1
|
Li Y, Chen Z, Zhang F, Wei Z, Huang Y, Chen C, Zheng Y, Wei Q, Sun H, Chen F. Research on detection of potato varieties based on spectral imaging analytical algorithm. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123966. [PMID: 38335591 DOI: 10.1016/j.saa.2024.123966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Potatoes are popular among consumers due to their high yield and delicious taste. However, due to the numerous varieties of potatoes, different varieties are suitable for different processing methods. Therefore, it is necessary to distinguish varieties after harvest to meet the needs of processing enterprises and consumers. In this study, a new visible-near-infrared spectroscopic analysis method was proposed, which can achieve detection of five potato varieties. The method measures the transmission and reflection spectra of potatoes using a spectral acquisition system, encodes one-dimensional spectra into two-dimensional images using Gramian Angular Summation Field (GASF), Gramian Angular Difference Field (GADF), Markov Transition Field (MTF) and Recurrence Plot (RP), and improves the coordinated attention mechanism module and embeds the improved module into the ConvNeXt V2 model to build the ConvNeXt V2-CAP model for potato variety classification. The results show that compared with directly using one-dimensional classification models, image encoding of spectral data for classification greatly improves the accuracy. Among them, the best accuracy of 99.54% is achieved by using GADF image encoding of transmission spectra combined with the ConvNeXt V2-CAP model for classification, which is 16.28% higher than the highest accuracy of the one-dimensional classification model. The CAP attention mechanism module improves the performance of the model, especially when the dataset is small. When the training set is reduced to 150 images, the accuracy of the model is improved by 2.33% compared to the original model. Therefore, it is feasible to classify potato varieties using visible-near infrared spectroscopy and image encoding technology.
Collapse
Affiliation(s)
- You Li
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China
| | - Zhaoqing Chen
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China
| | - Fenyun Zhang
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China
| | - Zhenbo Wei
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yun Huang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang Province 321017, China
| | - Changqing Chen
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang Province 321017, China
| | - Yurui Zheng
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China
| | - Qiquan Wei
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China
| | - Hongwei Sun
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China.
| | - Fengnong Chen
- School of Automation, Hangzhou Dianzi University, Hanzhou, Zhejiang Province 310018, China.
| |
Collapse
|
2
|
Zhang Z, Li Y, Zhao S, Qie M, Bai L, Gao Z, Liang K, Zhao Y. Rapid analysis technologies with chemometrics for food authenticity field: A review. Curr Res Food Sci 2024; 8:100676. [PMID: 38303999 PMCID: PMC10830540 DOI: 10.1016/j.crfs.2024.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024] Open
Abstract
In recent years, the problem of food adulteration has become increasingly rampant, seriously hindering the development of food production, consumption, and management. The common analytical methods used to determine food authenticity present challenges, such as complicated analysis processes and time-consuming procedures, necessitating the development of rapid, efficient analysis technology for food authentication. Spectroscopic techniques, ambient ionization mass spectrometry (AIMS), electronic sensors, and DNA-based technology have gradually been applied for food authentication due to advantages such as rapid analysis and simple operation. This paper summarizes the current research on rapid food authenticity analysis technology from three perspectives, including breeds or species determination, quality fraud detection, and geographical origin identification, and introduces chemometrics method adapted to rapid analysis techniques. It aims to promote the development of rapid analysis technology in the food authenticity field.
