alimentazione, CNR, Via Roma 60, 83100, Avellino, Italy
| | - Anna Angela Barba
- Dipartimento di Farmacia, Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
35
|
Benseddik A, Benahmed-Djilali A, Azzi A, Zidoune MN, Bensaha H, Lalmi D, Allaf K. Effect of drying processes on the final quality of potimarron pumpkin ( Cucurbita maxima) powders. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2020.1823233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Abdelouahab Benseddik
- Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
- Unité de Recherche Matériaux et Énergies Renouvelables (URMER), Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
- Laboratory of Engineering Science for Environment (LaSIE) UMR7356 CNRS, La Rochelle University, La Rochelle, France
| | - Adiba Benahmed-Djilali
- Laboratory of Engineering Science for Environment (LaSIE) UMR7356 CNRS, La Rochelle University, La Rochelle, France
- Faculty of Biological and Agricultural Sciences, University Mouloud-Mammeri of Tizi-Ouzou, Algeria
| | - Ahmed Azzi
- Unité de Recherche Matériaux et Énergies Renouvelables (URMER), Faculté des Sciences, Université de Tlemcen, Tlemcen, Algeria
| | - Mohammed Nasreddine Zidoune
- Laboratory of Engineering Science for Environment (LaSIE) UMR7356 CNRS, La Rochelle University, La Rochelle, France
- Laboratoire de nutrition et technologies alimentaires (L.N.T.A.), équipe Transformation et Elaboration des Produits Agro-alimentaires (T.E.P.A.), INATAA Université Constantine 1, Constantine, Algeria
| | - Hocine Bensaha
- Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
| | - Djemouai Lalmi
- Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
| | - Karim Allaf
- Laboratory of Engineering Science for Environment (LaSIE) UMR7356 CNRS, La Rochelle University, La Rochelle, France
| |
Collapse
|
36
|
Cheenkachorn K, Paulraj MG, Tantayotai P, Phakeenuya V, Sriariyanun M. Characterization of biologically active compounds from different herbs: Influence of drying and extraction methods. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Comparative analyses of five drying techniques on drying attributes, physicochemical aspects, and flavor components of Amomum villosum fruits. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Mesquita KDSM, Feitosa BDS, Cruz JN, Ferreira OO, Franco CDJP, Cascaes MM, de Oliveira MS, Andrade EHDA. Chemical Composition and Preliminary Toxicity Evaluation of the Essential Oil from Peperomia circinnata Link var. circinnata. ( Piperaceae) in Artemia salina Leach. Molecules 2021; 26:7359. [PMID: 34885940 PMCID: PMC8659193 DOI: 10.3390/molecules26237359] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Peperomia Ruiz and Pav, the second largest genus of the Piperaceae, has over the years shown potential biological activities. In this sense, the present work aimed to carry out a seasonal and circadian study on the chemical composition of Peperomia circinata essential oils and aromas, as well as to evaluate the preliminary toxicity in Artemia salina Leach and carry out an in silico study on the interaction mechanism. The chemical composition was characterized by gas chromatography (GC/MS and GC-FID). In the seasonal study the essential oil yields had a variation of 1.2-7.9%, and in the circadian study the variation was 1.5-5.6%. The major compounds in the seasonal study were β-phellandrene and elemicin, in the circadian they were β-phellandrene and myrcene, and the aroma was characterized by the presence of β-phellandrene. The multivariate analysis showed that the period and time of collection influenced the essential oil and aroma chemical composition. The highest toxicity value was observed for the essential oil obtained from the dry material, collected in July with a value of 14.45 ± 0.25 μg·mL-1, the in silico study showed that the major compounds may be related to potential biological activity demonstrated by the present study.
Collapse
Affiliation(s)
- Késsia do Socorro Miranda Mesquita
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
| | - Bruna de Souza Feitosa
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
| | - Jorddy Neves Cruz
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Oberdan Oliveira Ferreira
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
| | - Celeste de Jesus Pereira Franco
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Márcia Moraes Cascaes
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| | - Mozaniel Santana de Oliveira
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
| | - Eloisa Helena de Aguiar Andrade
- Faculdade de Farmácia, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil; (K.d.S.M.M.); (B.d.S.F.); (E.H.d.A.A.)
- Laboratório Adolpho Ducke-Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Terra Firme, Belém 66077-830, PA, Brazil; (J.N.C.); (O.O.F.); (C.d.J.P.F.)
