1
|
Sun Y, Jin J, Li W, Zhang S, Wang F. Hexavalent chromium removal by a resistant strain Bacillus cereus ZY-2009. ENVIRONMENTAL TECHNOLOGY 2023; 44:1926-1935. [PMID: 34882507 DOI: 10.1080/09593330.2021.2016994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 05/25/2023]
Abstract
Bioreduction of Cr(VI) to Cr(III) by reducing microbes has attracted increasing concern. Here, Cr(VI) removal capacity of a Cr(VI)-resistant bacterium isolated from activated sludge was investigated. Based on its physio-biochemical attributes and 16S rDNA sequence analysis, the strain was identified as Bacillus cereus ZY-2009. It grew normally in the media containing 10-100 mg/L Cr(VI), indicating its high resistance to Cr(VI). Under the optimal conditions of pH 7.0, inoculation amount 10%, and temperature 30°C, Cr(VI) was effectively removed, with a removal rate of ∼80%. Co-existing Fe3+ and Cu2+ greatly increased Cr(VI) removal, but Cd2+ showed significant inhibition. Cr(VI) was removed mainly via enzyme-mediated bioreduction but not biosorption. Cr(VI) was reduced by different cell fractions (i.e. extracellular secretions, cytoplasm, and cell envelope), implying that Cr(VI) can be reduced both extracellularly and intracellularly. This strain can be used in the bioremediation of Cr(VI)-containing wastewater, with Fe3+ and Cu2+ as stimulators.
Collapse
Affiliation(s)
- Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jianyong Jin
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Sounderarajan S, Puchalapalli DSR, Ayothiraman S. Effect of synthetic fatty liquor and neatsfoot oil as co-contaminants on the reduction of hexavalent chromium using Fusarium oxysporum and its kinetic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86427-86438. [PMID: 35639327 DOI: 10.1007/s11356-022-21080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The hexavalent chromium is one of the major carcinogenic components released during the tanning process and lots of work have been carried out on the reduction of hexavalent chromium via chemical and biological routes. Different fatty oils are also employed in the tanning process and have also been released as an effluent along with chromium. However, it is difficult to find a study on the reduction of chromium in the presence of other contaminant which would help to mimic the real-time complication of treating the tannery effluent. It is the first attempt on the reduction of hexavalent chromium in the presence of synthetic fatty liquor and neatsfoot oil using Fusarium oxysporum. The maximum percentage of chromium reduction was 73.62% and 60.28% in neatsfoot oil and synthetic fatty oil, respectively, for the initial chromium concentration of 25 mg/L. The biomass productivity was better with both neatsfoot oil and synthetic fatty oil, whereas the same has decreased with the presence of chromium. The reduction of chromium was found to follow the uncompetitive substrate inhibition kinetics than the general Michaelis-Menten kinetics. The kinetic parameters were calculated using particle swarm optimization algorithm, which were compared with the already reported data. The uncompetitive substrate inhibition kinetics was represented the experimental data in both the cases and the value of substrate inhibition constant was low in the case of neatsfoot oil compared with the synthetic fatty liquor.
Collapse
Affiliation(s)
- Sathieesh Sounderarajan
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Dinesh Sankar Reddy Puchalapalli
- Department of Chemical Engineering, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, West Godavari District, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
3
|
Yang W, Hong W, Huang Y, Li S, Li M, Zhong H, He Z. Exploration on the Cr(VI) resistance mechanism of a novel thermophilic Cr(VI)-reducing bacteria Anoxybacillus flavithermus ABF1 isolated from Tengchong geothermal region, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:795-803. [PMID: 35701897 DOI: 10.1111/1758-2229.13070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium resistance and reduction mechanisms of microorganism provide a critical guidance for Cr(VI) bioremediation. However, related researches are limited in mesophiles and deficient for thermophiles. In this work, a novel alkaline Cr(VI)-reducing thermophile Anoxybacillus flavithermus ABF1 was isolated from geothermal region. The mechanisms of Cr(VI) resistance and reduction were investigated. The results demonstrated that A. flavithermus ABF1 could survive in a wide temperature range from 50°C to 70°C and in pH range of 7.0-9.0. Strain ABF1 showed excellent growth activity and Cr(VI) removal performance when initial Cr(VI) concentration was lower than 200 mg L-1 . 93.71% of Cr(VI) was removed at initial concentration of 20 mg L-1 after 72 h. The majority of Cr(VI) was found to be reduced extracellularly by enzymes secreted by cells. XPS and Raman analysis further manifested that Cr2 O3 was the product of Cr(VI) reduction. Moreover, the Cr(VI) transportation-related gene cysP and Cr(VI) reduction-related gene azoR of A. flavithermus ABF1 played key roles in inhibiting Cr(VI) entering cells and promoting extracellular Cr(VI) reduction respectively. This work provides novel insight into the mechanisms of Cr(VI) resistance and detoxication of thermophiles, which leads to a promising alternative strategy for heavy metal bioremediation in areas with elevated temperature.
