1
|
Takahashi Y, Yoshida I, Yokozeki T, Igarashi T, Fujita K. Investigation of Foreign Amylase Adulteration in Honey Distributed in Japan by Rapid and Improved Native PAGE Activity Staining Method. J Appl Glycosci (1999) 2023; 70:67-73. [PMID: 38143568 PMCID: PMC10738855 DOI: 10.5458/jag.jag.jag-2023_0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 12/26/2023] Open
Abstract
Foreign amylase addition to honey in an effort to disguise diastase activity has become a widespread form of food fraud. However, since there is no report on the investigation in Japan, we investigated foreign amylases in 67 commercial honeys in Japan. First, the α-glucosidase and diastase activities of honeys were measured, which revealed that only α-glucosidase activity was significantly low in several samples. As both enzymes are secreted from honeybee glands, it is unlikely that only one enzyme was inactivated during processing. Therefore, we suspected the presence of foreign amylase. α-Amylase in honey were assigned using protein analysis software based on LC-QTOF-MS. As a result, α-amylases from Aspergillus and Geobacillus were detected in 13 and 6 out of 67 honeys, respectively. To detect foreign amylases easily, we developed a cost-effective method using native PAGE. Conventional native PAGE failed to separate the α-amylase derived from honeybee and Geobacillus. However, when native PAGE was performed using a gel containing 1 % maltodextrin, the α-amylase from honeybee did not migrated in the gel and the α-amylase could be separated from the other two α-amylases. The results from this method were consistent with those of LC-QTOF-MS method, suggesting that the novel native PAGE method can be used to detect foreign amylases.
Collapse
Affiliation(s)
| | - Izumi Yoshida
- Japan Food Research Laboratories Osaka Saito Laboratory
| | | | | | | |
Collapse
|
2
|
Bharwad K, Shekh S, Singh NK, Patel A, Joshi C. Heterologous expression and biochemical characterization of novel multifunctional thermostable α-amylase from hot-spring metagenome. Int J Biol Macromol 2023; 242:124810. [PMID: 37182622 DOI: 10.1016/j.ijbiomac.2023.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/24/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Hot-springs are regarded as the best source of industrially significant biocules and one of the unique locations for extremophiles. The α-amylase is one of the most important enzymes used in starch consuming industries, where the need of thermostability is paramount. In this study, the full metagenome sequences obtained from the soil of Tuwa hot-spring (Gujarat, India) were examined for the presence of several thermostable enzymes using bioinformatic techniques. The whole gene sequence for α-amylase was found from the metagenome. The α-amylase gene was amplified, cloned, and expressed in Escherichia coli and further characterized in vitro. The rm-α-amylase was found optimally active at 60 °C and at pH 6.0 and showed significantly high activity in 0.1 mM Co2+ as well as in other heavy metal ions without any effect on its thermostability. Apart from α-amylase activity the purified rm-α-amylase was also shown to hydrolyse agar, xylan, pectin, alginate and cellulose. To our knowledge, this is the first report of a new, multifunctional, thermostable amylase that was discovered from the hot-spring metagenomes. Owing to their multifunctionality, resilience towards high temperature and heavy metal ions, stability with solvents, additives and inhibitors, rm-α-amylase can be exploited for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Krishna Bharwad
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | - Satyamitra Shekh
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | | | - Amrutlal Patel
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar 382011, India.
| |
Collapse
|
3
|
Bhatt K, Lal S, Srinivasan R, Joshi B. Molecular analysis of Bacillus velezensis KB 2216, purification and biochemical characterization of alpha-amylase. Int J Biol Macromol 2020; 164:3332-3339. [PMID: 32871125 DOI: 10.1016/j.ijbiomac.2020.08.205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 11/18/2022]
Abstract
Alpha-amylase producing strain KB 2216 was identified as Bacillus velezensis. The growth pattern showed that 72 h is the optimum incubation period of amylase production, which is a stationary period for the strain. By the purification process, maximum alpha-amylase activity was achieved up to 418.25 U/mL at 72 h of incubation, which was purified with 4.74 folds, 4230.32 U/mg specific activity, with 31.35% yield. The strain was found to produce an oligomeric alpha-amylase, namely Amy3. Amy3 was a trimeric macromolecule of 195 kDa with 62, 64, and 66 kDa subunits, as revealed by zymogram and SDS PAGE analyses. Amy3 was highly active at 55 °C and pH 5.5. It had shown the highest stability at pH 5.0-5.5 and between 0 ̊C and 4 ̊C. It did not require any metal cofactors, but it was inhibited by Ag2+, Hg2+ and Cd2+ divalent cations. Glucose and maltose were shown to be the end products of soluble starch digestion by Amy3. These interesting properties of Amy3 may be useful for many biotechnological applications in the future.
