1
|
Uyarcan M, Güngör SC. Improving functional properties of starch-based films by ultraviolet (UV-C) technology: Characterization and application on minced meat packaging. Int J Biol Macromol 2024; 282:137085. [PMID: 39481730 DOI: 10.1016/j.ijbiomac.2024.137085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
This study aimed to utilize UV-C technology to improve the functional properties of starch-based films for minced meat packaging. Starch film solutions were exposed to UV-C light for varying durations (15, 30, 60, and 120 min). Results revealed significant reductions in the water solubility, swelling degree, and elongation at break values of films following treatment (P < 0.05). Opacity values consistently increased with prolonged UV exposure time, particularly in films treated for 30, 60, and 120 min (P < 0.05). Also, the water contact angle of films significantly increased (P < 0.05) while their water vapor permeability decreased. SEM observations showed that UV-C treatment resulted in excellent miscibility, compatibility, and strong intermolecular bonding in starch films. FTIR, X-ray diffraction, and thermogravimetric analysis further confirmed the excellent compatibility of UV-C-treated films within the film matrix. Notably, starch films treated with UV-C for 60 min exhibited the best characteristics for minced meat packaging. Minced meat packaged with these treated films showed lower thiobarbituric acid values (0.033 mg MDA/kg sample) and total viable counts (5.93 log CFU/g) than those packaged with untreated films throughout storage. These findings highlight the significant potential of UV-C-treated starch-based films, particularly those treated for 60 min, as functional packaging solutions for minced meat preservation.
Collapse
Affiliation(s)
- Müge Uyarcan
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey.
| | - Sude Cansın Güngör
- Manisa Celal Bayar University, Faculty of Engineering and Natural Sciences, Food Engineering Department, Manisa, Turkey
| |
Collapse
|
2
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Adamou P, Harkou E, Villa A, Constantinou A, Dimitratos N. Ultrasonic reactor set-ups and applications: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106925. [PMID: 38810367 PMCID: PMC11157283 DOI: 10.1016/j.ultsonch.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Sonochemistry contributes to green science as it uses less hazardous solvents and methods to carry out a reaction. In this review, different reactor designs are discussed in detail providing the necessary knowledge for implementing various processes. The main characteristics of ultrasonic batch systems are their low cost and enhanced mixing; however, they still have immense drawbacks such as their scalability. Continuous flow reactors offer enhanced production yields as the limited cognition which governs the design of these sonoreactors, renders them unusable in industry. In addition, microstructured sonoreactors show improved heat and mass transfer phenomena due to their small size but suffer though from clogging. The optimisation of various conditions of regulations, such as temperature, frequency of ultrasound, intensity of irradiation, sonication time, pressure amplitude and reactor design, it is also discussed to maximise the production rates and yields of reactions taking place in sonoreactors. The optimisation of operating parameters and the selection of the reactor system must be considered to each application's requirements. A plethora of different applications that ultrasound waves can be implemented are in the biochemical and petrochemical engineering, the chemical synthesis of materials, the crystallisation of organic and inorganic substances, the wastewater treatment, the extraction processes and in medicine. Sonochemistry must overcome challenges that consider the scalability of processes and its embodiment into commercial applications, through extensive studies for understanding the designs and the development of computational tools to implement timesaving and efficient theoretical studies.
Collapse
Affiliation(s)
- Panayiota Adamou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Eleana Harkou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus
| | - Alberto Villa
- Dipartimento di Chimica, Universitá degli Studi di Milano, via Golgi, 20133 Milan, Italy
| | - Achilleas Constantinou
- Department of Chemical Engineering Cyprus University of Technology, 57 Corner of Athinon and Anexartisias, 3036 Limassol, Cyprus.