Collapse
Affiliation(s)
- Wenjing Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Wanqi Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yongji Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Mengke Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Hui Zhong
- School of Life Sciences, Central South University, Changsha, China
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| |
Collapse
|
4
|
Liu C, Lin H, He P, Li X, Geng Y, Tuerhong A, Dong Y. Peat and bentonite amendments assisted soilless revegetation of oligotrophic and heavy metal contaminated nonferrous metallic tailing. CHEMOSPHERE 2022; 287:132101. [PMID: 34523446 DOI: 10.1016/j.chemosphere.2021.132101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Soilless revegetation is a promising method for ecological restoration of nonferrous metallic tailings because of its low-cost and eco-friendliness. However, revegetation is difficult to construct in the tailings due to the high heavy metal concentration, poor water retention capacity and low fertility. In this study, soilless revegetation was successfully carried out by using peat and bentonite amendments. The results showed that amendment addition significantly increased the F.elata seed germination percentage, plant length and fresh biomass by 14.9%-24.3%, 48.9%-90.4% and 51.9%-88.1%, respectively. Such improvements probably referred to the variation of rhizosphere tailing microecological characteristics. Amendment addition dramatically improved tailing available NPK by 39.76-102.13%, 2.69-40.81% and 2.42-20.02%, respectively, and reduced pH from alkaline to relative neutral. Besides, heavy metal bioavailability was significantly decreased that the acid soluble fraction decreased by 1.7%-11.5%, resulting in the reduction of heavy metal concentration in F.elata plant. Amendments also increased the rhizosphere tailing microbial species richness and the relative abundance of ecologically beneficial genera including Arthrobacter, Altererythrobacter and Bacillus. This study not only provided a green and efficient method for remediation of oligotrophic and high heavy metal contaminated nonferrous metallic tailing, but also demonstrated relevant mechanisms of amendment on promoting soilless revegetation.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Peidong He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoyin Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuan Geng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Aminaimu Tuerhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
5
|
da Costa Silva TA, de Paula M, Silva WS, Lacorte GA. Can moderate heavy metal soil contaminations due to cement production influence the surrounding soil bacterial communities? ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:134-148. [PMID: 34748159 DOI: 10.1007/s10646-021-02494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Events of soil contamination by heavy metals are mostly related to human activities that release these metals into the environment as emissions or effluents. Among the industrial activities related to heavy metal pollution, cement production plants are considered one of the most common sources. In this work we applied the High-throughput sequencing approach called 16 S rDNA metabarcoding to perform the taxonomic characterization of the prokaryotic communities of the soil surrounding three cement plants as well as two areas outside the influence of the cement plants that represented agricultural production environments free of heavy metal contamination (control areas). We applied the environmental genomics approaches known as "structural community metrics" (α- and β-diversity metrics) and "functional community metrics" (PICRUSt2 approach) to verify whether or not the effects of heavy metal contamination in the study area generated impacts on soil bacterial communities. We found that the impact related to the elevation of heavy metal concentration due to the operation of cement plants in the surrounding soil can be considered smooth according to globally recognized indices such as Igeo. However, we identified that both the taxonomic and functional structures of the communities surrounding cement plants were different from those found in the control areas. We consider that our findings contribute significantly to the general understanding of the effects of heavy metals on the soil ecosystem by showing that light contamination can disturb the dynamics of ecosystem services provided by soil, specifically those associated with microbial metabolism.