Collapse
Affiliation(s)
- Kandarp Bhatt
- Department of Microbiology, Bundelkhand University, Jhansi, Uttar Pradesh 284128, India.
| | - Sangeeta Lal
- Department of Microbiology, Bundelkhand University, Jhansi, Uttar Pradesh 284128, India
| | - R Srinivasan
- Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284003, India
| | - Bhumika Joshi
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat 360005, India
| |
Collapse
|
4
|
Effect of Barium Addition on Hydrolytic Enzymatic Activities in Food Waste Degradation under Anaerobic Conditions. Processes (Basel) 2020. [DOI: 10.3390/pr8111371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enzymatic hydrolysis of complex components of residual materials, such as food waste, is a rate-limiting step that conditionates the production rate of biofuels. Research into the anaerobic degradation of cellulose and starch, which are abundant components in organic waste, could contribute to optimize biofuels production processes. In this work, a lab-scale anaerobic semi-continuous hydrolytic reactor was operated for 171 days using food waste as feedstock; the effect of Ba2+ dosage over the activity of five hydrolytic enzymes was also evaluated. No significant effects were observed on the global performance of the hydrolytic process during the steady-state of the operation of the reactor, nevertheless, it was detected that Ba2+ promoted β-amylases activity by 76%, inhibited endoglucanases and α-amylases activity by 39 and 20%, respectively, and had no effect on β-glucosidases and glucoamylases activity. The mechanisms that rule the observed enzymatic activity changes remain unknown; however, the discussion in this paper provides hypothetical explanations for further research.
Collapse
|
5
|
Low molecular weight alkaline thermostable α-amylase from Geobacillus sp. nov. Heliyon 2019; 5:e02171. [PMID: 31388592 PMCID: PMC6667821 DOI: 10.1016/j.heliyon.2019.e02171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/30/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023] Open
Abstract
Industrial demands for enzymes that are stable in a broad range of conditions are increasing. Such enzymes, one of which is α-amylase, could be produced by extremophiles. This study reports a thermostable α-amylase produced by a newly isolated Geobacillus sp. nov. from a geothermal area. The phylogenetic analysis of the 16S rRNA gene showed that the isolate formed a separate branch with 95% homology to Geobacillus sp. After precipitation using ammonium sulphate followed by ion-exchange chromatography, the enzyme produced a specific activity of 25.1 (U/mg) with a purity of 6.5-fold of the crude extract. The molecular weight of the enzyme was approximately 12.2 kDa. The optimum activity was observed at 75 °C and pH 8. The activity increased in the presence of Ba2+ and Fe2+ but decreased in the presence of K+ and Mg2+. Ca2+ and Mn2+ increased the activity slightly. The activity completely diminished with the addition of Cu2+. EDTA and PMSF also sharply reduced enzyme activity. Although the stability was moderate, the low molecular weight could be an important feature for its future applications.