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy; Center for Chemical Catalysis - C3, University of Bologna, viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
4
|
Jridi M, Abdelhedi O, Salem A, Zouari N, Nasri M. Food applications of bioactive biomaterials based on gelatin and chitosan. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:399-438. [PMID: 38906591 DOI: 10.1016/bs.afnr.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Food packaging must guarantee the products' quality during the different operations including packing and maintenance throughout transportation and storage until to consumption. Thus, it should satisfy, both, food freshness and quality preservation and consumers health safety. Natural bio-sourced polymers have been explored as safe edible materials for several packaging applications, being interestingly carrier of bioactive substances, once added to improve films' properties. Gelatin and chitosan are among the most studied biomaterials for the preparation of edible packaging films due to their excellent characteristics including biodegradability, compatibility and film-forming property. These polymers could be used alone or in combination with other polymers to produce composite films with the desired physicochemical and mechanical properties. When incorporated with bioactive substances (natural extracts, polyphenolic compounds, essential oils), chitosan/gelatin-based films acquired various biological properties, including antioxidant and antimicrobial activities. The emerging bioactive composite films with excellent physical attributes represent excellent packaging alternative to preserve different types of foodstuffs (fruits, meat, fish, dairy products, …) and have shown great achievements. This chapter provides the main techniques used to prepare gelatin- and chitosan- based films, showing some examples of bioactive compounds incorporated into the films' matrix. Also, it illustrates the outstanding advantages given by these biomaterials for food preservation, when used as coating and wrapping agents.
Collapse
Affiliation(s)
- Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia.
| | - Ola Abdelhedi
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Ali Salem
- Laboratory of Functional Physiology and Valorization of Bio-resources (LR23ES08), Higher Institute of Biotechnology of Beja (ISBB), University of Jendouba, Beja, Tunisia
| | - Nacim Zouari
- Higher Institute of Applied Biology of Medenine, University of Gabes, Medenine, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, Sfax, Tunisia
| |
Collapse
|
5
|
Mouhoub A, Guendouz A, El Alaoui-Talibi Z, Ibnsouda Koraichi S, Er Raouan S, Delattre C, El Modafar C. Preparation of bioactive film based on chitosan and essential oils mixture for enhanced preservation of food products. Int J Biol Macromol 2024; 259:129396. [PMID: 38219942 DOI: 10.1016/j.ijbiomac.2024.129396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Recently, the concept of biodegradable and bioactive packaging and surface coating has become a trend. In this work, the bioactive films of chitosan were elaborated following the casting method. Contrary to the films containing the Cinnamomum zeylanicum Blume, Thymus satureioides Cosson, and Syzygium aromaticum essential oils (EOs) mixtures, the control film was thin, colorless, and showed high moisture content, swelling degree, and elongation at break. Concerning the physicochemical parameters, the incorporation of the EOs mixtures minimized the hydrophobicity of the material (θw < 65°) and modified randomly its surface free energy components (γ-; γ+; γLW). The theoretical prediction of Aspergillus sp. and Rhizopus sp. adherence to the chitosan-based films was relatively correlated to the experimental results (r = -0.601). The latter showed that 6.80 % and 19.02 % of the control film surface was covered by Aspergillus sp. and Rhizopus sp. spores, respectively. In contrast, no fungal adherence was noticed in the case of the film incorporating the triple EOs mixture. These promising results revealed that chitosan film containing C. zeylanicum, T. satureioides, and S. aromaticum EOs mixtures could be utilized as a surface coating or bioactive packaging in the food industry.
Collapse
Affiliation(s)
- Anouar Mouhoub
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Amine Guendouz
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Zainab El Alaoui-Talibi
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| | - Saad Ibnsouda Koraichi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Safae Er Raouan
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah-Fès, Fès, Morocco.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500 Paris, France.
| | - Cherkaoui El Modafar
- Centre d'Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco.