Collapse
Affiliation(s)
- Thiago Augusto da Costa Silva
- Molecular Biology Lab, Department of Science and Languages, Federal Institute of Minas Gerais - Bambuí Campus, Bambuí, Minas Gerais State, Brazil
| | - Marcos de Paula
- Molecular Biology Lab, Department of Science and Languages, Federal Institute of Minas Gerais - Bambuí Campus, Bambuí, Minas Gerais State, Brazil
| | | | - Gustavo Augusto Lacorte
- Molecular Biology Lab, Department of Science and Languages, Federal Institute of Minas Gerais - Bambuí Campus, Bambuí, Minas Gerais State, Brazil.
| |
Collapse
|
6
|
Biotransformation of Chromium (VI) via a Reductant Activity from the Fungal Strain Purpureocillium lilacinum. J Fungi (Basel) 2021; 7:jof7121022. [PMID: 34947004 PMCID: PMC8707924 DOI: 10.3390/jof7121022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Industrial effluents from chromium-based products lead to chromium pollution in the environment. Several technologies have been employed for the removal of chromium (Cr) from the environment, including adsorption, ion-exchange, bioremediation, etc. In this study, we isolated a Cr (VI)-resistant fungus, Purpureocillium lilacinum, from contaminated soil, which could reduce chromium. We also characterized a reductant activity of dichromate found in the cellular fraction of the fungus: optimal pH and temperature, effect of enzymatic inhibitors and enhancers, metal ions, use of electron donors, and initial Cr (VI) and protein concentration. This study also shows possible mechanisms that could be involved in the elimination of this metal. We observed an increase in the reduction of Cr (VI) activity in the presence of NADH followed by that of formate and acetate, as electron donor. This reduction was highly inhibited by EDTA followed by NaN3 and KCN, and this activity showed the highest activity at an optimal pH of 7.0 at 37 °C with a protein concentration of 3.62 µg/mL.
Collapse
|
7
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
8
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Ge S, Gu J, Ai W, Dong X. Biotreatment of pyrene and Cr(VI) combined water pollution by mixed bacteria. Sci Rep 2021; 11:114. [PMID: 33420172 PMCID: PMC7794335 DOI: 10.1038/s41598-020-80053-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023] Open
Abstract
Pyrene and chromium (Cr(VI)) are persistent pollutants and cause serious environmental problems because they are toxic to organisms and difficult to remediate. The toxicity of pyrene and Cr(VI) to three crops (cotton, soybean and maize) was confirmed by the significant decrease in root and shoot biomass during growth in pyrene/Cr(VI) contaminated hydroponic solution. Two bacterial strains capable of simultaneous pyrene biodegradation and Cr(VI) reduction were isolated and identified as Serratia sp. and Arthrobacter sp. A mixture of the isolated strains at a ratio of 1:1 was more efficient for biotreatment of pyrene and Cr(VI) than either strain alone; the mixture effectively carried out bioremediation of contaminated water in a hydroponic system mainly through pyrene biodegradation and Cr(VI) reduction. Application of these isolates shows potential for practical microbial remediation of pyrene and Cr(VI) combined water pollution.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Junxia Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Wenjing Ai
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
10
|
Presentato A, Piacenza E, Turner RJ, Zannoni D, Cappelletti M. Processing of Metals and Metalloids by Actinobacteria: Cell Resistance Mechanisms and Synthesis of Metal(loid)-Based Nanostructures. Microorganisms 2020; 8:E2027. [PMID: 33352958 PMCID: PMC7767326 DOI: 10.3390/microorganisms8122027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/09/2023] Open
Abstract
Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and metal efflux processes, which overall contribute to maintaining metal homeostasis. Considering the bioprocessing potential of metal(loid)s by Actinobacteria, the development of bioremediation strategies to reclaim metal-contaminated environments has gained scientific and economic interests. Moreover, the ability of Actinobacteria to produce nanoscale materials with intriguing physical-chemical and biological properties emphasizes the technological value of these biotic approaches. Given these premises, this review summarizes the strategies used by Actinobacteria to cope with metal(loid) toxicity and their undoubted role in bioremediation and bionanotechnology fields.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| | - Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy;
| | - Raymond J. Turner
- Department of Biological Sciences, Calgary University, Calgary, AB T2N 1N4, Canada;
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (D.Z.); (M.C.)