Collapse
|
6
|
Miao M, Jiang B, Jin Z, BeMiller JN. Microbial Starch-Converting Enzymes: Recent Insights and Perspectives. Compr Rev Food Sci Food Saf 2018; 17:1238-1260. [PMID: 33350152 DOI: 10.1111/1541-4337.12381] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Miao
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Bo Jiang
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - Zhengyu Jin
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
| | - James N. BeMiller
- State Key Laboratory of Food Science & Technology; Jiangnan Univ.; 1800 Lihu Ave. Wuxi Jiangsu 214122 P. R. China
- Dept. of Food Science; Whistler Center for Carbohydrate Research, Purdue Univ.; 745 Agriculture Mall Drive West Lafayette IN 47907-2009 U.S.A
| |
Collapse
|
7
|
Cihan AC, Yildiz ED, Sahin E, Mutlu O. Introduction of novel thermostable α-amylases from genus Anoxybacillus and proposing to group the Bacillaceae related α-amylases under five individual GH13 subfamilies. World J Microbiol Biotechnol 2018; 34:95. [PMID: 29904894 DOI: 10.1007/s11274-018-2478-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/12/2018] [Indexed: 11/25/2022]
Abstract
Among the thermophilic Bacillaceae family members, α-amylase production of 15 bacilli from genus Anoxybacillus was investigated, some of which are biotechnologically important. These Anoxybacillus α-amylase genes displayed ≥ 91.0% sequence similarities to Anoxybacillus enzymes (ASKA, ADTA and GSX-BL), but relatively lower similarities to Geobacillus (≤ 69.4% to GTA, Gt-amyII), and Bacillus aquimaris (≤ 61.3% to BaqA) amylases, all formerly proposed only in a Glycoside Hydrolase 13 (GH13) subfamily. The phylogenetic analyses of 63 bacilli-originated protein sequences among 93 α-amylases revealed the overall relationships within Bacillaceae amylolytic enzymes. All bacilli α-amylases formed 5 clades different from 15 predefined GH13 subfamilies. Their phylogenetic findings, taxonomic relationships, temperature requirements, and comparisonal structural analyses (including their CSR-I-VII regions, 12 sugar- and 4 calcium-binding sites, presence or absence of the complete catalytic machinery, and their currently unassigned status in a valid GH13 subfamiliy) revealed that these five GH13 α-amylase clades related to familly share some common characteristics, but also display differentiative features from each other and the preclassified ones. Based on these findings, we proposed to divide Bacillaceae related GH13 subfamilies into 5 individual groups: the novel a2 subfamily clustered around α-amylase B2M1-A (Anoxybacillus sp.), the a1, a3 and a4 subfamilies (including the representatives E184aa-A (Anoxybacillus sp.), ATA (Anoxybacillus tepidamans), and BaqA,) all of which were composed from the division of the previously grouped single subfamily around α-amylase BaqA, and the undefinite subfamily formerly defined as xy including Bacillus megaterium NL3.
Collapse
Affiliation(s)
- Arzu Coleri Cihan
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey.
| | | | - Ergin Sahin
- Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Ozal Mutlu
- Faculty of Arts and Sciences, Department of Biology, Marmara University, Goztepe, 34722, Istanbul, Turkey
| |
Collapse
|
8
|
Sudan SK, Kumar N, Kaur I, Sahni G. Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs, India. Int J Biol Macromol 2018; 117:831-839. [PMID: 29864538 DOI: 10.1016/j.ijbiomac.2018.05.231] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Alpha-amylase is an important hydrolytic enzyme used for various industrial processes. In the present study, Geobacillus bacterium (K1C), producing a thermostable α-amylase was isolated from Manikaran hot springs, India. We have purified and characterized the biochemical properties of α-amylase. The optimum temperature and pH for α-amylase activity was 80 °C and pH 6.0 respectively. The far-UV CD spectra of the enzyme indicated the presence of random coil conformation and showed an intermediate phase during temperature-induced unfolding. In the presence of substrate, thermostability of the α-amylase was increased as 50% initial activity was retained at 70 °C for 6 h and at 80 °C for 2 h. Moreover, the enzyme also showed remarkable pH stability as 90% of the initial activity was retained even after 48 h of incubation at pH 5.0, 6.0 and 7.0. Interestingly, amylase activity of the purified enzyme was Ca2+independent, whereas the complete inhibition of activity was observed in the presence of Cu2+, Pb2+, and Hg2+. The purified α-amylase was stable in the presence of detergents, organic solvents and Proteinase K. Furthermore, it exhibited the ability to hydrolyze raw starches (e.g. rice, wheat, corn, potato) efficiently; thus this enzyme has the potential to be used for industrial applications.
