1
|
Laubach M, Hartmann H, Holzapfel BM, Mayer-Wagner S, Schenke-Layland K, Hutmacher DW. [3D printing in surgery: relevance of technology maturity assessment in bioprinting research studies]. CHIRURGIE (HEIDELBERG, GERMANY) 2025; 96:306-315. [PMID: 39630288 PMCID: PMC11933231 DOI: 10.1007/s00104-024-02197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 03/25/2025]
Abstract
Biological 3D printing (bioprinting) is an extension of what is defined as additive manufacturing in the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards and is based on the automated printing of living cells and biomaterials. Researchers and experts in the field of biomaterial science, tissue engineering and regenerative medicine (TE&RM) are constantly pointing to the potential of biological 3D printing and scientific articles regularly announce the imminent clinical application. We argue in this article that these announcements are often premature and counterproductive as they focus heavily on technological progress but regularly ignore the critical stages that need to be completed in order to successfully translate a technology into the healthcare market. The technology readiness level (TRL) scale is a potentially useful tool for measuring the relative maturity of a technology in terms of overcoming a series of critical milestones. We propose an adaptation of the TRL scale and use it to discuss the current state of research on biological 3D printing. Finally, we provide specific recommendations for optimizing future research projects to pave the way for clinical applications of biological 3D printing and thus achieve a direct positive impact on surgical patient care.
Collapse
Affiliation(s)
- Markus Laubach
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland.
| | - Hanna Hartmann
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Deutschland
| | - Boris M Holzapfel
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
| | - Susanne Mayer-Wagner
- Klinik für Orthopädie und Unfallchirurgie, Muskuloskelettales Universitätszentrum München (MUM), LMU Klinikum, LMU München, Marchioninistr. 15, 81377, München, Deutschland
| | - Katja Schenke-Layland
- NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Deutschland
- Institut für Biomedical Engineering, Abteilung für Medizintechnik und Regenerative Medizin, Eberhard Karls Universität Tübingen, Silcherstr. 7/1, 72076, Tübingen, Deutschland
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, QLD 4000, Brisbane, Australien.
| |
Collapse
|
2
|
Akter MZ, Tufail F, Ahmad A, Oh YW, Kim JM, Kim S, Hasan MM, Li L, Lee DW, Kim YS, Lee SJ, Kim HS, Ahn Y, Choi YJ, Yi HG. Harnessing native blueprints for designing bioinks to bioprint functional cardiac tissue. iScience 2025; 28:111882. [PMID: 40177403 PMCID: PMC11964760 DOI: 10.1016/j.isci.2025.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Cardiac tissue lacks regenerative capacity, making heart transplantation the primary treatment for end-stage heart failure. Engineered cardiac tissues developed through three-dimensional bioprinting (3DBP) offer a promising alternative. However, reproducing the native structure, cellular diversity, and functionality of cardiac tissue requires advanced cardiac bioinks. Major obstacles in CTE (cardiac tissue engineering) include accurately characterizing bioink properties, replicating the cardiac microenvironment, and achieving precise spatial organization. Optimizing bioink properties to closely mimic the extracellular matrix (ECM) is essential, as deviations may result in pathological effects. This review encompasses the rheological and electromechanical properties of bioinks and the function of the cardiac microenvironment in the design of functional cardiac constructs. Furthermore, it focuses on improving the rheological characteristics, printability, and functionality of bioinks, offering valuable perspectives for developing new bioinks especially designed for CTE.
Collapse
Affiliation(s)
- Mst Zobaida Akter
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Fatima Tufail
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ashfaq Ahmad
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Wha Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Min Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoyeon Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Mehedee Hasan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Su-jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
- Advanced Materials Engineering, Korea National University of Science and Technology (UST), Changwon, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Holland I. Extrusion bioprinting: meeting the promise of human tissue biofabrication? PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:023001. [PMID: 39904058 PMCID: PMC11894458 DOI: 10.1088/2516-1091/adb254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Extrusion is the most popular bioprinting platform. Predictions of human tissue and whole-organ printing have been made for the technology. However, after decades of development, extruded constructs lack the essential microscale resolution and heterogeneity observed in most human tissues. Extrusion bioprinting has had little clinical impact with the majority of research directed away from the tissues most needed by patients. The distance between promise and reality is a result of technology hype and inherent design flaws that limit the shape, scale and survival of extruded features. By more widely adopting resolution innovations and softening its ambitions the biofabrication field could define a future for extrusion bioprinting that more closely aligns with its capabilities.
Collapse
Affiliation(s)
- Ian Holland
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
- Deanery of Biomedical Science, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Engineering Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Lan T, Dai Y, Hu P, Han J, Jin Y. Advancing Precision Surgery: The Role of 3D Printing in Liver Surgery. 3D PRINTING AND ADDITIVE MANUFACTURING 2025. [DOI: 10.1089/3dp.2024.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Affiliation(s)
- Tao Lan
- Department of Hepatobiliary Surgery, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Yihe Dai
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Pingping Hu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jiang Han
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yun Jin
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Xue P, Wang J, Fu Y, He H, Gan Q, Liu C. Material-Mediated Immunotherapy to Regulate Bone Aging and Promote Bone Repair. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409886. [PMID: 39981851 DOI: 10.1002/smll.202409886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Indexed: 02/22/2025]
Abstract
As the global population ages, an increasing number of elderly people are experiencing weakened bone regenerative capabilities, resulting in slower bone repair processes and associated risks of various complications. This review outlines the research progress on biomaterials that promote bone repair through immunotherapy. This review examines how manufacturing technologies such as 3D printing, electrospinning, and microfluidic technology contribute to enhancing the therapeutic effects of these biomaterials. Following this, it provides detailed introductions to various anti-osteoporosis drug delivery systems, such as injectable hydrogels, nanoparticles, and engineered exosomes, as well as bone tissue engineering materials and coatings used in immunomodulation. Moreover, it critically analyzes the current limitations of biomaterial-mediated bone immunotherapy and explores future research directions for material-mediated bone immunotherapy. This review aims to inspire new approaches and broaden perspectives in addressing the challenges of bone repair and aging by exploring innovative biomaterial-mediated immunotherapy strategies.
Collapse
Affiliation(s)
- Pengfei Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
6
|
Mallya D, Gadre MA, Varadharajan S, Vasanthan KS. 3D bioprinting for the construction of drug testing models-development strategies and regulatory concerns. Front Bioeng Biotechnol 2025; 13:1457872. [PMID: 40028291 PMCID: PMC11868281 DOI: 10.3389/fbioe.2025.1457872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/14/2025] [Indexed: 03/05/2025] Open
Abstract
A drug to be successfully launched in the market requires a significant amount of capital, resources and time, where the unsuccessful results in the last stages lead to catastrophic failure for discovering drugs. This is the very reason which calls for the invention of innovative models that can closely mimic the human in vivo model for producing reliable results. Throughout the innovation line, there has been improvement in the rationale in silico designing but yet there is requirement for in vitro-in vivo correlations. During the evolving of the drug testing models, the 3D models produced by different methods have been proven to produce better results than the traditional 2D models. However, the in vitro fabrications of live tissues are still bottleneck in realizing their complete potential. There is an urgent need for the development of single, standard and simplified in vitro 3D tissue models that can be reliable for investigating the biological and pathological aspects of drug discovery, which is yet to be achieved. The existing pre-clinical models have considerable drawbacks despite being the gold standard in pre-clinical research. The major drawback being the interspecies differences and low reliability on the generated results. This gap could be overcome by the fabrication of bioengineered human disease models for drug screening. The advancement in the fabrication of 3D models will provide a valuable tool in screening drugs at different stages as they are one step closer to bio-mimic human tissues. In this review, we have discussed on the evolution of preclinical studies, and different models, including mini tissues, spheroids, organoids, bioengineered three dimensional models and organs on chips. Furthermore, we provide details of different disease models fabricated across various organs and their applications. In addition to this, the review also focuses on the limitations and the current prospects of the role of three dimensionally bioprinted models in drug screening and development.