Collapse
Affiliation(s)
- Zixuan Zhang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengjie Qie
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Bai
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhiwei Gao
- Hangzhou Nutritome Biotech Co., Ltd., Hangzhou, China
| | - Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yan Zhao
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Yin Z, Liu Q, Guan X, Xie M, Lu W, Wang S. Quantum-dot light-chip micro-spectrometer. OPTICS LETTERS 2023; 48:3371-3374. [PMID: 37390133 DOI: 10.1364/ol.492805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/02/2023]
Abstract
Micro-spectrometers have great potential in various fields such as medicine, agriculture, and aerospace. In this work, a quantum-dot (QD) light-chip micro-spectrometer is proposed in which QDs emit different wavelengths of light that are combined with a spectral reconstruction (SR) algorithm. The QD array itself can play the roles of both the light source and the wavelength division structure. The spectra of samples can be obtained by using this simple light source with a detector and algorithm, and the spectral resolution reaches 9.7 nm in the wavelength range from 580 nm to 720 nm. The area of the QD light chip is 4 × 7.5 mm2, which is 20 times smaller than the halogen light sources of commercial spectrometers. It does not need a wavelength division structure and greatly reduces the volume of the spectrometer. Such a micro-spectrometer can be used for material identification: in a demonstration, three kinds of transparent samples, real and fake leaves, and real and fake blood were classified with an accuracy of 100%. These results indicate that the spectrometer based on a QD light chip has broad application prospects.
Collapse
|
4
|
Grabska J, Beć KB, Ueno N, Huck CW. Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review. Foods 2023; 12:foods12101946. [PMID: 37238763 DOI: 10.3390/foods12101946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world's most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas.
Collapse
Affiliation(s)
- Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Nami Ueno
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Yu F, Lu T, Xue C. Deep Learning-Based Intelligent Apple Variety Classification System and Model Interpretability Analysis. Foods 2023; 12:foods12040885. [PMID: 36832960 PMCID: PMC9956933 DOI: 10.3390/foods12040885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, series networks (AlexNet and VGG-19) and directed acyclic graph (DAG) networks (ResNet-18, ResNet-50, and ResNet-101) with transfer learning were employed to identify and classify 13 classes of apples from 7439 images. Two training datasets, model evaluation metrics, and three visualization methods were used to objectively assess, compare, and interpret five Convolutional Neural Network (CNN)-based models. The results show that the dataset configuration had a significant impact on the classification results, as all models achieved over 96.1% accuracy on dataset A (training-to-testing = 2.4:1.0) compared to 89.4-93.9% accuracy on dataset B (training-to-testing = 1.0:3.7). VGG-19 achieved the highest accuracy of 100.0% on dataset A and 93.9% on dataset B. Moreover, for networks of the same framework, the model size, accuracy, and training and testing times increased as the model depth (number of layers) increased. Furthermore, feature visualization, strongest activations, and local interpretable model-agnostic explanations techniques were used to show the understanding of apple images by different trained models, as well as to reveal how and why the models make classification decisions. These results improve the interpretability and credibility of CNN-based models, which provides guidance for future applications of deep learning methods in agriculture.
Collapse
Affiliation(s)
- Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Tao Lu
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
- Correspondence:
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
6
|
Pandiselvam R, Prithviraj V, Manikantan MR, Kothakota A, Rusu AV, Trif M, Mousavi Khaneghah A. Recent advancements in NIR spectroscopy for assessing the quality and safety of horticultural products: A comprehensive review. Front Nutr 2022; 9:973457. [PMID: 36313102 PMCID: PMC9597448 DOI: 10.3389/fnut.2022.973457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
The qualitative and quantitative evaluation of agricultural products has often been carried out using traditional, i.e., destructive, techniques. Due to their inherent disadvantages, non-destructive methods that use near-infrared spectroscopy (NIRS) coupled with chemometrics could be useful for evaluating various agricultural products. Advancements in computational power, machine learning, regression models, artificial neural networks (ANN), and other predictive tools have made their way into NIRS, improving its potential to be a feasible alternative to destructive measurements. Moreover, the incorporation of suitable preprocessing techniques and wavelength selection methods has arguably proven its practical feasibility. This review focuses on the various computation methods used for processing the spectral data collected and discusses the potential applications of NIRS for evaluating the quality and safety of agricultural products. The challenges associated with this technology are also discussed, as well as potential future perspectives. We conclude that NIRS is a potentially useful tool for the rapid assessment of the quality and safety of agricultural products.