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia—Rede Bionorte, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, Rua Augusto Corrêa S/N, Guamá, Belém 66075-900, PA, Brazil;
| |
Collapse
|
39
|
Xu P, Peng X, Yang J, Li X, Zhang H, Jia X, Liu Y, Wang Z, Zhang Z. Effect of vacuum drying and pulsed vacuum drying on drying kinetics and quality of bitter orange (
Citrus aurantium
L.) slices. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Xu
- Xi’an Jiaotong University Xi’an China
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- Jiangxi CAS Pharmaceutical Engineering Technology Co., Ltd. Nanchang China
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
| | | | - Junling Yang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
| | - Xiaoqiong Li
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
| | - Huafu Zhang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
| | | | - Yaoyang Liu
- Jiangxi CAS Pharmaceutical Engineering Technology Co., Ltd. Nanchang China
| | - Zirui Wang
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
- Beijing Institute of Petrochemical Technology Beijing China
| | - Zhentao Zhang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- Jiangxi CAS Pharmaceutical Engineering Technology Co., Ltd. Nanchang China
- Key Laboratory of Equipment and Energy‐saving Technology on Food & Pharmaceutical Quality Processing, Storage and Transportation China National Light Industry Beijing China
| |
Collapse
|
40
|
Vidinamo F, Fawzia S, Karim MA. Investigation of the Effect of Drying Conditions on Phytochemical Content and Antioxidant Activity in Pineapple (Ananas comosus). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Dong H, Dai T, Liang L, Deng L, Liu C, Li Q, Liang R, Chen J. Physicochemical properties of pectin extracted from navel orange peel dried by vacuum microwave. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Lu Y, Kong X, Zhang J, Guo C, Qu Z, Jin L, Wang H. Composition Changes in Lycium ruthenicum Fruit Dried by Different Methods. Front Nutr 2021; 8:737521. [PMID: 34676235 PMCID: PMC8523835 DOI: 10.3389/fnut.2021.737521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
The fruit of Lycium ruthenicum (LRF), known as black wolfberry, is a medicinal and edible fruit. The fresh LRF is perishable and has only about 3 days of shelf life. Drying could prolong the shelf life of LRF. However, it could imply physical changes and chemical modification. This study evaluated the effect of sun drying (SD), hot air drying (HD), and freeze drying (FD) on the appearance characteristics, moisture content, bioactive compounds, amino acid composition, and antioxidant activity of LRF. The results showed that LRF dried by FD was round, expansive, fragile, and maintained the largest amount of appearance traits among the three drying methods. Drying methods had a significant effect on phytochemical content and antioxidant activity of LRF (P < 0.05). Principal component analysis (PCA) showed that procyanidin content (PAC), asparagine (Asn), total phenolic content (TPC), total anthocyanin content (TAC), and moisture content were the main sources of the difference in LRF dried by different methods. The characteristic of LRF in FD was low moisture content, and high TPC, Asn, PAC, and TAC. Sun drying was opposite to FD. Hot air drying was high TPC and low TAC content. The quality of LRF was in the order of FD > HD > SD based on comprehensive evaluation of the phytochemical component content and antioxidant capacity. Additionally, the water temperature and soaking time had different antioxidant activity effect on LRF dried by different methods. These findings will provide useful information for production and utilization of LRF.
Collapse
Affiliation(s)
- Youyuan Lu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China.,Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Xiangfeng Kong
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juanhong Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Chao Guo
- Ningxia Super-Kernel Health Management Technology Co., Ltd, Yinchuan, China
| | - Zhuo Qu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ling Jin
- School of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China.,Northwest Collaborative Innovation Center for Traditional Chinese Medicine, Lanzhou, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China.,Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
43
|
Postawa K, Klimek K, Kapłan M, Wrzesińska‐Jędrusiak E, Kułażyński M. Application of ozonation as a clean method of herbs freshness prolongation: Experiment and model construction. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Karol Postawa
- Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| | - Kamila Klimek
- Department of Applied Mathematics and Informatics University of Life Sciences in Lublin Lublin Poland
| | - Magdalena Kapłan
- Institute of Horticulture Production, University of Life Sciences in Lublin Lublin Poland
| | | | - Marek Kułażyński
- Faculty of Chemistry Wrocław University of Science and Technology Wrocław Poland
| |
Collapse
|
44
|
Xu Q, Bai Z, Ma J, Huang M, Li J. Effect of different drying methods on zein‐based microcapsules loaded with
Artemisia argyis essence