Collapse
Affiliation(s)
- Divya Mallya
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mrunmayi Ashish Gadre
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - S. Varadharajan
- Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kirthanashri S. Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Nguyen TD, Nguyen TQ, Vo VT, Nguyen TH. Advances in three-dimensional printing of hydrogel formulations for vascularized tissue and organ regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-43. [PMID: 39899080 DOI: 10.1080/09205063.2024.2449294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Over the last decades, three-dimensional (3D) printing has emerged as one of the most promising alternative tissue and organ regeneration technologies. Recent advances in 3D printing technology, particularly in hydrogel-derived bioink formulations, offer promising solutions for fabricating intricate, biomimetic scaffolds that promote vascularization. In this review, we presented numerous studies that have been conducted to fabricate 3D-printed hydrogel vascularized constructs with significant advancements in printing integumentary systems, cardiovascular systems, vascularized bone tissues, skeletal muscles, livers, and kidneys. Furthermore, this work also discusses the engineering considerations, current challenges, proposed solutions, and future outlooks of 3D bioprinting.
Collapse
Affiliation(s)
- Tien Dat Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thanh-Qua Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Van Toi Vo
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| | - Thi-Hiep Nguyen
- School of Biomedical Engineering, International University, HCMC, Vietnam
- Vietnam National University, Ho Chi Minh City, HCMC, Vietnam
| |
Collapse
|
8
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Santos JD, Atayde L, Alves N, Maurício AC. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. J Funct Biomater 2025; 16:28. [PMID: 39852584 PMCID: PMC11765675 DOI: 10.3390/jfb16010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/26/2025] Open
Abstract
The application of three-dimensional (3D) printing/bioprinting technologies and cell therapies has garnered significant attention due to their potential in the field of regenerative medicine. This paper aims to provide a comprehensive overview of 3D printing/bioprinting technology and cell therapies, highlighting their results in diverse medical applications, while also discussing the capabilities and limitations of their combined use. The synergistic combination of 3D printing and cellular therapies has been recognised as a promising and innovative approach, and it is expected that these technologies will progressively assume a crucial role in the treatment of various diseases and conditions in the foreseeable future. This review concludes with a forward-looking perspective on the future impact of these technologies, highlighting their potential to revolutionize regenerative medicine through enhanced tissue repair and organ replacement strategies.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Instituto Universitário de Ciências da Saúde (IUCS), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Rua de Portugal—Zona Industrial, 2430-028 Marinha Grande, Portugal;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (A.C.S.); (R.A.); (B.L.); (P.S.); (A.M.); (A.C.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Av. Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and Intellectual Property: Challenges, Opportunities, and the Road Ahead. Bioengineering (Basel) 2025; 12:76. [PMID: 39851350 PMCID: PMC11761581 DOI: 10.3390/bioengineering12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Bioprinting, an innovative combination of biotechnology and additive manufacturing, has emerged as a transformative technology in healthcare, enabling the fabrication of functional tissues, organs, and patient-specific implants. The implementation of the aforementioned, however, introduces unique intellectual property (IP) challenges that extend beyond conventional biotechnology. The study explores three critical areas of concern: IP protection for bioprinting hardware and bioinks, ownership and ethical management of digital files derived from biological data, and the implications of commercializing bioprinted tissues and organs. Employing a multidisciplinary approach, the paper analyzes existing IP frameworks, highlights their limitations when applied to bioprinting, and examines ethical dilemmas, such as ownership of bioprinted human tissues and the commodification of biological innovations. Findings suggest that current IP laws inadequately address the complexities of bioprinting, particularly in managing the intersection of proprietary technologies and ethical considerations. The study underscores the need for adaptive legal and ethical frameworks to balance innovation with equitable access and sustainability. Recommendations include the development of tailored IP policies for bioprinting and enhanced international collaboration to harmonize legal protections across jurisdictions. This work aims to provide a comprehensive foundation for stakeholders to navigate the rapidly evolving landscape of bioprinting IP.
Collapse
Affiliation(s)
- Antreas Kantaros
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Theodore Ganetsos
- Department of Industrial Design and Production Engineering, University of West Attica, 12244 Athens, Greece
| | - Florian Ion Tiberiu Petrescu
- “Theory of Mechanisms and Robots” Department, Faculty of Industrial Engineering and Robotics, Bucharest Polytechnic University, 060042 Bucharest, Romania;
| | - Elli Alysandratou
- School of Humanities, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
10
|
O'Connell CD, Dalton PD, Hutmacher DW. Why bioprinting in regenerative medicine should adopt a rational technology readiness assessment. Trends Biotechnol 2024; 42:1218-1229. [PMID: 38614839 DOI: 10.1016/j.tibtech.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
Bioprinting is an annex of additive manufacturing, as defined by the American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) standards, characterized by the automated deposition of living cells and biomaterials. The tissue engineering and regenerative medicine (TE&RM) community has eagerly adopted bioprinting, while review articles regularly herald its imminent translation to the clinic as functional tissues and organs. Here we argue that such proclamations are premature and counterproductive; they place emphasis on technological progress while typically ignoring the critical stage-gates that must be passed through to bring a technology to market. We suggest the technology readiness level (TRL) scale as a valuable metric for gauging the relative maturity of a bioprinting technology in relation to how it has passed a series of key milestones. We suggest guidelines for a bioprinting-oriented scale and use this to discuss the state-of-the-art of bioprinting in regenerative medicine (BRM) today. Finally, we make corresponding recommendations for improvements to BRM research that would support its progression to clinical translation.
Collapse
Affiliation(s)
- Cathal D O'Connell
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, VIC, Australia; Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia; Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre on the Materials Science for Extracellular Matrices, Queensland University of Technology, Kelvin Grove, QLD, Australia; Centre for Behavioural Economics, Society & Technology (BEST), Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia; ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
11
|
van Daal M, de Kanter AFJ, Custers RJH, Martínez-Sanz E, Bredenoord AL, de Graeff N. Patient, parent and professional expert perspectives on personalized regenerative implants: a qualitative focus group study. Regen Med 2024; 19:393-406. [PMID: 39222046 PMCID: PMC11370919 DOI: 10.1080/17460751.2024.2386214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Perspectives of patients, parents and professional experts on personalized regenerative implants for regenerative medicine purposes are largely unknown.Method: To better understand these perspectives, we conducted four focus groups with professional experts of mixed European nationality (n = 8), Dutch patients with regular implants (n = 8), Dutch and Belgian (n = 5) and Spanish (n = 8) parents of children with cleft palate.Results: Two overarching themes were identified: 'patient-centered research and care' and 'ambivalent attitudes toward personalized regenerative implants'.Discussion: The results reveal that stakeholders should adopt a participatory rather than an impairment discourse and address the ambivalence among professional experts, patients and parents.Conclusion: Considering stakeholder perspectives facilitates ethical and responsible development and use of personalized regenerative implants.