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (D.Z.); (M.C.)
| |
Collapse
|
11
|
Yao Y, Hu L, Li S, Zeng Q, Zhong H, He Z. Exploration on the bioreduction mechanisms of Cr(VI) and Hg(II) by a newly isolated bacterial strain Pseudomonas umsongensis CY-1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110850. [PMID: 32531571 DOI: 10.1016/j.ecoenv.2020.110850] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Despite of significant progress in remediation of Cr(VI) or Hg(II) pollution by microorganisms, study on the reduction of both Cr(VI) and Hg(II) by the same microbial strain was not reported so far, which is actually important for bioremediation of contaminated sites with multiple heavy metals. In this study, Pseudomonas umsongensis CY-1 was newly isolated from chromium-contaminated soil and showed remediation potentials for both Cr(VI) and Hg(II) pollution. The highest Cr(VI) (93.9%) and Hg(II) (82.8%) reduction rates were obtained at the initial concentration of 5 mg/L. Comparison between removal by resting cells and heat-treated resting cells demonstrated that P. umsongensis CY-1 removed Cr(VI) and Hg(II) from Tris-HCl buffer (pH 7.0) mainly through reduction instead of adsorption. By comparing the Cr(VI) and Hg(II) reduction rates of different cellular fractions, it was found that Cr(VI) and Hg(II) reductions mainly happened in the cytoplasm of P. umsongensis CY-1, which were further demonstrated by Transmission electron microscopy (TEM) analysis. Furthermore, analysis of X-ray photoelectron spectroscopy demonstrated that the reduction products of Cr(VI) and Hg(II) were mainly in the form of Cr(III) and Hg (0), respectively. The findings in this study will provide a guide for further insights in the bioremediation of contaminated sites with multiple heavy metals.
Collapse
Affiliation(s)
- Yang Yao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Liang Hu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Qiang Zeng
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha, 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha, 410083, China; Faculty of Materials Metallurgy & Chemistry, Jiangxi University of Science & Technology, Ganzhou, Jiangxi, 341000, China.
| |
Collapse
|
12
|
Abstract
Chromium is one of the most frequently used metal contaminants. Its hexavalent form Cr(VI), which is exploited in many industrial activities, is highly toxic, is water-soluble in the full pH range, and is a major threat to groundwater resources. Alongside traditional approaches to Cr(VI) treatment based on physical-chemical methods, technologies exploiting the ability of several microorganisms to reduce toxic and mobile Cr(VI) to the less toxic and stable Cr(III) form have been developed to improve the cost-effectiveness and sustainability of remediating hexavalent chromium-contaminated groundwater. Bioelectrochemical systems (BESs), principally investigated for wastewater treatment, may represent an innovative option for groundwater remediation. By using electrodes as virtually inexhaustible electron donors and acceptors to promote microbial oxidation-reduction reactions, in in situ remediation, BESs may offer the advantage of limited energy and chemicals requirements in comparison to other bioremediation technologies, which rely on external supplies of limiting inorganic nutrients and electron acceptors or donors to ensure proper conditions for microbial activity. Electron transfer is continuously promoted/controlled in terms of current or voltage application between the electrodes, close to which electrochemically active microorganisms are located. Therefore, this enhances the options of process real-time monitoring and control, which are often limited in in situ treatment schemes. This paper reviews research with BESs for treating chromium-contaminated wastewater, by focusing on the perspectives for Cr(VI) bioelectrochemical remediation and open research issues.
Collapse
|
13
|
Prabhakaran DC, Bolaños-Benitez V, Sivry Y, Gelabert A, Riotte J, Subramanian S. Mechanistic studies on the bioremediation of Cr(VI) using Sphingopyxis macrogoltabida SUK2c, a Cr(VI) tolerant bacterial isolate. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Pradhan SK, Singh NR, Dehury B, Panda D, Modi MK, Thatoi H. Insights into the mode of flavin mononucleotide binding and catalytic mechanism of bacterial chromate reductases: A molecular dynamics simulation study. J Cell Biochem 2019; 120:16990-17005. [PMID: 31131470 DOI: 10.1002/jcb.28960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/04/2019] [Accepted: 02/14/2019] [Indexed: 11/09/2022]
Abstract
Enzymes from natural sources protect the environment via complex biological mechanisms, which aid in reductive immobilization of toxic metals including chromium. Nevertheless, progress was being made in elucidating high-resolution crystal structures of reductases and their binding with flavin mononucleotide (FMN) to understand the underlying mechanism of chromate reduction. Therefore, herein, we employed molecular dynamics (MD) simulations, principal component analysis (PCA), and binding free energy calculations to understand the dynamics behavior of these enzymes with FMN. Six representative chromate reductases in monomeric and dimeric forms were selected to study the mode, dynamics, and energetic component that drive the FMN binding process. As evidenced by MD simulation, FMN prefers to bind the cervix formed between the catalytic domain surrounded by strong conserved hydrogen bonding, electrostatic, and hydrophobic contacts. The slight movement and reorientation of FMN resulted in breakage of some crucial H-bonds and other nonbonded contacts, which were well compensated with newly formed H-bonds, electrostatic, and hydrophobic interactions. The critical residues aiding in tight anchoring of FMN within dimer were found to be strongly conserved in the bacterial system. The molecular mechanics combined with the Poisson-Boltzmann surface area binding free energy of the monomer portrayed that the van der Waals and electrostatic energy contribute significantly to the total free energy, where, the polar solvation energy opposes the binding of FMN. The proposed proximity relationships between enzyme and FMN binding site presented in this study will open up better avenues to engineer enzymes with optimized chromate reductase activity for sustainable bioremediation of heavy metals.
