1
|
Zhang H, Wu Z, Wang Z, Yan X, Duan X, Sun H. Advanced surface modification techniques for titanium implants: a review of osteogenic and antibacterial strategies. Front Bioeng Biotechnol 2025; 13:1549439. [PMID: 40177619 PMCID: PMC11962728 DOI: 10.3389/fbioe.2025.1549439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Titanium (Ti) implants are widely used in orthopedic and dental applications due to their excellent mechanical strength, corrosion resistance, and biocompatibility. However, their limited osteointegration and susceptibility to bacterial infections remain major clinical challenges. Recent advancements in surface modification techniques have significantly improved the osteogenic and antibacterial properties of Ti implants. This review summarizes key strategies, including ion doping, hydroxyapatite (HAp) coatings, nanostructured surfaces, and graphene-based modifications. Zinc (Zn)-doped coatings increase osteoblast proliferation by 25%, enhance cell adhesion by 40%, and inhibit Staphylococcus aureus by 24%. Magnesium (Mg)-doped Ti surfaces enhance osteoblast differentiation, with 38% increased alkaline phosphatase (ALP) activity and a 4.5-fold increase in cell proliferation. Copper (Cu)-doped coatings achieve 99.45% antibacterial efficacy against S. aureus and 98.65% against Escherichia coli (E. coli). Zn-substituted HAp promotes mineralized nodule formation by 4.5-fold and exhibits 16.25% bacterial inhibition against E. coli. Graphene-based coatings stimulate bone marrow stem cells (BMSCs) and provide light-responsive surface potentials for enhanced osteogenesis. Despite these advancements, challenges remain in optimizing ion release kinetics and long-term stability. Future research should focus on multi-functional coatings that integrate osteogenic, antibacterial, and immunomodulatory properties to enhance clinical performance and patient outcomes.
Collapse
Affiliation(s)
- Handong Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zidong Wu
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zemin Wang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinfeng Yan
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xudong Duan
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huaqiang Sun
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
2
|
Xu TG, Shi J, Qi H, Chen S, Li B, Zhang F, He JH. Radiopaque and Biocompatible PMMA Bone Cement Triggered by Nano Tantalum Carbide and Its Osteogenic Performance. ACS Biomater Sci Eng 2024; 10:5624-5631. [PMID: 39107258 DOI: 10.1021/acsbiomaterials.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Poly(methyl methacrylate) (PMMA) bone cements have been widely used in orthopedics; thanks to their excellent mechanical properties, biocompatibility, and chemical stability. Barium sulfate and zirconia are usually added into PMMA bone cement to enhance the X-ray radiopacity, while the mechanical strength, radiopacity, and biocompatibility are not well improved. In this study, an insoluble and corrosion-resistant ceramic, tantalum carbide (TaC), was added into the PMMA bone cement as radiopacifies, significantly improving the mechanical, radiopaque, biocompatibility, and osteogenic performance of bone cement. The TaC-PMMA bone cement with varied TaC contents exhibits compressive strength over 100 MPa, higher than that of the commercial 30% BaSO4-PMMA bone cement. Intriguingly, when the TaC content reaches 20%, the radiopacity is equivalent to the commercial bone cement with 30% of BaSO4 in PMMA. The cytotoxicity and osteogenic performance indicate that the incorporation of TaC not only enhances the osteogenic properties of PMMA but also does not reduce cell viability. This study suggests that TaC could be a superior and multifunctional radio-pacifier for PMMA bone cement, offering a promising avenue for improving patient outcomes in orthopedic applications.
Collapse
Affiliation(s)
- Tong-Guang Xu
- Department of Orthopedics, The People's Hospital of Suzhou New District, Suzhou, Jiangsu 215129, China
| | - Jiaxu Shi
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Hang Qi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Song Chen
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Zhang
- Analysis and Testing Center, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Marmor MT, Matz J, McClellan RT, Medam R, Miclau T. Use of Osteobiologics for Fracture Management: The When, What, and How. Injury 2021; 52 Suppl 2:S35-S43. [PMID: 33549314 DOI: 10.1016/j.injury.2021.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/02/2023]
Abstract
Osteobiologics are defined as a group of natural and synthetic materials used to augment bone healing. The selection of the most appropriate osteobiologic from the growing list of available options can be a challenging task. In selecting a material, surgeons should weigh a variety of considerations, including the indication for their use (the when), the most suitable substance (the what), and the correct mode of application (the how). This summary reviews these considerations and seeks to provide the surgeon with a basis for informed clinical evidence-based decision-making in their choice of a successful option.