Collapse
Affiliation(s)
- Manon van Daal
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anne-Floor J de Kanter
- Department of Bioethics & Health Humanities, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Roel JH Custers
- Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elena Martínez-Sanz
- Department of Anatomy & Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Nienke de Graeff
- Department of Medical Ethics & Health Law, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Mirsky NA, Ehlen QT, Greenfield JA, Antonietti M, Slavin BV, Nayak VV, Pelaez D, Tse DT, Witek L, Daunert S, Coelho PG. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel) 2024; 11:777. [PMID: 39199735 PMCID: PMC11351251 DOI: 10.3390/bioengineering11080777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Since three-dimensional (3D) bioprinting has emerged, it has continuously to evolved as a revolutionary technology in surgery, offering new paradigms for reconstructive and regenerative medical applications. This review highlights the integration of 3D printing, specifically bioprinting, across several surgical disciplines over the last five years. The methods employed encompass a review of recent literature focusing on innovations and applications of 3D-bioprinted tissues and/or organs. The findings reveal significant advances in the creation of complex, customized, multi-tissue constructs that mimic natural tissue characteristics, which are crucial for surgical interventions and patient-specific treatments. Despite the technological advances, the paper introduces and discusses several challenges that remain, such as the vascularization of bioprinted tissues, integration with the host tissue, and the long-term viability of bioprinted organs. The review concludes that while 3D bioprinting holds substantial promise for transforming surgical practices and enhancing patient outcomes, ongoing research, development, and a clear regulatory framework are essential to fully realize potential future clinical applications.
Collapse
Affiliation(s)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
14
|
Zahid MJ, Mavani P, Awuah WA, Alabdulrahman M, Punukollu R, Kundu A, Mago A, Maher K, Adebusoye FT, Khan TN. Sculpting the future: A narrative review of 3D printing in plastic surgery and prosthetic devices. Health Sci Rep 2024; 7:e2205. [PMID: 38915353 PMCID: PMC11194296 DOI: 10.1002/hsr2.2205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/02/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims The advent of 3D printing has revolutionized plastic surgery and prosthetic devices, providing personalized solutions for patients with traumatic injuries, deformities, and appearance-related conditions. This review offers a comprehensive overview of 3D printing's applications, advantages, limitations, and future prospects in these fields. Methods A literature search was conducted in PubMed, Google Scholar, and Scopus for studies on 3D printing in plastic surgery. Results 3D printing has significantly contributed to personalized medical interventions, with benefits like enhanced design flexibility, reduced production time, and improved patient outcomes. Using computer-aided design (CAD) software, precise models tailored to a patient's anatomy can be created, ensuring better fit, functionality, and comfort. 3D printing allows for intricate geometries, leading to improved aesthetic outcomes and patient-specific prosthetic limbs and orthoses. The historical development of 3D printing, key milestones, and breakthroughs are highlighted. Recent progress in bioprinting and tissue engineering shows promising applications in regenerative medicine and transplantation. The integration of AI and automation with 3D printing enhances surgical planning and outcomes. Emerging trends in patient-specific treatment planning and precision medicine are potential game-changers. However, challenges like technical considerations, economic implications, and ethical issues exist. Addressing these challenges and advancing research in materials, design processes, and long-term outcomes are crucial for widespread adoption. Conclusion The review underscores the increasing adoption of 3D printing in healthcare and its impact on plastic surgery and prosthetic devices. It emphasizes the importance of evaluating the current state and addressing knowledge gaps through future research to foster further advancements.
Collapse
Affiliation(s)
| | - Parit Mavani
- B. J. Medical CollegeAhmedabadIndia
- Department of SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | | | | | | | - Arnab Kundu
- R.G. Kar Medical College and HospitalKolkataIndia
| | - Arpit Mago
- Jawaharlal Nehru medical CollegeBelgaumIndia
| | | | | | | |
Collapse
|
15
|
Moss MF. Constructing appropriate bioprinting regulations: the ethical importance of recognising a liminal technology. JOURNAL OF MEDICAL ETHICS 2024; 50:392-397. [PMID: 37451859 DOI: 10.1136/jme-2023-108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
This article provides an analysis of bioprinting personalised medical device technology and its ethical challenges to regulation and research ethics. I argue the inclusion of bioprinting applications within existing regulatory frameworks does not adequately address the technologies disruption to the traditionally siloed activities of research and treatment. Using the conceptual framework of liminality, I offer a meaningful way to engage with this technology and address some identified concerns with how it will be categorised and the appropriate recognition of its evidentiary thresholds. I demonstrate these concerns through the exploration of limited conventional research methodologies tasked with the production of generalisable knowledge, specifically population-based evidence that is derived from Randomised Clinical Trials. I use Australian regulatory amendments introduced in 2021 as an example of current regulatory trajectories and highlight why I believe this approach to be insufficient. The significance of this argument will be to demonstrate the disruption of bioprinting applications to current approaches in medical policy, and how various jurisdictions are enacting regulation that is not fit for purpose.
Collapse
Affiliation(s)
- Megan Frances Moss
- School of Philosophical, Historical, and International Studies, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
van Daal M, de Kanter AFJ, Bredenoord AL, de Graeff N. Personalized 3D printed scaffolds: The ethical aspects. N Biotechnol 2023; 78:116-122. [PMID: 37848162 DOI: 10.1016/j.nbt.2023.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
Personalized 3D printed scaffolds are a new generation of implants for tissue engineering and regenerative medicine purposes. Scaffolds support cell growth, providing an artificial extracellular matrix for tissue repair and regeneration and can biodegrade once cells have assumed their physiological and structural roles. The ethical challenges and opportunities of these implants should be mapped in parallel with the life cycle of the scaffold to assist their development and implementation in a responsible, safe, and ethically sound manner. This article provides an overview of these relevant ethical aspects. We identified nine themes which were linked to three stages of the life cycle of the scaffold: the development process, clinical testing, and the implementation process. The described ethical issues are related to good research and clinical practices, such as privacy issues concerning digitalization, first-in-human trials, responsibility and commercialization. At the same time, this article also creates awareness for underexplored ethical issues, such as irreversibility, embodiment and the ontological status of these scaffolds. Moreover, it exemplifies how to include gender in the ethical assessment of new technologies. These issues are important for responsible development and implementation of personalized 3D printed scaffolds and in need of more attention within the additive manufacturing and tissue engineering field. Moreover, the insights of this review reveal unresolved qualitative empirical and normative questions that could further deepen the understanding and co-creation of the ethical implications of this new generation of implants.