Collapse
Affiliation(s)
- Sarabjeet Kour Sudan
- Division of Protein Science & Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Narender Kumar
- Division of Protein Science & Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), India
| | - Ishwinder Kaur
- Division of Protein Science & Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India; Panjab University, Chandigarh, Sector-14, Chandigarh 160014, India
| | - Girish Sahni
- Division of Protein Science & Engineering, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India.
| |
Collapse
|
9
|
Bose H, Satyanarayana T. Utility of thermo-alkali-stable γ-CA from polyextremophilic bacterium Aeribacillus pallidus TSHB1 in biomimetic sequestration of CO 2 and as a virtual peroxidase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10869-10884. [PMID: 28293826 DOI: 10.1007/s11356-017-8739-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Aeribacillus pallidus TSHB1 polyextremophilic bacterium produces a γ-carbonic anhydrase (ApCA), which is a homotrimeric biocatalyst with a subunit molecular mass of 32 ± 2 kDa. The enzyme is stable in the pH range between 8.0 and 11.0 and thus alkali-stable and moderately thermostable with T1/2 values of 40 ± 1, 15 ± 1, and 8 ± 0.5 min at 60, 70, and 80 °C, respectively. Activation energy for irreversible inactivation "E d " of carbonic anhydrase is 67.119 kJ mol-1. The enzyme is stable in the presence of various flue gas contaminants such as SO32-,SO42-, and NO3- and cations Mg2+, Mn2+, Ca2+, and Ba2+. Fluorescence studies in the presence of N-bromosuccinimide and fluorescence quenching using KI and acrylamide revealed the importance of tryptophan residues in maintaining the structural integrity of the enzyme. ApCA is more efficient than the commercially available bovine carbonic anhydrase (BCA) in CO2 sequestration. The enzyme was successfully used in biomineralization of CO2 from flue gas. Replacement of active site Zn2+ with Mn2+ enabled ApCA to function as a peroxidase which exhibited alkali-stability and moderate thermostability like ApCA.
Collapse
Affiliation(s)
- Himadri Bose
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Netaji Subhas Institute of Technology, Azad Hind Fauz Marg, Sector 3, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
10
|
Amylolytic Enzymes Acquired from L-Lactic Acid Producing Enterococcus faecium K-1 and Improvement of Direct Lactic Acid Production from Cassava Starch. Appl Biochem Biotechnol 2017; 183:155-170. [PMID: 28236189 DOI: 10.1007/s12010-017-2436-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/10/2017] [Indexed: 01/30/2023]
Abstract
An amylolytic lactic acid bacterium isolate K-1 was isolated from the wastewater of a cassava starch manufacturing factory and identified as Entercoccus faecium based on 16S rRNA gene sequence analysis. An extracellular α-amylase was purified to homogeneity and the molecular weight of the purified enzyme was approximately 112 kDa with optimal pH value and temperature measured of 7.0 and 40 °C, respectively. It was stable at a pH range of 6.0-7.0, but was markedly sensitive to high temperatures and low pH conditions, even at a pH value of 5. Ba2+, Al3+, and Co2+ activated enzyme activity. This bacterium was capable of producing 99.2% high optically pure L-lactic acid of 4.3 and 8.2 g/L under uncontrolled and controlled pH at 6.5 conditions, respectively, in the MRS broth containing 10 g/L cassava starch as the sole carbon source when cultivated at 37 °C for 48 h. A control pH condition of 6.5 improved and stabilized the yield of L-lactic acid production directly from starch even at a high concentration of starch at up to 150 g/L. This paper is the first report describing the properties of purified α-amylase from E. faecium. Additionally, pullulanase and cyclodextrinase activities were also firstly recorded from E. faecium K-1.