Collapse
Affiliation(s)
- Meir T Marmor
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Jacob Matz
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Robert Trigg McClellan
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Ramapaada Medam
- University of Central Florida College of Medicine, Orlando, FL, USA
| | - Theodore Miclau
- Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, University of California, San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA.
| |
Collapse
|
4
|
Zhu M, Fang J, Li Y, Zhong C, Feng S, Ge X, Ye H, Wang X, Zhu W, Lu X, Ren F. The Synergy of Topographical Micropatterning and Ta|TaCu Bilayered Thin Film on Titanium Implants Enables Dual-Functions of Enhanced Osteogenesis and Anti-Infection. Adv Healthc Mater 2021; 10:e2002020. [PMID: 33709499 DOI: 10.1002/adhm.202002020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Poor osteogenesis and implant-associated infection are the two leading causes of failure for dental and orthopedic implants. Surface design with enhanced osteogenesis often fails in antibacterial activity, or vice versa. Herein, a surface design strategy, which overcomes this trade-off via the synergistic effects of topographical micropatterning and a bilayered nanostructured metallic thin film is presented. A specific microgrooved pattern is fabricated on the titanium surface, followed by sequential deposition of a nanostructured copper (Cu)-containing tantalum (Ta) (TaCu) layer and a pure Ta cap layer. The microgrooved patterns coupled with the nanorough Ta cap layer shows strong contact guidance to preosteoblasts and significantly enhances the osteogenic differentiation in vitro, while the controlled local sustained release of Cu ions is responsible for high antibacterial activity. Importantly, rat calvarial defect models in vivo further confirm that the synergy of microgrooved patterns and the Ta|TaCu bilayered thin film on titanium surface could effectively promote bone regeneration. The present effective and versatile surface design strategy provides significant insight into intelligent surface engineering that can control biological response at the site of healing in dental and orthopedic implants.
Collapse
Affiliation(s)
- Mingyu Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yulei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chuanxin Zhong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shihui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, School of Mechanical Engineering, Tianjin University, Tianjin, 300354, China
| | - Haixia Ye
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaofei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Weiwei Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610000, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
5
|
Zhao DW, Ma ZJ, Wang TN, Liu BY. Biocompatible Porous Tantalum Metal Plates in the Treatment of Tibial Fracture. Orthop Surg 2019; 11:325-329. [PMID: 30884151 PMCID: PMC6594495 DOI: 10.1111/os.12432] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022] Open
Abstract
Fractures of the tibia represent a common class of injuries in orthopedics. The blood supply to the tibia is poor due to the small subcutaneous muscle tissues inside. Consequently, the tibia is prone to delayed fracture healing and nonunion of the fracture after surgery. In this case, we used porous tantalum metal plate to treat nonunion of a tibial fracture and achieved satisfactory therapeutic effects. For the first time in the field, we used 3D printing technology to fabricate porous tantalum metal plates for the treatment of tibial fractures. The resulting porous tantalum metal exhibited excellent mechanical and biological properties, and improved the therapeutic effects for the treatment of a tibial fracture nonunion. Porous tantalum metal plates have great application potential as a new implant material for internal fixation.
Collapse
Affiliation(s)
- De-Wei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhi-Jie Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tie-Nan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Bao-Yi Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
6
|
Biomechanical testing of a β-tricalcium phosphate wedge for advancement of the tibial tuberosity. Vet Comp Orthop Traumatol 2017; 27:14-9. [DOI: 10.3415/vcot-13-04-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022]
Abstract
SummaryObjectives: to evaluate in vitro the strength of different compositions of beta-tricalcium phosphate (β-TCP) wedges in comparison with titanium foam and cages. To study the response to cyclic loading of the strongest β-TCP wedge, titanium foam and titanium cage.Methods: Compression test: Twenty-five tibiae were prepared for tibial tuberosity advancement using the modified Maquet technique. Five groups were defined depending on the material used to maintain the tibial tuberosity: Group 1 = titanium cage; Group 2 = wedges of porous titanium foam with 50% porosity (OrthoFoam®); Group 3 = blocks of biphasic synthetic bone (60% hydroxyapatite [HAP] and 40% _-TCP, porosity 80%); Group 4 = blocks of biphasic synthetic bone (60% HAP and 40% _-TCP, porosity 70%) and Group 5 = blocks of biphasic synthetic bone (65% HAP and 35% _-TCP, porosity 60%). Loads to failure were calculated for each implant. Cyclic study: Five additional tibiaes of group 1, 2 and 5 were fatigue tested from 100 to 500 N at a rate of 4 Hz for 200,000 cycles or until failure.Results: Compression test: For the five groups, the mean load at failure was 1895 N, 1917 N, 178 N, 562 N and 1370 N respectively. Cyclical study: All samples in the three groups tested withstood 200,000 cycles without failure.Clinical significance: The ideal implant to maintain tibial tuberosity advancement after the modified Maquet technique would be absorbable and allow osteoconduction and osteoinduction. As such, β-TCP wedges have many advantages and our study shows that they can withstand loads in the patellar tendon up to 500 N over 200,000 cycles in vitro and deserve more investigation.