| |
Collapse
|
6
|
Batista MJPA, Marques MBF, Franca AS, Oliveira LS. Development of Films from Spent Coffee Grounds' Polysaccharides Crosslinked with Calcium Ions and 1,4-Phenylenediboronic Acid: A Comparative Analysis of Film Properties and Biodegradability. Foods 2023; 12:2520. [PMID: 37444258 DOI: 10.3390/foods12132520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Most polymeric materials are synthetic and derived from petroleum, hence they accumulate in landfills or the ocean, and recent studies have focused on alternatives to replace them with biodegradable materials from renewable sources. Biodegradable wastes from food and agroindustry, such as spent coffee grounds (SCGs), are annually discarded on a large scale and are rich in organic compounds, such as polysaccharides, that could be used as precursors to produce films. Around 6.5 million tons of SCGs are discarded every year, generating an environmental problem around the world. Therefore, it was the aim of this work to develop films from the SCGs polysaccharide fraction, which is comprised of cellulose, galactomannans and arabinogalactans. Two types of crosslinking were performed: the first forming coordination bonds of calcium ions with polysaccharides; and the second through covalent bonds with 1,4-phenylenediboronic acid (PDBA). The films with Ca2+ ions exhibited a greater barrier to water vapor with a reduction of 44% of water permeability vapor and 26% greater tensile strength than the control film (without crosslinkers). Films crosslinked with PDBA presented 55-81% higher moisture contents, 85-125% greater permeability to water vapor and 67-150% larger elongations at break than the films with Ca2+ ions. Film biodegradability was demonstrated to be affected by the crosslinking density, with the higher the crosslinking density, the longer the time for the film to fully biodegrade. The results are promising and suggest that future research should focus on enhancing the properties of these films to expand the range of possible applications.
Collapse
Affiliation(s)
- Michelle J P A Batista
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - M Betânia F Marques
- DQ, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Adriana S Franca
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leandro S Oliveira
- PPGCA, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- DEMEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
Duan J, Zhou Q, Fu M, Cao M, Jiang M, Zhang L, Duan X. Research on Properties of Edible Films Prepared from Zein, Soy Protein Isolate, Wheat Gluten Protein by Adding Beeswax. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Homthawornchoo W, Hakimi NFSM, Romruen O, Rawdkuen S. Dragon Fruit Peel Extract Enriched-Biocomposite Wrapping Film: Characterization and Application on Coconut Milk Candy. Polymers (Basel) 2023; 15:polym15020404. [PMID: 36679292 PMCID: PMC9863164 DOI: 10.3390/polym15020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Bio-based film is an eco-friendly alternative to petroleum-based packaging film. The effects of biocomposite wrapping film enhanced with dragon fruit peel extract (0, 2% w/v, respectively) and currently used commercial packaging film (polypropylene; PP) on coconut milk caramels during storage (30 °C, 75% RH, nine days) were studied. Both 0% and 2% DPE-enriched biocomposite films were thicker and had higher water vapor permeability and solubility than the PP film but poorer mechanical characteristics. In addition, the 2% film possessed antioxidants and antioxidant ability. A FESEM micrograph revealed the rough surface and porous path of the biocomposite films. Over the storage time, the moisture content, water activity, and springiness of the coconut milk caramel candy wrapped in the PP and all DPE-enriched biocomposite films were not significantly altered. However, the lipid oxidation as the thiobarbituric acid reactive substance (TBARS) and hardness of all coconut caramels were significantly (p < 0.05) increased during storage. Furthermore, the hardness of coconut candy covered in the control (0% DPE) biocomposite film was more pronounced on day nine of storage. However, the changes in quality characteristics of the coconut candy wrapped in each film type need to be better established. The investigating factors influencing the quality deterioration of coconut milk candy should be further identified to mitigate their effects and extend the shelf-life of the coconut candy.