Collapse
Affiliation(s)
- Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India.,Department of Biotechnology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
| | - Nihar Ranjan Singh
- Department of Botany, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, Regional Medical Research Centre (ICMR), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha, India.,Department of Chemistry, Technical University of Denmark, DK-2800 Kgs, Lyngby
| | - Debashis Panda
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada, Odisha, India
| |
Collapse
|
15
|
Zappelini C, Alvarez-Lopez V, Capelli N, Guyeux C, Chalot M. Streptomyces Dominate the Soil Under Betula Trees That Have Naturally Colonized a Red Gypsum Landfill. Front Microbiol 2018; 9:1772. [PMID: 30123206 PMCID: PMC6085467 DOI: 10.3389/fmicb.2018.01772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
The successful restoration of well-engineered tailings storage facilities is needed to avoid mine tailings problems. This study characterized the bacterial communities from vegetated and non-vegetated soils from a red gypsum landfill resulting from the industrial extraction of titanium. A set of 275 bacteria was isolated from vegetated soil and non-vegetated soil areas and taxonomically characterized using BOX-PCR. The study also evaluated the ability of a subset of 88 isolated bacteria on their ability to produce plant growth promoting (PGP) traits [indoleacetic acid (IAA) production, phosphate solubilization, and siderophore production] and their tolerance to potentially toxic elements (PTEs). Twenty strains were chosen for further analysis to produce inoculum for birch-challenging experiments. Principal component analysis (PCA) showed that the set of pedological parameters (pH, granulometry, carbon, organic matter, and Mg content) alone explained approximately 40% of the differences between the two soils. The highest density of total culturable bacteria was found in the vegetated soil, and it was much higher than that in the non-vegetated soil. The Actinobacteria phyla dominated the culturable soil community (70% in vegetated soil and 95% in non-vegetated soil), while the phyla Firmicutes (including the genus Bacillus) and Bacteroides (including the genera Pedobacter and Olivibacter) were found only in the vegetated soil fraction. Additional genera (Rhizobium, Variovorax, and Ensifer) were found solely in the vegetated soil. The vegetated soil bacteria harbored the most beneficial PGP bacteria with 12% of the isolates showing three or more PGP traits. The strains with higher metal tolerances in our study were Phyllobacterium sp. WR140 (RO1.15), Phyllobacterium sp. WR140 (R01.34), and Streptomyces sp. (R04.15), all isolated from the vegetated soil. Among the isolates tested in challenging experiments, Phyllobacterium (R01.34) and Streptomyces sp. (R05.33) have the greatest potential to act as PGP rhizobacteria and therefore to be used in the biological restoration of tailings dumps.