Collapse
Affiliation(s)
- Manon van Daal
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anne-Floor J de Kanter
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Nienke de Graeff
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| |
Collapse
|
17
|
Zilinskaite N, Shukla RP, Baradoke A. Use of 3D Printing Techniques to Fabricate Implantable Microelectrodes for Electrochemical Detection of Biomarkers in the Early Diagnosis of Cardiovascular and Neurodegenerative Diseases. ACS MEASUREMENT SCIENCE AU 2023; 3:315-336. [PMID: 37868357 PMCID: PMC10588936 DOI: 10.1021/acsmeasuresciau.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
This Review provides a comprehensive overview of 3D printing techniques to fabricate implantable microelectrodes for the electrochemical detection of biomarkers in the early diagnosis of cardiovascular and neurodegenerative diseases. Early diagnosis of these diseases is crucial to improving patient outcomes and reducing healthcare systems' burden. Biomarkers serve as measurable indicators of these diseases, and implantable microelectrodes offer a promising tool for their electrochemical detection. Here, we discuss various 3D printing techniques, including stereolithography (SLA), digital light processing (DLP), fused deposition modeling (FDM), selective laser sintering (SLS), and two-photon polymerization (2PP), highlighting their advantages and limitations in microelectrode fabrication. We also explore the materials used in constructing implantable microelectrodes, emphasizing their biocompatibility and biodegradation properties. The principles of electrochemical detection and the types of sensors utilized are examined, with a focus on their applications in detecting biomarkers for cardiovascular and neurodegenerative diseases. Finally, we address the current challenges and future perspectives in the field of 3D-printed implantable microelectrodes, emphasizing their potential for improving early diagnosis and personalized treatment strategies.
Collapse
Affiliation(s)
- Nemira Zilinskaite
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
| | - Rajendra P. Shukla
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ausra Baradoke
- Wellcome/Cancer
Research UK Gurdon Institute, Henry Wellcome Building of Cancer and
Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, U.K.
- Faculty
of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101 Vilnius, Lithuania
- BIOS
Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck
Center for Complex Fluid Dynamics, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Center for
Physical Sciences and Technology, Savanoriu 231, LT-02300 Vilnius, Lithuania
| |
Collapse
|
18
|
Ricci G, Gibelli F, Sirignano A. Three-Dimensional Bioprinting of Human Organs and Tissues: Bioethical and Medico-Legal Implications Examined through a Scoping Review. Bioengineering (Basel) 2023; 10:1052. [PMID: 37760154 PMCID: PMC10525297 DOI: 10.3390/bioengineering10091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Three-dimensional bioprinting is a rapidly evolving technology that holds the promise of addressing the increasing demand for organs, tissues, and personalized medicine. By employing computer-aided design and manufacturing processes, 3D bioprinting allows for the precise deposition of living cells, biomaterials, and biochemicals to create functional human tissues and organs. The potential applications of this technology are vast, including drug testing and development, disease modeling, regenerative medicine, and ultimately, organ transplantation. However, as with any groundbreaking technology, 3D bioprinting presents several ethical, legal, and regulatory concerns that warrant careful consideration. As the technology progresses towards clinical applications, it is essential to address these challenges and establish appropriate frameworks to guide the responsible development of 3D bioprinting. This article, utilizing the Arksey and O'Malley scoping review model, is designed to scrutinize the bioethical implications, legal and regulatory challenges, and medico-legal issues that are intertwined with this rapidly evolving technology.
Collapse
Affiliation(s)
| | - Filippo Gibelli
- Section of Legal Medicine, School of Law, University of Camerino, IT-62032 Macerata, Italy; (G.R.); (A.S.)
| | | |
Collapse
|
19
|
Abstract
New developments in additive manufacturing and regenerative medicine have the potential to radically disrupt the traditional pipelines of therapy development and medical device manufacture. These technologies present a challenge for regulators because traditional regulatory frameworks are designed for mass manufactured therapies, rather than bespoke solutions. 3D bioprinting technologies present another dimension of complexity through the inclusion of living cells in the fabrication process. Herein we overview the challenge of regulating 3D bioprinting in comparison to existing cell therapy products as well as custom-made 3D printed medical devices. We consider a range of specific challenges pertaining to 3D bioprinting in regenerative medicine, including classification, risk, standardization and quality control, as well as technical issues related to the manufacturing process and the incorporated materials and cells.
Collapse
Affiliation(s)
- Tajanka Mladenovska
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Peter F Choong
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
| | - Gordon G Wallace
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Cathal D O'Connell
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, 3065, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne, Fitzroy, Victoria, 3065, Australia
- Discipline of Electrical & Biomedical Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
20
|
Noroozi R, Arif ZU, Taghvaei H, Khalid MY, Sahbafar H, Hadi A, Sadeghianmaryan A, Chen X. 3D and 4D Bioprinting Technologies: A Game Changer for the Biomedical Sector? Ann Biomed Eng 2023:10.1007/s10439-023-03243-9. [PMID: 37261588 DOI: 10.1007/s10439-023-03243-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bioprinting is an innovative and emerging technology of additive manufacturing (AM) and has revolutionized the biomedical sector by printing three-dimensional (3D) cell-laden constructs in a precise and controlled manner for numerous clinical applications. This approach uses biomaterials and varying types of cells to print constructs for tissue regeneration, e.g., cardiac, bone, corneal, cartilage, neural, and skin. Furthermore, bioprinting technology helps to develop drug delivery and wound healing systems, bio-actuators, bio-robotics, and bio-sensors. More recently, the development of four-dimensional (4D) bioprinting technology and stimuli-responsive materials has transformed the biomedical sector with numerous innovations and revolutions. This issue also leads to the exponential growth of the bioprinting market, with a value over billions of dollars. The present study reviews the concepts and developments of 3D and 4D bioprinting technologies, surveys the applications of these technologies in the biomedical sector, and discusses their potential research topics for future works. It is also urged that collaborative and valiant efforts from clinicians, engineers, scientists, and regulatory bodies are needed for translating this technology into the biomedical, pharmaceutical, and healthcare systems.
Collapse
Affiliation(s)
- Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology, Lahore, Sialkot Campus, Lahore, 51041, Pakistan
| | - Hadi Taghvaei
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hossein Sahbafar
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amin Hadi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Sadeghianmaryan
- Postdoctoral Researcher Fellow at Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada.
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Dr., Saskatoon, SK, S7N5A9, Canada
| |
Collapse
|
21
|
Warnung L, Sattler S, Haiden E, Schober S, Pahr D, Reisinger A. A mechanically validated open-source silicone model for the training of gastric perforation sewing. BMC MEDICAL EDUCATION 2023; 23:261. [PMID: 37076839 PMCID: PMC10116820 DOI: 10.1186/s12909-023-04174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Gastrointestinal perforation is commonly seen in emergency departments. The perforation of the stomach is an emergency situation that requires immediate surgical treatment. The necessary surgical skills require regular practical training. Owing to patient`s safety, in vivo training opportunities in medicine are restricted. Animal tissue especially porcine tissue, is commonly used for surgical training. Due to its limiting factors, artificial training models are often to be preferred. Many artificial models are on the market but to our knowledge, none that mimic the haptic- and sewing properties of a stomach wall at the same time. In this study, an open source silicone model of a gastric perforation for training of gastric sewing was developed that attempts to provide realistic haptic- and sewing behaviour. METHODS To simulate the layered structure of the human stomach, different silicone materials were used to produce three different model layups. The production process was kept as simple as possible to make it easily reproducible. A needle penetration setup as well as a systematic haptic evaluation were developed to compare these silicone models to a real porcine stomach in order to identify the most realistic model. RESULTS A silicone model consisting of three layers was identified as being the most promising and was tested by clinical surgeons. CONCLUSIONS The presented model simulates the sewing characteristics of a human stomach wall, is easily reproducible at low-costs and can be used for practicing gastric suturing techniques. TRIAL REGISTRATIONS Not applicable.