Collapse
Affiliation(s)
- R. Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR –Central Plantation Crops Research Institute, Kasaragod, Kerala, India,*Correspondence: R. Pandiselvam
| | - V. Prithviraj
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - M. R. Manikantan
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR –Central Plantation Crops Research Institute, Kasaragod, Kerala, India,M. R. Manikantan
| | - Anjineyulu Kothakota
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, Stuhr, Germany,Monica Trif
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, Warsaw, Poland
| |
Collapse
|
7
|
Discrimination of Minced Mutton Adulteration Based on Sized-Adaptive Online NIRS Information and 2D Conventional Neural Network. Foods 2022; 11:foods11192977. [PMID: 36230054 PMCID: PMC9563429 DOI: 10.3390/foods11192977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Single-probe near-infrared spectroscopy (NIRS) usually uses different spectral information for modelling, but there are few reports about its influence on model performance. Based on sized-adaptive online NIRS information and the 2D conventional neural network (CNN), minced samples of pure mutton, pork, duck, and adulterated mutton with pork/duck were classified in this study. The influence of spectral information, convolution kernel sizes, and classifiers on model performance was separately explored. The results showed that spectral information had a great influence on model accuracy, of which the maximum difference could reach up to 12.06% for the same validation set. The convolution kernel sizes and classifiers had little effect on model accuracy but had significant influence on classification speed. For all datasets, the accuracy of the CNN model with mean spectral information per direction, extreme learning machine (ELM) classifier, and 7 × 7 convolution kernel was higher than 99.56%. Considering the rapidity and practicality, this study provides a fast and accurate method for online classification of adulterated mutton.
Collapse
|
8
|
Near infrared techniques applied to analysis of wheat-based products: Recent advances and future trends. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Bruise Detection and Classification of Strawberries Based on Thermal Images. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Fanari F, Carboni G, Desogus F, Grosso M, Wilhelm M. A Chemometric Approach to Assess the Rheological Properties of Durum Wheat Dough by Indirect FTIR Measurements. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractRheological measurements and FTIR spectroscopy were used to characterize different doughs, obtained by commercial and monovarietal durum wheat flours (Cappelli and Karalis). Rheological frequency sweep tests were carried out, and the Weak Gel model, whose parameters may be related to gluten network extension and strength, was applied. IR analysis mainly focused on the Amide III band, revealing significant variations in the gluten network. Compared to the other varieties, Karalis semolina showed a higher amount of α-helices and a lower amount of β-sheets and random structures. Spectroscopic and rheological data were then correlated using Partial Least Squares regression (PLS) coupled with the Variable Importance in Projection (VIP) technique. The combined use of the techniques provided useful insights into the interplay among protein structures, gluten network features, and rheological properties. In detail, β-sheets and α-helices protein conformations were shown to significantly affect the gluten network's mechanical strength.
Collapse
|
11
|
Feng L, Wu B, Zhu S, He Y, Zhang C. Application of Visible/Infrared Spectroscopy and Hyperspectral Imaging With Machine Learning Techniques for Identifying Food Varieties and Geographical Origins. Front Nutr 2021; 8:680357. [PMID: 34222304 PMCID: PMC8247466 DOI: 10.3389/fnut.2021.680357] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 01/25/2023] Open
Abstract
Food quality and safety are strongly related to human health. Food quality varies with variety and geographical origin, and food fraud is becoming a threat to domestic and global markets. Visible/infrared spectroscopy and hyperspectral imaging techniques, as rapid and non-destructive analytical methods, have been widely utilized to trace food varieties and geographical origins. In this review, we outline recent research progress on identifying food varieties and geographical origins using visible/infrared spectroscopy and hyperspectral imaging with the help of machine learning techniques. The applications of visible, near-infrared, and mid-infrared spectroscopy as well as hyperspectral imaging techniques on crop food, beverage, fruits, nuts, meat, oil, and some other kinds of food are reviewed. Furthermore, existing challenges and prospects are discussed. In general, the existing machine learning techniques contribute to satisfactory classification results. Follow-up researches of food varieties and geographical origins traceability and development of real-time detection equipment are still in demand.