Collapse
|
11
|
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. Mar Drugs 2016; 14:md14100171. [PMID: 27669268 PMCID: PMC5082319 DOI: 10.3390/md14100171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
Collapse
|
12
|
Jiang T, Huang M, He H, Lu J, Zhou X, Cai M, Zhang Y. Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor. Prep Biochem Biotechnol 2016; 46:620-7. [DOI: 10.1080/10826068.2015.1128444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Mehta D, Satyanarayana T. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Front Microbiol 2016; 7:1129. [PMID: 27516755 PMCID: PMC4963412 DOI: 10.3389/fmicb.2016.01129] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 11/13/2022] Open
Abstract
Industrial enzyme market has been projected to reach US$ 6.2 billion by 2020. Major reasons for continuous rise in the global sales of microbial enzymes are because of increase in the demand for consumer goods and biofuels. Among major industrial enzymes that find applications in baking, alcohol, detergent, and textile industries are α-amylases. These are produced by a variety of microbes, which randomly cleave α-1,4-glycosidic linkages in starch leading to the formation of limit dextrins. α-Amylases from different microbial sources vary in their properties, thus, suit specific applications. This review focuses on the native and recombinant α-amylases from bacteria and archaea, their production and the advancements in the molecular biology, protein engineering and structural studies, which aid in ameliorating their properties to suit the targeted industrial applications.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi New Delhi, India
| | | |
Collapse
|
14
|
Song Q, Wang Y, Yin C, Zhang XH. LaaA, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031(T). Enzyme Microb Technol 2016; 90:83-92. [PMID: 27241296 DOI: 10.1016/j.enzmictec.2016.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
Alpha-amylase is a kind of broadly used industrial enzymes, most of which have been exploited from terrestrial organism. Comparatively, alpha-amylase from marine environment was largely undeveloped. In this study, a novel alkalophilic alpha-amylase with high activity, Luteimonas abyssi alpha-amylase (LaaA), was cloned from deep-sea bacterium L. abyssi XH031(T) and expressed in Escherichia coli BL21. The gene has a length of 1428bp and encodes 475 amino acids with a 35-residue signal peptide. The specific activity of LaaA reached 8881U/mg at the optimum pH 9.0, which is obvious higher than other reported alpha-amylase. This enzyme can remain active at pH levels ranging from 6.0 to 11.0 and temperatures below 45°C, retaining high activity even at low temperatures (almost 38% residual activity at 10°C). In addition, 1mM Na(+), K(+), and Mn(2+) enhanced the activity of LaaA. To investigate the function of potential active sites, R227G, D229K, E256Q/H, H327V and D328V mutants were generated, and the results suggested that Arg227, Asp229, Glu256 and Asp328 were total conserved and essential for the activity of alpha-amylase LaaA. This study shows that the alpha-amylase LaaA is an alkali-tolerant and high-active amylase with strong potential for use in detergent industry.
Collapse
Affiliation(s)
- Qinghao Song
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Chong Yin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
15
|
Acer Ö, Bekler FM, Pirinççioğlu H, Güven RG, Güven K. Purification and Characterization of Thermostable and Detergent-Stable α-Amylase from Anoxybacillus sp. AH1. Food Technol Biotechnol 2016; 54:70-77. [PMID: 27904395 PMCID: PMC5105632 DOI: 10.17133/ftb.54.01.16.4122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/11/2015] [Indexed: 09/29/2022] Open
Abstract
A thermostable and detergent-stable α-amylase from a newly isolated Anoxybacillus sp. AH1 was purified and characterized. Maximum enzyme production (1874.8 U/mL) was obtained at 24 h of incubation. The amylase was purified by using Sephadex G-75 gel filtration, after which an 18-fold increase in specific activity and a yield of 9% were achieved. The molecular mass of the purified enzyme was estimated at 85 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature values of the enzyme were 7.0 and 60 °C, respectively. The enzyme was highly stable in the presence of 30% glycerol, retaining 85% of its original activity at 60 °C within 120 min. Km and vmax values were 0.102 µmol and 0.929 µmol/min, respectively, using Lineweaver-Burk plot. The enzyme activity was increased by various detergents, but it was significantly inhibited in the presence of urea. Mg2+ and Ca2+ also significantly activated α-amylase, while Zn2+, Cu2+ and metal ion chelators ethylenediaminetetraacetic acid (EDTA) and 1,10-phenanthroline (phen) greatly inhibited the enzyme activity. α-Amylase activity was enhanced by β-mercaptoethanol (β-ME) and dithiothreitol (DTT) to a great extent, but inhibited by p-chloromercuribenzoic acid (PCMB). Iodoacetamide (IAA) and N-ethylmaleimide (NEM) had a slight, whereas phenylmethylsulfonyl fluoride (PMSF) had a strong inhibitory effect on the amylase activity.