obtained by anti‐solvent precipitation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qunna Xu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology Shaanxi University of Science & Technology Xi'an China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology Shaanxi University of Science & Technology Xi'an China
| | - Mengchen Huang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Jiaojiao Li
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| |
Collapse
|
45
|
Oliveira-Alves SC, Andrade F, Prazeres I, Silva AB, Capelo J, Duarte B, Caçador I, Coelho J, Serra AT, Bronze MR. Impact of Drying Processes on the Nutritional Composition, Volatile Profile, Phytochemical Content and Bioactivity of Salicornia ramosissima J. Woods. Antioxidants (Basel) 2021; 10:1312. [PMID: 34439560 PMCID: PMC8389250 DOI: 10.3390/antiox10081312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Salicornia ramosissima J. Woods is a halophyte plant recognized as a promising natural ingredient and will eventually be recognized a salt substitute (NaCl). However, its shelf-life and applicability in several food matrices requires the use of drying processes, which may have an impact on its nutritional and functional value. The objective of this study was to evaluate the effect of oven and freeze-drying processes on the nutritional composition, volatile profile, phytochemical content, and bioactivity of S. ramosissima using several analytical tools (LC-DAD-ESI-MS/MS and SPME-GC-MS) and bioactivity assays (ORAC, HOSC, and ACE inhibition and antiproliferative effect on HT29 cells). Overall, results show that the drying process changes the chemical composition of the plant. When compared to freeze-drying, the oven-drying process had a lower impact on the nutritional composition but the phytochemical content and antioxidant capacity were significantly reduced. Despite this, oven-dried and freeze-dried samples demonstrated similar antiproliferative (17.56 mg/mL and 17.24 mg/mL, respectively) and antihypertensive (24.56 mg/mL and 18.96 mg/mL, respectively) activities. The volatile composition was also affected when comparing fresh and dried plants and between both drying processes: while for the freeze-dried sample, terpenes corresponded to 57% of the total peak area, a decrease to 17% was observed for the oven-dried sample. The oven-dried S. ramosissima was selected to formulate a ketchup and the product formulated with 2.2% (w/w) of the oven-dried plant showed a good consumer acceptance score. These findings support the use of dried S. ramosissima as a promising functional ingredient that can eventually replace the use of salt.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Inês Prazeres
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
| | - Andreia B. Silva
- DCFM, Departamento de Ciências Farmacêuticas e do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. das Forças Armadas, 1649-003 Lisboa, Portugal;
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Jorge Capelo
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, 2780-505 Oeiras, Portugal;
| | - Bernardo Duarte
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 749-016 Lisboa, Portugal
| | - Júlio Coelho
- Horta da Ria Lda., Rua de São Rui, 3830-362 Gafanha Nazaré, Portugal;
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria R. Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (I.P.); (A.T.S.)
- iMed ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
46
|
Galvan D, Effting L, Torres Neto L, Conte-Junior CA. An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study. Compr Rev Food Sci Food Saf 2021; 20:3136-3163. [PMID: 34125485 DOI: 10.1111/1541-4337.12773] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/13/2021] [Accepted: 04/24/2021] [Indexed: 12/17/2022]
Abstract
Essential oils (EOs) are commercially important products, sources of compounds with antioxidant and antimicrobial activities considered indispensable for several fields, such as the food industry, cosmetics, perfumes, pharmaceuticals, sanitary and agricultural industries. In this context, this systematic review and meta-analysis, a novel approach will be presented using chemometric tools to verify and recognize patterns of antioxidant, antibacterial, and antifungal activities of EOs according to their geographic, botanical, chemical, and microbiological distribution. Scientific papers were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement flow diagram, and the data were evaluated by the self-organizing map and hierarchical cluster analysis. Overall, this novel approach allowed us to draw an overview of antioxidants and antimicrobials activities of EOs reported in 2019, through 585 articles evaluated, obtaining a dataset with more than 10,000 data, distributed in more than 80 countries, 290 plant genera, 150 chemical compounds, 30 genera of bacteria, and 10 genera of fungi. The networks for geographic, botanical, chemical, and microbiological distribution indicated that Brazil, Asia, the botanical genus Thymus, species Thymus vulgaris L. "thyme," the Lamiaceae family, limonene, and the oxygenated monoterpene class were the most representative in the dataset, while the species Escherichia coli and Candida albicans were the most used to assess the antimicrobial activity of EOs. This work can be seen as a guide for the processing of metadata using a novel approach with non-conventional statistical methods. However, this preliminary approach with EOs can be extended to other sources or areas of food science.