Collapse
Affiliation(s)
- Lukas Warnung
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria.
- Division of Radiotherapy-Radiation Oncology, University Hospital Krems, Mitterweg 10, Krems, 3500, Austria.
| | - Stefan Sattler
- Department of Surgery, University Hospital Tulln, Alter Ziegelweg 10, Tulln, 3430, Austria
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Elmar Haiden
- Department of Surgery, University Hospital Tulln, Alter Ziegelweg 10, Tulln, 3430, Austria
- Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Sophie Schober
- Medical Science and Human Medicine study programme, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
| | - Dieter Pahr
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
- Institute for Lightweight Design and Structural Biomechanics, University of Technology Vienna, Getreidemarkt 9, Wien, 1060, Austria
| | - Andreas Reisinger
- Department of Anatomy and Biomechanics, Division Biomechanics, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straße 30, Krems, 3500, Austria
- Institute for Lightweight Design and Structural Biomechanics, University of Technology Vienna, Getreidemarkt 9, Wien, 1060, Austria
| |
Collapse
|
22
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Social and ethical considerations of bioprinted organs. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
24
|
Ethical challenges with 3D bioprinted tissues and organs. Trends Biotechnol 2023; 41:6-9. [PMID: 36117024 DOI: 10.1016/j.tibtech.2022.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 12/27/2022]
Abstract
3D Bioprinting is fast advancing to offer capabilities to process living cells into geometrically and functionally complex tissue and organ substitutes. As bioprinted constructs are making their way into clinic, the bioprinting community needs to consider the responsible innovation and translation of the bioprinted tissues and organs.
Collapse
|
25
|
Daly A. Medical 3D printing, intellectual property, and regulation. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
26
|
Sabri AM, Ramli MA, Abdul Rahman NN, Hamdan MN. Three-Dimensional (3D) Printing of Organs according to the Perspective of Islamic Law. Asian Bioeth Rev 2023; 15:69-80. [PMID: 36618954 PMCID: PMC9816357 DOI: 10.1007/s41649-022-00210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023] Open
Abstract
The outburst of the fourth Industrial Revolution had a significant impact on many aspects of life. The discovery of new technologies in medicine has resulted in innovations: organ transplants. The introduction of three-dimensional (3D) organ printing technology promises improvements to the field. Organs such as the liver, kidneys, heart and others are printed to meet the needs of the actual organs. However, the production of prototype organs to replace the original organs is associated with the issue of changing the creation of Allah. Accordingly, this study will analyse the issue of changing the creation of God in three-dimensional (3D) organ printing technology according to the perspective of Islamic law. Several appropriate methodologies in Islamic law (usul fiqh) are used such as legal reasoning through maqasid shariah perspective and analogical reasoning. The result shows that three-dimensional (3D) organ printing technology falls under the permissible category of changing the creation of Allah because it can save human lives. The production of organs through 3D printing involving changes included in the category of necessity (daruri) and need (hajiy) is permissible, but the category of desirable (tahsini) requires further specifications.
Collapse
Affiliation(s)
- Anir Mursyida Sabri
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Anuar Ramli
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Naemah Abdul Rahman
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Naqib Hamdan
- Academy of Islamic Civilisation, Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, Johor Bahru, Johor Darul Takzim Malaysia
| |
Collapse
|
27
|
Harris AR, Walker MJ, Gilbert F. Ethical and regulatory issues of stem cell-derived 3-dimensional organoid and tissue therapy for personalised regenerative medicine. BMC Med 2022; 20:499. [PMID: 36575403 PMCID: PMC9795739 DOI: 10.1186/s12916-022-02710-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Regenerative medicine has the potential to treat genetic disorders and replace damaged or missing tissue. The use of donor or animal tissue raises many well-known issues, including limited tissue availability, the possibility of rejection and patient infection. Stem cell therapy raised hope of overcoming these issues, but created new risks including tumour formation and limited benefit if the desired target tissue does not form. The recent development of 3-dimensional tissues, including organoids, allows the creation of more complex tissues for personalised regenerative medicine. METHODS This article details the potential health risks of 3-dimensional organoid and tissue therapy versus dissociated stem cell therapy. The current ethical and regulatory issues surrounding 3-dimensional organoid and tissue therapy are presented with a focus on the highly influential FDA and International Society of Stem Cell Research (ISSCR) guidelines. CONCLUSIONS The potential use of 3-dimensional organoid and tissue therapy may deliver greater patient benefits than other regenerative medicine approaches, but raises new health and ethical risks. Preclinical testing of these therapies will not mitigate some of their risks; they may only be understood after first-in-human trials. The potential irreversibility and high risk of these therapies affects how clinical trials should be structured, including post-trial care for participants.
Collapse
Affiliation(s)
- Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia.
| | - Mary Jean Walker
- Department of Politics, Media, and Philosophy, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Frederic Gilbert
- Ethics Lab, School of Humanities, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
28
|
Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022; 9:70. [PMID: 36522661 PMCID: PMC9756521 DOI: 10.1186/s40779-022-00429-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Collapse
Affiliation(s)
- He-Qi Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia-Chen Liu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zheng-Yi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chang-Xue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
29
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
30
|
O'Connell CD, Duchi S, Onofrillo C, Caballero‐Aguilar LM, Trengove A, Doyle SE, Zywicki WJ, Pirogova E, Di Bella C. Within or Without You? A Perspective Comparing In Situ and Ex Situ Tissue Engineering Strategies for Articular Cartilage Repair. Adv Healthc Mater 2022; 11:e2201305. [PMID: 36541723 PMCID: PMC11468013 DOI: 10.1002/adhm.202201305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/21/2022] [Indexed: 11/23/2022]
Abstract
Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.