Collapse
Affiliation(s)
- Ömer Acer
- Molecular Biology and Genetic Department, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
| | - Fatma Matpan Bekler
- Molecular Biology and Genetic Department, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
| | - Hemşe Pirinççioğlu
- Molecular Biology and Genetic Department, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
| | - Reyhan Gül Güven
- Division of Science Teaching, Ziya Gökalp Faculty of Education, Dicle University, TR-21280 Diyarbakır, Turkey
| | - Kemal Güven
- Molecular Biology and Genetic Department, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
| |
Collapse
|
16
|
Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl Microbiol Biotechnol 2014; 98:4503-19. [DOI: 10.1007/s00253-013-5459-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
18
|
Mehta D, Satyanarayana T. Dimerization mediates thermo-adaptation, substrate affinity and transglycosylation in a highly thermostable maltogenic amylase of Geobacillus thermoleovorans. PLoS One 2013; 8:e73612. [PMID: 24069213 PMCID: PMC3777949 DOI: 10.1371/journal.pone.0073612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/19/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Maltogenic amylases belong to a subclass of cyclodextrin-hydrolyzing enzymes and hydrolyze cyclodextrins more efficiently than starch unlike typical α-amylases. Several bacterial malto-genic amylases with temperature optima of 40-60°C have been previously characterized. The thermo-adaption, substrate preferences and transglycosylation aspects of extremely thermostable bacterial maltogenic amylases have not yet been reported. METHODOLOGY/PRINCIPAL FINDINGS The recombinant monomeric and dimeric forms of maltogenic α-amylase (Gt-Mamy) of the extremely thermophilic bacterium Geobacillus thermoleovorans are of 72.5 and 145 kDa, which are active optimally at 80°C. Extreme thermostability of this enzyme has been explained by analyzing far-UV CD spectra. Dimerization increases T1/2 of Gt-Mamy from 8.2 h to 12.63 h at 90°C and mediates its enthalpy-driven conformational thermostabilization. Furthermore, dime-rization regulates preferential substrate binding of the enzyme. The substrate preference switching of Gt-Mamy upon dimerization has been confirmed from the substrate-binding affinities of the enzyme for various high and low molecular weight substrates. There is an alteration in Km and substrate hydrolysis efficiency (Vmax/Km) of the enzyme (for cyclodex-trins/starch) upon dimerization. N-terminal truncation indicated the role of N-terminal 128 amino acids in the thermostabilization and modulation of substrate-binding affinity. This has been confirmed by molecular docking of β-cyclodextrin to Gt-Mamy that indicated the requirement of homodimer formation by the interaction of a few N-terminal residues of chain A with the catalytic residues of (α/β)8 barrel of chain B and vice-versa for stable cyclodextrin binding. Site directed mutagenesis provided evidence for the role of N-terminal D109 at the dimeric interface in substrate affinity modulation and thermostabilization. The dimeric Gt-Mamy transglycosylates hydrolytic products of G4/G5 and acarbose, while the truncated form does not because of the lack of extra sugar-binding space formed due to dimerization. CONCLUSION/SIGNIFICANCE N-terminal domain controls enthalpy-driven thermostabilization, substrate-binding affinity and transglycosylation activity of Gt-Mamy by homodimer formation.