Collapse
Affiliation(s)
- Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Luiz Torres Neto
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil.,Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Majumder P, Sinha A, Gupta R, Sablani SS. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Hazrati S, Lotfi K, Govahi M, Ebadi M. A comparative study: Influence of various drying methods on essential oil components and biological properties of Stachys lavandulifolia. Food Sci Nutr 2021; 9:2612-2619. [PMID: 34026076 PMCID: PMC8116876 DOI: 10.1002/fsn3.2218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
The genus Stachys is a member of the Lamiaceae family. These are important medicinal plants which grow all over the world and are known for their flavoring and therapeutic effects and Stachys lavandulifolia is an endemic species of Iran. To acquire high-quality essential oil (EO), drying technique was implemented which is an essential part of this process. The present study designed to evaluate the influences of different drying techniques (fresh sample, shade, sunlight, freeze-drying, microwave, and oven-drying (40, 60, and 80°C) on EO yield and composition of S. lavandulifolia. The results indicated that the maximum EO yield was obtained by the shade-drying method. The main compounds found in the fresh samples were spathulenol, myrcene, β-pinene, δ-cadinene, and α-muurolol, while spathulenol, cyrene, δ-cadinene, p-cymene, decane, α-terpinene, β-pinene, and intermedeol were found to be the dominant compounds in the dry samples. Drying techniques were found to have a significant impact on the values of the main compositions, for example, monoterpene hydrocarbons such as α-pinene, β-pinene, myrcene, and β-phellandrene were significantly reduced by microwave drying, oven-drying (40, 60, and 80°C), and sunlight-drying methods. Drying techniques increased the antioxidant activity of S. lavandulifolia EOs especially those acquired by freeze-drying with the half-maximal inhibitory concentration (IC50) values 101.8 ± 0.8 mg/ml in DPPH assay and 315.2 ± 2.1 mg/ml in decreasing power assay. As a result, shade-, sun-, and oven-drying (40°C) were found to be the most important techniques for attaining maximum yields of EO.
Collapse
Affiliation(s)
- Saeid Hazrati
- Department of AgronomyFaculty of AgricultureAzarbaijan Shahid Madani UniversityTabrizIran
| | - Kazem Lotfi
- Department of AgronomyFaculty of AgricultureAzarbaijan Shahid Madani UniversityTabrizIran
| | - Mostafa Govahi
- Department of Nano BiotechnologyFaculty of BiotechnologyAmol University of Special Modern TechnologiesAmolIran
| | - Mohammad‐Taghi Ebadi
- Department of Horticultural ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
49
|
The Effects of Post-Harvest Treatments on the Quality of Agastache aurantiaca Edible Flowers. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7040083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Agastache spp. are used as ornamental plants for their pleasant aroma and the different colors of flowers. Nowadays, their edible flowers have become attractive for their nutraceutical properties. Post-harvest treatment appears as a crucial point to avoid impairment of the nutraceutical compounds and aroma, so different treatments were tested to analyze their effect on the bioactive metabolites and volatilome. Results indicated that freeze-drying was the best solution to prolong the shelf life of these flowers. The use of high temperatures (50, 60, 70 °C) led to altered the composition of antioxidant compounds (phenolic compounds, flavonoids, anthocyanins, carotenoids). Air-drying at 30 °C was a reasonable method, even though time consuming. Concerning the aroma profile, all samples were dominated by oxygenated monoterpene compounds. Pulegone was the main or one of the major constituents of all samples together with p-menthone. Gas Chromatography-Mass Spectrometry results showed a correlation between the temperature and the number of identified compounds. Both fresh and freeze-dried samples evidenced a lesser number (10 and 19, respectively); when the temperature raised, the number of identified constituents increased. Statistical analyses highlighted significant differences between almost all aromatic compounds, even if both Principal Component and Hierarchical Cluster analyses differed at 60 and 70 °C and from the other treatments.
Collapse
|
50
|
Razola-Díaz MDC, Guerra-Hernández EJ, García-Villanova B, Verardo V. Recent developments in extraction and encapsulation techniques of orange essential oil. Food Chem 2021; 354:129575. [PMID: 33761335 DOI: 10.1016/j.foodchem.2021.129575] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 12/24/2022]
Abstract
Orange production is constantly growing. The main orange by-product, the orange peel, is a usable source of essential oils with a lot of health benefits. Because of that, it is important to find the best recovery and encapsulation techniques in order to get the best bioavailability for human and to ensure the highest quality for food applications. Thus, the aim of this work is to summarize the complete process needed to obtain orange essential oil, from the pre-treatments to the encapsulation steps, carried out in the last years. This review is focused on the comparison of new and more innovative techniques in front of the most conventional ones used for extracting and encapsulating the orange essential oil.
Collapse
Affiliation(s)
| | | | - Belén García-Villanova
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento sn, 18100 Granada, Spain.
| |
Collapse
|