Collapse
Affiliation(s)
- Cathal D. O'Connell
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
| | - Lilith M. Caballero‐Aguilar
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- School of ScienceComputing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVictoria3122Australia
| | - Anna Trengove
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Stephanie E. Doyle
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| | - Wiktor J. Zywicki
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Elena Pirogova
- Discipline of Electrical and Biomedical EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD)St Vincent's Hospital MelbourneFitzroyVictoria3065Australia
- Department of SurgerySt Vincent's HospitalUniversity of MelbourneFitzroyVictoria3065Australia
- Department of MedicineSt Vincent's Hospital MelbourneFitzroyVictoria3065Australia
| |
Collapse
|
31
|
Jafari A, Ajji Z, Mousavi A, Naghieh S, Bencherif SA, Savoji H. Latest Advances in 3D Bioprinting of Cardiac Tissues. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101636. [PMID: 38044954 PMCID: PMC10691862 DOI: 10.1002/admt.202101636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 12/05/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the major cause of death worldwide. In spite of tremendous advancements in medical therapy, the gold standard for CVD treatment is still transplantation. Tissue engineering, on the other hand, has emerged as a pioneering field of study with promising results in tissue regeneration using cells, biological cues, and scaffolds. Three-dimensional (3D) bioprinting is a rapidly growing technique in tissue engineering because of its ability to create complex scaffold structures, encapsulate cells, and perform these tasks with precision. More recently, 3D bioprinting has made its debut in cardiac tissue engineering, and scientists are investigating this technique for development of new strategies for cardiac tissue regeneration. In this review, the fundamentals of cardiac tissue biology, available 3D bioprinting techniques and bioinks, and cells implemented for cardiac regeneration are briefly summarized and presented. Afterwards, the pioneering and state-of-the-art works that have utilized 3D bioprinting for cardiac tissue engineering are thoroughly reviewed. Finally, regulatory pathways and their contemporary limitations and challenges for clinical translation are discussed.
Collapse
Affiliation(s)
- Arman Jafari
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Zineb Ajji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Ali Mousavi
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| | - Saman Naghieh
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, S7N 5A9, Canada
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, 60203 Compiègne, France
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02128, United States
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC, H3T 1C5, Canada
- Montreal TransMedTech Institute, Montreal, QC, H3T 1J4, Canada
| |
Collapse
|
32
|
de Jongh D, Massey EK, Cronin AJ, Schermer MHN, Bunnik EM. Early-Phase Clinical Trials of Bio-Artificial Organ Technology: A Systematic Review of Ethical Issues. Transpl Int 2022; 35:10751. [PMID: 36388425 PMCID: PMC9659568 DOI: 10.3389/ti.2022.10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
Regenerative medicine has emerged as a novel alternative solution to organ failure which circumvents the issue of organ shortage. In preclinical research settings bio-artificial organs are being developed. It is anticipated that eventually it will be possible to launch first-in-human transplantation trials to test safety and efficacy in human recipients. In early-phase transplantation trials, however, research participants could be exposed to serious risks, such as toxicity, infections and tumorigenesis. So far, there is no ethical guidance for the safe and responsible design and conduct of early-phase clinical trials of bio-artificial organs. Therefore, research ethics review committees will need to look to related adjacent fields of research, including for example cell-based therapy, for guidance. In this systematic review, we examined the literature on early-phase clinical trials in these adjacent fields and undertook a thematic analysis of relevant ethical points to consider for early-phase clinical trials of transplantable bio-artificial organs. Six themes were identified: cell source, risk-benefit assessment, patient selection, trial design, informed consent, and oversight and accountability. Further empirical research is needed to provide insight in patient perspectives, as this may serve as valuable input in determining the conditions for ethically responsible and acceptable early clinical development of bio-artificial organs.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,*Correspondence: Dide de Jongh,
| | - Emma K. Massey
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Antonia J. Cronin
- Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom,King’s College, London, United Kingdom
| | - Maartje H. N. Schermer
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Eline M. Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
33
|
Ma Y, Mao Y, Zhu G, Yang J. Application of cardiovascular 3-dimensional printing in Transcatheter aortic valve replacement. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:35. [PMID: 36121512 PMCID: PMC9485371 DOI: 10.1186/s13619-022-00129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) has been performed for nearly 20 years, with reliable safety and efficacy in moderate- to high-risk patients with aortic stenosis or regurgitation, with the advantage of less trauma and better prognosis than traditional open surgery. However, because surgeons have not been able to obtain a full view of the aortic root, 3-dimensional printing has been used to reconstruct the aortic root so that they could clearly and intuitively understand the specific anatomical structure. In addition, the 3D printed model has been used for the in vitro simulation of the planned procedures to predict the potential complications of TAVR, the goal being to provide guidance to reasonably plan the procedure to achieve the best outcome. Postprocedural 3D printing can be used to understand the depth, shape, and distribution of the stent. Cardiovascular 3D printing has achieved remarkable results in TAVR and has a great potential.
Collapse
Affiliation(s)
- Yanyan Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China
| | - Guangyu Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
34
|
Lafuente-Merchan M, Ruiz-Alonso S, García-Villén F, Gallego I, Gálvez-Martín P, Saenz-del-Burgo L, Pedraz JL. Progress in 3D Bioprinting Technology for Osteochondral Regeneration. Pharmaceutics 2022; 14:1578. [PMID: 36015207 PMCID: PMC9414312 DOI: 10.3390/pharmaceutics14081578] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Osteochondral injuries can lead to osteoarthritis (OA). OA is characterized by the progressive degradation of the cartilage tissue together with bone tissue turnover. Consequently, joint pain, inflammation, and stiffness are common, with joint immobility and dysfunction being the most severe symptoms. The increase in the age of the population, along with the increase in risk factors such as obesity, has led OA to the forefront of disabling diseases. In addition, it not only has an increasing prevalence, but is also an economic burden for health systems. Current treatments are focused on relieving pain and inflammation, but they become ineffective as the disease progresses. Therefore, new therapeutic approaches, such as tissue engineering and 3D bioprinting, have emerged. In this review, the advantages of using 3D bioprinting techniques for osteochondral regeneration are described. Furthermore, the biomaterials, cell types, and active molecules that are commonly used for these purposes are indicated. Finally, the most recent promising results for the regeneration of cartilage, bone, and/or the osteochondral unit through 3D bioprinting technologies are considered, as this could be a feasible therapeutic approach to the treatment of OA.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Fátima García-Villén
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | | | - Laura Saenz-del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (M.L.-M.); (S.R.-A.); (F.G.-V.); (I.G.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Health Institute Carlos III, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
35
|
Wagner T, Hummelink S, Ulrich D. Past, present and future in plastic flap surgery: From surgeon to bioengineer driven progress. A personal view. J Tissue Viability 2022; 31:800-803. [DOI: 10.1016/j.jtv.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
36
|
Shinkar K, Rhode K. Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future? ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
37
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
38
|
Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf 2022; 5:580-606. [PMID: 35194519 PMCID: PMC8853031 DOI: 10.1007/s42242-022-00187-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
Abstract