Collapse
Affiliation(s)
- Lei Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Baohua Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Susu Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| |
Collapse
|
12
|
Xie W, Wei S, Zheng Z, Jiang Y, Yang D. Recognition of Defective Carrots Based on Deep Learning and Transfer Learning. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02653-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Ropelewska E. The application of image processing for cultivar discrimination of apples based on texture features of the skin, longitudinal section and cross-section. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03711-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe study was aimed at the evaluation of the usefulness of textures of the outer surface from the images of apple skin and flesh for discrimination of different cultivars. The texture parameters were calculated from color channels: R, G, B, L, a, b, U, V, H, S, I, X, Y, Z. In the case of cultivar discrimination performed for the apple skin, the highest accuracies were obtained for textures from channels R, a and X. In the case of channels R and a, the apples were classified with the total accuracy of up to 93%. For channel X, the highest total accuracy was 90%. For discrimination based on the textures selected from images of a longitudinal section of apples, the total accuracy reached 100% for channels G, b and U. In the case of the cross-section images, the total accuracies were also satisfactory and reached 93% for channel G, 97% for channels b and U. The obtained results proved that the use of image processing based on textures can allow the discrimination of apple cultivars with a high probability of up to 100% in the case of textures selected from images of a longitudinal section. The results can be applied in practice for cultivar discrimination and detection of the falsification of apple cultivars. The obtained results revealed that texture features can allow for cultivar identification of apples with a very high probability in an inexpensive, objective, and fast way.
Graphic abstract
Collapse
|
14
|
Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109955] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Guo Z, Wang M, Shujat A, Wu J, El-Seedi HR, Shi J, Ouyang Q, Chen Q, Zou X. Nondestructive monitoring storage quality of apples at different temperatures by near-infrared transmittance spectroscopy. Food Sci Nutr 2020; 8:3793-3805. [PMID: 32724641 PMCID: PMC7382128 DOI: 10.1002/fsn3.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
Apple is the most widely planted fruit in the world and is popular in consumers because of its rich nutritional value. In this study, the portable near-infrared (NIR) transmittance spectroscopy coupled with temperature compensation and chemometric algorithms was applied to detect the storage quality of apples. The postharvest quality of apples including soluble solids content (SSC), vitamin C (VC), titratable acid (TA), and firmness was evaluated, and the portable spectrometer was used to obtain near-infrared transmittance spectra of apples in the wavelength range of 590-1,200 nm. Mixed temperature compensation method (MTC) was used to reduce the influence of temperature on the models and to improve the adaptability of the models. Then, variable selection methods, such as uninformative variable elimination (UVE), competitive adaptive reweighted sampling (CARS), and successive projections algorithm (SPA), were developed to improve the performance of the models by determining characteristic variables and reducing redundancy. Comparing the full spectral models with the models established on variables selected by different variable selection methods, the CARS combined with partial least squares (PLS) showed the best performance with prediction correlation coefficient (R p) and residual predictive deviation (RPD) values of 0.9236, 2.604 for SSC; 0.8684, 2.002 for TA; 0.8922, 2.087 for VC; and 0.8207, 1.992 for firmness, respectively. Results showed that NIR transmittance spectroscopy was feasible to detect postharvest quality of apples during storage.
Collapse
Affiliation(s)
- Zhiming Guo
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Mingming Wang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Ali Shujat
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Jingzhu Wu
- Beijing Key Laboratory of Big Data Technology for Food Safety Beijing Technology and Business University Beijing China
| | - Hesham R El-Seedi
- Division of Pharmacognosy Department of Medicinal Chemistry Uppsala University Uppsala Sweden
| | - Jiyong Shi
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Qin Ouyang
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Quansheng Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Xiaobo Zou
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
16
|
Li X, Tsuta M, Tanaka F, Tsukahara M, Tsukahara K. Assessment of Japanese Awamori Spirits Using UV–VIS Spectroscopy. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01692-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ripeness Classification of Bananito Fruit (
Musa acuminata,
AA): a Comparison Study of Visible Spectroscopy and Hyperspectral Imaging. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|