Collapse
Affiliation(s)
- Wantida Homthawornchoo
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (W.H.); (S.R.); Tel.: +66-5391-6751 (W.H.); +66-5391-6739 (S.R.)
| | - Nur Fairuza Syahira Mohamad Hakimi
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Sciences and Technology Program, School of Applied Science, Universiti Teknologi MARA, Shah Alam 45100, Malaysia
| | - Orapan Romruen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Innovative Food Packaging and Biomaterials Unit, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Correspondence: (W.H.); (S.R.); Tel.: +66-5391-6751 (W.H.); +66-5391-6739 (S.R.)
| |
Collapse
|
9
|
Emulsifier free fish gelatin based films with excellent antioxidative and antibacterial activity: Preparation, characterization and application in coating preservation of fish fillets. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Kowalczyk D, Szymanowska U, Skrzypek T, Basiura-Cembala M, Bartkowiak A, Łupina K. A Comprehensive Study on Gelatin- and Whey Protein Isolate-Based Edible Films as Carriers of Fireweed (Epilobium angustifolium L.) Extract. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractGelatin (GEL) and whey protein isolate (WPI) are often taken into account as carriers of phytoantioxidants for developing active packaging. The materials obtained, however, have not yet been systematically compared to demonstrate their potential benefits and drawbacks. Fireweed extract (FE) is a rich source of polyphenols with high antioxidant activity. Therefore, in this study, the structural, physicochemical, and antiradical properties of GEL and WPI films incorporated with freeze-dried fireweed extract (FE; 0, 0.0125, 0.025, 0.05%) were simultaneously evaluated. As verified by X-ray diffraction, the GEL-based films were more crystalline and, consequently, mechanically stronger (~ 9–11 vs. ~ 6 MPa) and less permeable to water vapor than the WPI films (44.95–52.02 vs. 61.47–70.49 g mm m−2 day−1 kPa−1). Furthermore, GEL offered a bit more transparent, less yellow, and more stretchable films (~ 50–59% vs. ~ 26%). In turn, the WPI films had superior UV-protective potential. The higher FE concentration yielded more yellow films with improved UV-blocking ability. The FE (0.05%) made the GEL cryogel denser. Based on the half-time reduction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (tABTS50%), the 0.025, and 0.05% FE-supplemented WPI films exhibited ~ 1.6 and ~ 1.9 times better antiradical potential than the GEL counterparts. This result implies that the WPI-based films, being more soluble (35.12–36.74 vs. 31.51–33.21%) and less swellable (192.61–205.88 vs. 1056.93–2282.47%), ensured faster release of FE into aqueous medium. The slower building up of the antiradical activity of the FE-supplemented GEL films suggests that GEL could be more useful in the development of slow/less migratory active packaging systems for high moisture food.
Collapse
|
12
|
Optimization of Technological Parameters of the Process of Forming Therapeutic Biopolymer Nanofilled Films. NANOMATERIALS 2022; 12:nano12142413. [PMID: 35889643 PMCID: PMC9318775 DOI: 10.3390/nano12142413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/17/2022]
Abstract
The prospects of using biopolymer nano-containing films for wound healing were substantiated. The main components of biopolymer composites are gelatin, polyvinyl alcohol, glycerin, lactic acid, distilled water, and zinc oxide (ZnO) nanoparticles (NPs). Biopolymer composites were produced according to various technological parameters using a mould with a chrome coating. The therapeutic properties of biopolymer films were evaluated by measuring the diameter of the protective effect. Physico-mechanical properties were studied: elasticity, vapour permeability, degradation time, and swelling. To study the influence of technological parameters of the formation process of therapeutic biopolymer nanofilled films on their therapeutic and physico-mechanical properties, the planning of the experiment was used. According to the results of the experiments, mathematical models of the second-order were built. The optimal values of technological parameters of the process are determined, which provide biopolymer nanofilled films with maximum healing ability (diameter of protective action) and sufficiently high physical and mechanical properties: elasticity, vapour permeability, degradation time and swelling. The research results showed that the healing properties of biopolymer films mainly depend on the content of ZnO NPs. Degradation of these biopolymer films provides dosed drug delivery to the affected area. The products of destruction are carbon dioxide, water, and a small amount of ZnO in the bound state, which indicates the environmental safety of the developed biopolymer film.
Collapse
|
13
|
Shen J, Zhang M, Mujumdar AS, Chen J. Effects of High Voltage Electrostatic Field and Gelatin-Gum Arabic Composite Film on Color Protection of Freeze-dried Grapefruit Slices. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02839-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|