Medical devices are instruments and other tools that act on the human body to aid clinical diagnosis and disease treatment, playing an indispensable role in modern medicine. Nowadays, the increasing demand for personalized medical devices poses a significant challenge to traditional manufacturing methods. The emerging manufacturing technology of three-dimensional (3D) printing as an alternative has shown exciting applications in the medical field and is an ideal method for manufacturing such personalized medical devices with complex structures. However, the application of this new technology has also brought new risks to medical devices, making 3D-printed devices face severe challenges due to insufficient regulation and the lack of standards to provide guidance to the industry. This review aims to summarize the current regulatory landscape and existing research on the standardization of 3D-printed medical devices in China, and provide ideas to address these challenges. We focus on the aspects concerned by the regulatory authorities in 3D-printed medical devices, highlighting the quality system of such devices, and discuss the guidelines that manufacturers should follow, as well as the current limitations and the feasible path of regulation and standardization work based on this perspective. The key points of the whole process quality control, performance evaluation methods and the concept of whole life cycle management of 3D-printed medical devices are emphasized. Furthermore, the significance of regulation and standardization is pointed out. Finally, aspects worthy of attention and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, 102629 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002 China
- Cancer Center, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
39
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|
40
|
Roche CD, Iyer GR, Nguyen MH, Mabroora S, Dome A, Sakr K, Pawar R, Lee V, Wilson CC, Gentile C. Cardiac Patch Transplantation Instruments for Robotic Minimally Invasive Cardiac Surgery: Initial Proof-of-concept Designs and Surgery in a Porcine Cadaver. Front Robot AI 2022; 8:714356. [PMID: 35118121 PMCID: PMC8804503 DOI: 10.3389/frobt.2021.714356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Damaged cardiac tissues could potentially be regenerated by transplanting bioengineered cardiac patches to the heart surface. To be fully paradigm-shifting, such patches may need to be transplanted using minimally invasive robotic cardiac surgery (not only traditional open surgery). Here, we present novel robotic designs, initial prototyping and a new surgical operation for instruments to transplant patches via robotic minimally invasive heart surgery. Methods: Robotic surgical instruments and automated control systems were designed, tested with simulation software and prototyped. Surgical proof-of-concept testing was performed on a pig cadaver. Results: Three robotic instrument designs were developed. The first (called “Claw” for the claw-like patch holder at the tip) operates on a rack and pinion mechanism. The second design (“Shell-Beak”) uses adjustable folding plates and rods with a bevel gear mechanism. The third (“HeartStamp”) utilizes a stamp platform protruding through an adjustable ring. For the HeartStamp, rods run through a cylindrical structure designed to fit a uniportal Video-Assisted Thorascopic Surgery (VATS) surgical port. Designed to work with or without a sterile sheath, the patch is pushed out by the stamp platform as it protrudes. Two instrument robotic control systems were designed, simulated in silico and one of these underwent early ‘sizing and learning’ prototyping as a proof-of-concept. To reflect real surgical conditions, surgery was run “live” and reported exactly (as-it-happened). We successfully picked up, transferred and released a patch onto the heart using the HeartStamp in a pig cadaver model. Conclusion: These world-first designs, early prototypes and a novel surgical operation pave the way for robotic instruments for automated keyhole patch transplantation to the heart. Our novel approach is presented for others to build upon free from restrictions or cost—potentially a significant moment in myocardial regeneration surgery which may open a therapeutic avenue for patients unfit for traditional open surgery.
Collapse
Affiliation(s)
- Christopher D. Roche
- Northern Clinical School of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
- Department of Cardiothoracic Surgery, University Hospital of Wales, Cardiff, United Kingdom
- *Correspondence: Christopher D. Roche,
| | - Gautam R. Iyer
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Minh H. Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Sohaima Mabroora
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Anthony Dome
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Kareem Sakr
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Rohan Pawar
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Vincent Lee
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Christopher C. Wilson
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| | - Carmine Gentile
- Northern Clinical School of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, NSW, Australia
| |
Collapse
|
41
|
Larochelle RD, Mann SE, Ifantides C. 3D Printing in Eye Care. Ophthalmol Ther 2021; 10:733-752. [PMID: 34327669 PMCID: PMC8320416 DOI: 10.1007/s40123-021-00379-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional printing enables precise modeling of anatomical structures and has been employed in a broad range of applications across medicine. Its earliest use in eye care included orbital models for training and surgical planning, which have subsequently enabled the design of custom-fit prostheses in oculoplastic surgery. It has evolved to include the production of surgical instruments, diagnostic tools, spectacles, and devices for delivery of drug and radiation therapy. During the COVID-19 pandemic, increased demand for personal protective equipment and supply chain shortages inspired many institutions to 3D-print their own eye protection. Cataract surgery, the most common procedure performed worldwide, may someday make use of custom-printed intraocular lenses. Perhaps its most alluring potential resides in the possibility of printing tissues at a cellular level to address unmet needs in the world of corneal and retinal diseases. Early models toward this end have shown promise for engineering tissues which, while not quite ready for transplantation, can serve as a useful model for in vitro disease and therapeutic research. As more institutions incorporate in-house or outsourced 3D printing for research models and clinical care, ethical and regulatory concerns will become a greater consideration. This report highlights the uses of 3D printing in eye care by subspecialty and clinical modality, with an aim to provide a useful entry point for anyone seeking to engage with the technology in their area of interest.
Collapse
Affiliation(s)
- Ryan D Larochelle
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA
| | - Scott E Mann
- Department of Otolaryngology, University of Colorado, Aurora, CO, USA
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA
| | - Cristos Ifantides
- Department of Ophthalmology, University of Colorado, Sue Anschutz-Rodgers Eye Center, 1675 Aurora Court, F731, Aurora, CO, 80045, USA.
- Department of Surgery, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
42
|
Jamee R, Araf Y, Naser IB, Promon SK. The promising rise of bioprinting in revolutionalizing medical science: Advances and possibilities. Regen Ther 2021; 18:133-145. [PMID: 34189195 PMCID: PMC8213915 DOI: 10.1016/j.reth.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 12/24/2022] Open
Abstract
Bioprinting is a relatively new yet evolving technique predominantly used in regenerative medicine and tissue engineering. 3D bioprinting techniques combine the advantages of creating Extracellular Matrix (ECM)like environments for cells and computer-aided tailoring of predetermined tissue shapes and structures. The essential application of bioprinting is for the regeneration or restoration of damaged and injured tissues by producing implantable tissues and organs. The capability of bioprinting is yet to be fully scrutinized in sectors like the patient-specific spatial distribution of cells, bio-robotics, etc. In this review, currently developed experimental systems and strategies for the bioprinting of different types of tissues as well as for drug delivery and cancer research are explored for potential applications. This review also digs into the most recent opportunities and future possibilities for the efficient implementation of bioprinting to restructure medical and technological practices.
Collapse
Affiliation(s)
- Radia Jamee
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Iftekhar Bin Naser
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Salman Khan Promon
- Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
- Mechamind, Dhaka, Bangladesh
| |
Collapse
|
43
|
Althobaiti K. Surveillance in Next-Generation Personalized Healthcare: Science and Ethics of Data Analytics in Healthcare. New Bioeth 2021; 27:295-319. [PMID: 34720071 DOI: 10.1080/20502877.2021.1993055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in science and technology have allowed for incredible improvements in healthcare. Additionally, the digital revolution in healthcare provides new ways of collecting and storing large volumes of patient data, referred to as big healthcare data. As a result, healthcare providers are now able to use data to gain a deeper understanding of how to treat an individual in what is referred to as personalized healthcare. Regardless, there are several ethical challenges associated with big healthcare data that affect how personalized healthcare is delivered. To highlight these issues, this article will review the role of big data in personalized healthcare while also discussing the ethical challenges associated with it. The article will also discuss public health surveillance, its implications, and the challenges associated with collecting participants' information. The article will proceed by highlighting next generation technologies, including robotics and 3D printing. The article will conclude by providing recommendations on how patient privacy can be protected in next-generation personalized healthcare.