Collapse
|
7
|
Cui J, Zhao L, Zhu W, Wang B, Zhao C, Fang L, Ren F. Antibacterial activity, corrosion resistance and wear behavior of spark plasma sintered Ta-5Cu alloy for biomedical applications. J Mech Behav Biomed Mater 2017. [PMID: 28651162 DOI: 10.1016/j.jmbbm.2017.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tantalum has been widely used in orthopedic and dental implants. However, the major barrier to the extended use of such medical devices is the possibility of bacterial adhesion to the implant surface which will cause implant-associated infections. To solve this problem, bulk Ta-5Cu alloy has been fabricated by a combination of mechanical alloying and spark plasma sintering. The effect of the addition of Cu on the hardness, antibacterial activity, cytocompatibility, corrosion resistance and wear performance was systematically investigated. The sintered Ta-5Cu alloy shows enhanced antibacterial activity against E. Coli due to the sustained release of Cu ions. However, the addition of Cu would produce slight cytotoxicity and decrease corrosion resistance of Ta. Furthermore, pin-on-disk wear tests show that Ta-5Cu alloy has a much lower coefficient of friction but a higher wear rate and shows a distinct wear mode from that of Ta upon sliding against stainless steel 440C. Wear-induced plastic deformation leads to elongation of Ta and Cu grains along the sliding direction and nanolayered structures were observed upon approaching the sliding surface. The presence of hard oxides also shows a profound effect on the plastic flow of the base material and results in localized vortex patterns. The obtained results are expected to provide deep insights into the development of novel Ta-Cu alloy for biomedical applications.
Collapse
Affiliation(s)
- Jing Cui
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Liang Zhao
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weiwei Zhu
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Bi Wang
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Cancan Zhao
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Liming Fang
- Department of Polymer Science and Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Ness MG. The Modified Maquet Procedure (MMP) in Dogs: Technical Development and Initial Clinical Experience. J Am Anim Hosp Assoc 2016; 52:242-50. [PMID: 27259021 DOI: 10.5326/jaaha-ms-6304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The literature about tibial tuberosity advancement surgery in dogs and humans informed the development of a version of the operation using a wedge-shaped implant of titanium foam. Computer-assisted drawing and stereolithography was used to create instruments and implants that were evaluated by cadaver surgery. A trial, involving 26 client-owned dogs with lameness due to cranial cruciate ligament failure, was started. Follow-up was done by clinical and radiographic examination after 4 wk and clinical examination again 6-11 mo after surgery. The titanium foam implant maintained tibial tuberosity advancement easily and effectively. The same major complication occurred in 2 of the first 6 cases before, a slightly modified technique was used to treat 20 dogs without complication. At mid-term follow-up (6-11 mo), 20/26 dogs (77%) had returned to full function, two dogs (7.7%) had acceptable function, two dogs (7.7%) could not be evaluated due to recent contra lateral modified Maquet procedure surgery, and two (7.7%) dogs had died for reasons unrelated to the study. This is the first clinical report of the use of titanium foam in veterinary orthopaedics. Modified Maquet procedure appears to be an effective treatment for lameness due to failure of the cranial cruciate ligament in dogs.
Collapse
Affiliation(s)
- Malcolm Graham Ness
- From the Croft Veterinary Hospital, Cramlington, Northumberland, United Kingdom
| |
Collapse
|
9
|
Abstract
Nonunion is uncommon after proximal humerus fracture surgery. There is no agreement about preferred method of treatment. Traditional approaches have included laterally based locking plates, autogenous grafting, and endosteal support to provide improved biomechanical stability. Open reduction and internal fixation (ORIF) of proximal humeral nonunion has been performed with various methods, including blade plates and bone grafting, as well as intramedullary support with autologous or allogenic grafts. Both malunion and nonunion have occurred after ORIF with locking plates. Endosteal support in the form of a fibular allograft incorporated into the locking plate construct can increase mechanical stability in selected cases. An ideal implant for proximal humeral nonunion provides medial column mechanical support and osteoconductive and osteoinductive properties. Porous intramedullary tantalum metal may play a role in nonunion surgery as an alternative to fibular allograft because of its versatility of use and salutary biological effects. It offers many material advantages for use in nonunion surgery. Tantalum is extensively porous (75%-80%), has a stiffness close to that of native bone, and offers the possibility of being a carrier for osteoinductive materials. It may also be suitable for patients who refuse allograft material. This article describes a 65-year-old woman with recalcitrant proximal humeral nonunion who was successfully treated with revision ORIF with intramedullary tantalum cylinder augmentation with a lateral-based locking plate and autogenous cancellous bone grafting. At 5-year follow-up, she had excellent motion and clinical and radiographic union.
Collapse
|