Collapse
Affiliation(s)
- Deepika Mehta
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
19
|
Sharma A, Satyanarayana T. Characteristics of a High Maltose-Forming, Acid-Stable, and Ca2+-Independent α-amylase of the Acidophilic Bacillus acidicola. Appl Biochem Biotechnol 2013; 171:2053-64. [DOI: 10.1007/s12010-013-0501-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
|
20
|
Avdiyuk KV, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Vаrbanets LD, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine;. Microbial ?-amylases: physico-chemical properties, substrate specificity and domain structure. UKRAINIAN BIOCHEMICAL JOURNAL 2013. [DOI: 10.15407/ubj85.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
21
|
Fu CW, Wang YP, Fang TY, Lin TH. Interaction between trehalose and MTHase from Sulfolobus solfataricus studied by theoretical computation and site-directed mutagenesis. PLoS One 2013; 8:e68565. [PMID: 23894317 PMCID: PMC3716775 DOI: 10.1371/journal.pone.0068565] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
Maltooligosyltrehalose trehalohydrolase (MTHase) catalyzes the release of trehalose by cleaving the α-1,4-glucosidic linkage next to the α-1,1-linked terminal disaccharide of maltooligosyltrehalose. Computer simulation using the hydrogen bond analysis, free energy decomposition, and computational alanine scanning were employed to investigate the interaction between maltooligosyltrehalose and the enzyme. The same residues that were chosen for theoretical investigation were also studied by site-directed mutagenesis and enzyme kinetic analysis. The importance of residues determined either experimentally or computed theoretically were in good accord with each other. It was found that residues Y155, D156, and W218 of subsites -2 and -3 of the enzyme might play an important role in interacting with the ligand. The theoretically constructed structure of the enzyme-ligand complex was further validated through an ab initio quantum chemical calculation using the Gaussian09 package. The activation energy computed from this latter study was very similar to those reported in literatures for the same type of hydrolysis reactions.
Collapse
Affiliation(s)
- Chien-wei Fu
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Ping Wang
- Department of Food Science and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Tsuei-Yun Fang
- Department of Food Science and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (THL); (TYF)
| | - Thy-Hou Lin
- Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail: (THL); (TYF)
| |
Collapse
|
22
|
Mok SC, Teh AH, Saito JA, Najimudin N, Alam M. Crystal structure of a compact α-amylase from Geobacillus thermoleovorans. Enzyme Microb Technol 2013; 53:46-54. [PMID: 23683704 DOI: 10.1016/j.enzmictec.2013.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/17/2022]
Abstract
A truncated form of an α-amylase, GTA, from thermophilic Geobacillus thermoleovorans CCB_US3_UF5 was biochemically and structurally characterized. The recombinant GTA, which lacked both the N- and C-terminal transmembrane regions, functioned optimally at 70°C and pH 6.0. While enzyme activity was not enhanced by the addition of CaCl2, GTA's thermostability was significantly improved in the presence of CaCl2. The structure, in complex with an acarbose-derived pseudo-hexasaccharide, consists of the typical three domains and binds one Ca(2+) ion. This Ca(2+) ion was strongly bound and not chelated by EDTA. A predicted second Ca(2+)-binding site, however, was disordered. With limited subsites, two novel substrate-binding residues, Y147 and Y182, may help increase substrate affinity. No distinct starch-binding domain is present, although two regions rich in aromatic residues have been observed. GTA, with a smaller domain B and several shorter loops compared to other α-amylases, has one of the most compact α-amylase folds that may contribute greatly to its tight Ca(2+) binding and thermostability.
Collapse
Affiliation(s)
- Sook-Chen Mok
- Centre for Chemical Biology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | | | | | | |
Collapse
|
23
|
Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol 2012; 97:6279-92. [DOI: 10.1007/s00253-012-4538-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
|
25
|
Sharma A, Satyanarayana T. Cloning and expression of acidstable, high maltose-forming, Ca2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles 2012; 16:515-22. [DOI: 10.1007/s00792-012-0451-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
26
|
Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0126-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Finore I, Kasavi C, Poli A, Romano I, Oner ET, Kirdar B, Dipasquale L, Nicolaus B, Lama L. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0715-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Biophysical and Biochemical Characterization of a Hyperthermostable and Ca2+-independent α-Amylase of an Extreme Thermophile Geobacillus thermoleovorans. Appl Biochem Biotechnol 2008; 150:205-19. [DOI: 10.1007/s12010-008-8171-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|