Collapse
Affiliation(s)
- Cyril Zappelini
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Vanessa Alvarez-Lopez
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Nicolas Capelli
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France
| | - Christophe Guyeux
- Département d'Informatique des Systèmes Complexes, Institut FEMTO-ST (UMR 6174 CNRS), Université Bourgogne Franche-Comté, Besançon, France
| | - Michel Chalot
- Laboratoire Chrono-Environnement, UMR CNRS 6249, Université Bourgogne Franche-Comté, Montbéliard, France.,Faculté des Sciences et Technologies, Université de Lorraine, Nancy, France
| |
Collapse
|
16
|
Zhou S, Dong L, Deng P, Jia Y, Bai Q, Gao J, Xiao H. Reducing capacity and enzyme activity of chromate reductase in a ChrT-engineered strain. Exp Ther Med 2017; 14:2361-2366. [PMID: 28962168 DOI: 10.3892/etm.2017.4775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/28/2017] [Indexed: 12/17/2022] Open
Abstract
In order to remediate the metal-contaminated soil and water ecosystems with microorganisms, an engineered strain, which contained the chromate reductase ChrT gene from Serratia sp. S2, was studied in detail for its Cr (VI) reduction efficiency, optimal culture condition and chromate reductase activity. Results demonstrated that the engineered strain had a high Cr (VI) reduction rate of up to 40% at a concentration of 50 mg/l after being cultured for 48 h. Additionally, the optimal culture conditions were pH 7.0 and 37°C. Furthermore, the carbon sources and metal cations exhibited significant effects on the Cr (VI) reduction rate of the engineered bacterium. Sodium lactate, sodium acetate, Cu2+, Co2+ and Pb2+ were positively correlated with the reduction rate. Chromate reductase was soluble and presented in the cytoplasm. Furthermore, the enzymatic activity with nicotinamide adenine dinucleotide phosphate, which was as an electron donor, reached 14.83 U/mg.
Collapse
Affiliation(s)
- Simin Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lanlan Dong
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Peng Deng
- Yubei District Center for Disease Control and Prevention, Chongqing 401120, P.R. China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Cao H, Yi Y. Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 2017; 30:529-539. [PMID: 28523598 DOI: 10.1007/s10534-017-0022-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022]
Abstract
The interaction between two chromates [sodium chromate (Na2CrO4) and potassium chromate K2CrO4)] and bovine serum albumin (BSA) in physiological buffer (pH 7.4) was investigated by the fluorescence quenching technique. The results of fluorescence titration revealed that two chromates could strongly quench the intrinsic fluorescence of BSA through a static quenching procedure. The apparent binding constants K and number of binding sites n of chromate with BSA were obtained by the fluorescence quenching method. The thermodynamic parameters enthalpy change (ΔH), entropy change (ΔS) were negative, indicating that the interaction of two chromates with BSA was driven mainly by van der Waals forces and hydrogen bonds. The process of binding was a spontaneous process in which Gibbs free energy change was negative. The distance r between donor (BSA) and acceptor (chromate) was calculated based on Forster's non-radiative energy transfer theory. The results of UV-Vis absorption, synchronous fluorescence, three-dimensional fluorescence and circular dichroism (CD) spectra showed that two chromates induced conformational changes of BSA.
Collapse
Affiliation(s)
- Hongguang Cao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanli Yi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
18
|
Kang C, Wu P, Li L, Yu L, Ruan B, Gong B, Zhu N. Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5949-5963. [PMID: 28070813 DOI: 10.1007/s11356-016-8356-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the mechanism of Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa using batch experiments and analysis techniques. Data showed that resting cells of this strain (3.2 g/L dry weight) reduced 10 mg/L of Cr(VI) by 86% in Tris-HCl buffer solution under optimized conditions of 5 g/L of sodium acetate as an electron donor, pH of 7.0 and temperature of 37 °C within 24 h. Cr(VI) was largely converted to nontoxic Cr(III), and both soluble crude cell-free extracts and membrane-associated fractions were responsible for Cr(VI) reduction. While remnant Cr(VI) existed only in the supernatant, the content of resultant Cr(III) in supernatant, on cell surface and inside cells was 2.62, 1.06, and 5.07 mg/L, respectively, which was an indicative of extracellular and intracellular reduction of chromate. Scanning electron microscopy analysis combined with energy dispersive X-ray spectroscopy revealed the adsorption of chromium on the bacterial surface. Interaction between Cr(III) and cell surface functional groups immobilized Cr(III) as indicated by Fourier transform infrared analyses and X-ray photoelectron spectroscopy. Transmission electron microscopy revealed Cr(III) precipitates in bacterial interior suggesting that Cr(II) could also be intracellularly accumulated. Thus, it can be concluded that interior and exterior surfaces of resting P. aeruginosa cells were sites for reduction and immobilization of Cr(VI) and Cr(III), respectively. This is further insight into the underlying mechanisms of microbial chromate reduction.
Collapse
Affiliation(s)
- Chunxi Kang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China.