Collapse
Affiliation(s)
- Kamal Althobaiti
- Centre for Global Health Ethics, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
44
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
45
|
Naghieh S, Lindberg G, Tamaddon M, Liu C. Biofabrication Strategies for Musculoskeletal Disorders: Evolution towards Clinical Applications. Bioengineering (Basel) 2021; 8:123. [PMID: 34562945 PMCID: PMC8466376 DOI: 10.3390/bioengineering8090123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biofabrication has emerged as an attractive strategy to personalise medical care and provide new treatments for common organ damage or diseases. While it has made impactful headway in e.g., skin grafting, drug testing and cancer research purposes, its application to treat musculoskeletal tissue disorders in a clinical setting remains scarce. Albeit with several in vitro breakthroughs over the past decade, standard musculoskeletal treatments are still limited to palliative care or surgical interventions with limited long-term effects and biological functionality. To better understand this lack of translation, it is important to study connections between basic science challenges and developments with translational hurdles and evolving frameworks for this fully disruptive technology that is biofabrication. This review paper thus looks closely at the processing stage of biofabrication, specifically at the bioinks suitable for musculoskeletal tissue fabrication and their trends of usage. This includes underlying composite bioink strategies to address the shortfalls of sole biomaterials. We also review recent advances made to overcome long-standing challenges in the field of biofabrication, namely bioprinting of low-viscosity bioinks, controlled delivery of growth factors, and the fabrication of spatially graded biological and structural scaffolds to help biofabricate more clinically relevant constructs. We further explore the clinical application of biofabricated musculoskeletal structures, regulatory pathways, and challenges for clinical translation, while identifying the opportunities that currently lie closest to clinical translation. In this article, we consider the next era of biofabrication and the overarching challenges that need to be addressed to reach clinical relevance.
Collapse
Affiliation(s)
- Saman Naghieh
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Gabriella Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Maryam Tamaddon
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| | - Chaozong Liu
- Institute of Orthopaedic & Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore HA7 4LP, UK
| |
Collapse
|
46
|
Melchor-Martínez EM, Torres Castillo NE, Macias-Garbett R, Lucero-Saucedo SL, Parra-Saldívar R, Sosa-Hernández JE. Modern World Applications for Nano-Bio Materials: Tissue Engineering and COVID-19. Front Bioeng Biotechnol 2021; 9:597958. [PMID: 34055754 PMCID: PMC8160436 DOI: 10.3389/fbioe.2021.597958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past years, biomaterials-based nano cues with multi-functional characteristics have been engineered with high interest. The ease in fine tunability with maintained compliance makes an array of nano-bio materials supreme candidates for the biomedical sector of the modern world. Moreover, the multi-functional dimensions of nano-bio elements also help to maintain or even improve the patients' life quality most securely by lowering or diminishing the adverse effects of in practice therapeutic modalities. Therefore, engineering highly efficient, reliable, compatible, and recyclable biomaterials-based novel corrective cues with multipurpose applications is essential and a core demand to tackle many human health-related challenges, e.g., the current COVID-19 pandemic. Moreover, robust engineering design and properly exploited nano-bio materials deliver wide-ranging openings for experimentation in the field of interdisciplinary and multidisciplinary scientific research. In this context, herein, it is reviewed the applications and potential on tissue engineering and therapeutics of COVID-19 of several biomaterials. Following a brief introduction is a discussion of the drug delivery routes and mechanisms of biomaterials-based nano cues with suitable examples. The second half of the review focuses on the mainstream applications changing the dynamics of 21st century materials. In the end, current challenges and recommendations are given for a healthy and foreseeable future.
Collapse
|
47
|
Segers S. The path toward ectogenesis: looking beyond the technical challenges. BMC Med Ethics 2021; 22:59. [PMID: 33985480 PMCID: PMC8120724 DOI: 10.1186/s12910-021-00630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breakthroughs in animal studies make the topic of human application of ectogenesis for medical and non-medical purposes more relevant than ever before. While current data do not yet demonstrate a reasonable expectation of clinical benefit soon, several groups are investigating the feasibility of artificial uteri for extracorporeal human gestation. MAIN TEXT This paper offers the first comprehensive and up to date discussion of the most important pros and cons of human ectogenesis in light of clinical application, along with an examination of crucial ethical (and legal) issues that continued research into, and the clinical translation of, ectogenesis gives rise to. The expected benefits include advancing prenatal medicine, improving neonatal intensive care, and providing a novel pathway towards biological parenthood. This comes with important future challenges. Prior to human application, important questions have to be considered concerning translational research, experimental use of human fetuses and appropriate safety testing. Key questions are identified regarding risks to ectogenesis' subjects, and the physical impact on the pregnant person when transfer from the uterus to the artificial womb is required. Critical issues concerning proportionality have to be considered, also in terms of equity of access, relative to the envisaged application of ectogenesis. The advent of ectogenesis also comes with crucial issues surrounding abortion, extended fetal viability and moral status of the fetus. CONCLUSIONS The development of human ectogenesis will have numerous implications for clinical practice. Prior to human testing, close consideration should be given to whether (and how) ectogenesis can be introduced as a continuation of existing neonatal care, with due attention to both safety risks to the fetus and pressures on pregnant persons to undergo experimental and/or invasive procedures. Equally important is the societal debate about the acceptable applications of ectogenesis and how access to these usages should be prioritized. It should be anticipated that clinical availability of ectogenesis, possibly first as a way to save extremely premature fetuses, may spark demand for non-medical purposes, like avoiding physical and social burdens of pregnancy.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
| |
Collapse
|
48
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
49
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
50
|
Ruiz-Alonso S, Villate-Beitia I, Gallego I, Lafuente-Merchan M, Puras G, Saenz-del-Burgo L, Pedraz JL. Current Insights Into 3D Bioprinting: An Advanced Approach for Eye Tissue Regeneration. Pharmaceutics 2021; 13:pharmaceutics13030308. [PMID: 33653003 PMCID: PMC7996883 DOI: 10.3390/pharmaceutics13030308] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing is a game changer technology that holds great promise for a wide variety of biomedical applications, including ophthalmology. Through this emerging technique, specific eye tissues can be custom-fabricated in a flexible and automated way, incorporating different cell types and biomaterials in precise anatomical 3D geometries. However, and despite the great progress and possibilities generated in recent years, there are still challenges to overcome that jeopardize its clinical application in regular practice. The main goal of this review is to provide an in-depth understanding of the current status and implementation of 3D bioprinting technology in the ophthalmology field in order to manufacture relevant tissues such as cornea, retina and conjunctiva. Special attention is paid to the description of the most commonly employed bioprinting methods, and the most relevant eye tissue engineering studies performed by 3D bioprinting technology at preclinical level. In addition, other relevant issues related to use of 3D bioprinting for ocular drug delivery, as well as both ethical and regulatory aspects, are analyzed. Through this review, we aim to raise awareness among the research community and report recent advances and future directions in order to apply this advanced therapy in the eye tissue regeneration field.
Collapse
Affiliation(s)
- Sandra Ruiz-Alonso
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Markel Lafuente-Merchan
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Laura Saenz-del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (S.R.-A.); (I.V.-B.); (I.G.); (M.L.-M.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Correspondence: (L.S.-d.-B.); (J.L.P.); Tel.: +(34)-945014542 (L.S.-d.-B.); +(34)-945013091 (J.L.P.)
| |
Collapse
|