- Guangdong Environmental Protection Key Lab of Solid Waste Treatment and Recycling, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
| | - Liping Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Langfeng Yu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Beini Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Centre for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 51006, People's Republic of China
- Guangdong Environmental Protection Key Lab of Solid Waste Treatment and Recycling, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
19
|
Thatoi HN, Pradhan SK. Detoxification and Bioremediation of Hexavalent Chromium Using Microbes and Their Genes: An Insight into Genomic, Proteomic and Bioinformatics Studies. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
20
|
Alvarez A, Saez JM, Davila Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. CHEMOSPHERE 2017; 166:41-62. [PMID: 27684437 DOI: 10.1016/j.chemosphere.2016.09.070] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/03/2023]
Abstract
Actinobacteria exhibit cosmopolitan distribution since their members are widely distributed in aquatic and terrestrial ecosystems. In the environment they play relevant ecological roles including recycling of substances, degradation of complex polymers, and production of bioactive molecules. Biotechnological potential of actinobacteria in the environment was demonstrated by their ability to remove organic and inorganic pollutants. This ability is the reason why actinobacteria have received special attention as candidates for bioremediation, which has gained importance because of the widespread release of contaminants into the environment. Among organic contaminants, pesticides are widely used for pest control, although the negative impact of these chemicals in the environmental balance is increasingly becoming apparent. Similarly, the extensive application of heavy metals in industrial processes lead to highly contaminated areas worldwide. Several studies focused in the use of actinobacteria for cleaning up the environment were performed in the last 15 years. Strategies such as bioaugmentation, biostimulation, cell immobilization, production of biosurfactants, design of defined mixed cultures and the use of plant-microbe systems were developed to enhance the capabilities of actinobacteria in bioremediation. In this review, we compiled and discussed works focused in the study of different bioremediation strategies using actinobacteria and how they contributed to the improvement of the already existing strategies. In addition, we discuss the importance of omic studies to elucidate mechanisms and regulations that bacteria use to cope with pollutant toxicity, since they are still little known in actinobacteria. A brief account of sources and harmful effects of pesticides and heavy metals is also given.
Collapse
Affiliation(s)
- Analia Alvarez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Juliana Maria Saez
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - José Sebastian Davila Costa
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Veronica Leticia Colin
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - María Soledad Fuentes
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Sergio Antonio Cuozzo
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - Claudia Susana Benimeli
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| | - Marta Alejandra Polti
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina; Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán (UNT), Miguel Lillo 205, Tucumán 4000, Argentina.
| | - María Julia Amoroso
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Avenida Belgrano y Pasaje Caseros, Tucumán 4000, Argentina.
| |
Collapse
|
21
|
Dey S, Paul AK. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. CHEMOSPHERE 2016; 156:69-75. [PMID: 27176938 DOI: 10.1016/j.chemosphere.2016.04.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/05/2016] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
Arthrobacter sp. SUK 1201, a chromate resistant and reducing bacterium isolated from chromite mine overburden of Sukinda valley, Odisha, India has been evaluated for its hexavalent chromium [Cr(VI)] reduction potential using cell-free culture filtrate as extracellular chromate reductase enzyme. Production of the enzyme was enhanced in presence of Cr(VI) and its reducing efficiency was increased with increasing concentration of Cr(VI). The Michaelis-Menten constant (Km) and the maximum specific velocity (Vmax) of the extracellular Cr(VI) reductase were calculated to be 54.03 μM Cr(VI) and 5.803 U mg(-1) of protein respectively showing high affinity towards Cr(VI). The reducing activity of the enzyme was maximum at pH 6.5-7.5 and at a temperature of 35 °C and was dependent on NADH. The enzyme was tolerant to different metals such as Mn(II), Mg(II) and Fe(III) and was able to reduce Cr(VI) present in chromite mine seepage. These findings suggest that the extracellular chromate reductase of Arthrobacter sp. SUK 1201 has a great promise for use in Cr(VI) detoxification under different environmental conditions, particularly in the mining waste water treatment systems.
Collapse
Affiliation(s)
- Satarupa Dey
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| | - A K Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
22
|
Zhang JK, Wang ZH, Ye Y. Heavy Metal Resistances and Chromium Removal of a Novel Cr(VI)-Reducing Pseudomonad Strain Isolated from Circulating Cooling Water of Iron and Steel Plant. Appl Biochem Biotechnol 2016; 180:1328-1344. [DOI: 10.1007/s12010-016-2170-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
|
23
|
Li N, Pan Y, Zhang N, Wang X, Zhou W. The bio-reduction of chromate with periplasmic reductase using a novel isolated strain Pseudoalteromonas sp. CF10-13. RSC Adv 2016. [DOI: 10.1039/c6ra16320c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel isolated bacteriumPseudoalteromonassp. CF10-13 could reduce Cr(vi) to Cr(iii) by periplasic reductase with Cr(iii) bound to functional groups in extracellular polymeric substance (EPS) or leached to media as soulbe organic-Cr(iii).
Collapse
Affiliation(s)
- Na Li
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Yanzhuo Pan
- Jinan Licheng No. 2 High School
- Jinan 250104
- China
| | - Na Zhang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Xueyan Wang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Weizhi Zhou
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
24
|
Paul AK, Dey S. Hexavalent Chromate Reduction During Growth and by Immobilized Cells of Arthrobacter sp. SUK 1205. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/std.2015.158.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Masaki Y, Hirajima T, Sasaki K, Okibe N. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(III)-reducing bacterium Acidocella aromatica strain PFBC. Extremophiles 2015; 19:495-503. [DOI: 10.1007/s00792-015-0733-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
|
26
|
Joutey NT, Sayel H, Bahafid W, El Ghachtouli N. Mechanisms of hexavalent chromium resistance and removal by microorganisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 233:45-69. [PMID: 25367133 DOI: 10.1007/978-3-319-10479-9_2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chromium has been and is extensively used worldwide in multiple industrial processes and is routinely discharged to the environment from such processes. Therefore, this heavy metal is a potential threat to the environment and to public health, primarily because it is non-biodegradable and environmentally persistent. Chromium exists in several oxidation states, the most stable of which are trivalent Cr(Ill) and hexavalent Cr(VI) species. Each species possesses its own individual chemical characteristics and produces its own biological effects. For example, Cr (Ill) is an essential oligoelement for humans, whereas Cr(VI) is carcinogenic and mutagenic. Several chemical methods are used to remove Cr(VI) from contaminated sites. Each of these methods has advantages and disadvantages. Currently, bioremediation is often the preferred method to deal with Cr contaminated sites, because it is eco-friendly, cost-effective and is a "natural" technology. Many yeast, bacterial and fungal species have been assessed for their suitability to reduce or remove Cr(VI) contamination. The mechanisms by which these microorganisms resist and reduce Cr(VI) are variable and are species dependent. There are several Cr-resistance mechanisms that are displayed by microorganisms. These include active efflux of Cr compounds, metabolic reduction of Cr(VI) to Cr (ill), and either intercellular or extracellular prec1p1tation. Microbial Cr (VI) removal typically involves three stages: binding of chromium to the cell surface, translocation of chromium into the cell, and reduction of Cr(VI) to Cr (ill). Cr(VI) reduction by microorganisms may proceed on the cell surface, outside the cell, or intracellularly, either directly via chromate reductase enzymes, or indirectly via metabolite reduction of Cr(VI). The uptake of chromium ions is a biphasic process. The primary step is known as biosorption, a metabolic energyindependent process. Thereafter, bioaccumulation occurs, but is much slower, and is dependent on cell metabolic activity. Choosing an appropriate bioremediation strategy for Cr is extremely important and must involve investigating and understanding the key mechanisms that are involved in microbial resistance to and removal of Cr(VI).
Collapse
Affiliation(s)
- Nezha Tahri Joutey
- Microbial Biotechnology Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route Immouzer, 2202, Fez, Morocco
| | | | | | | |
Collapse
|
27
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
28
|
Kang C, Wu P, Li Y, Ruan B, Zhu N, Dang Z. Estimates of heavy metal tolerance and chromium(VI) reducing ability of Pseudomonas aeruginosa CCTCC AB93066: chromium(VI) toxicity and environmental parameters optimization. World J Microbiol Biotechnol 2014; 30:2733-46. [DOI: 10.1007/s11274-014-1697-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/25/2014] [Indexed: 11/28/2022]
|
29
|
Rath BP, Das S, Mohapatra PKD, Thatoi H. Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2014.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Figueiredo H, Quintelas C. Tailored zeolites for the removal of metal oxyanions: overcoming intrinsic limitations of zeolites. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:287-299. [PMID: 24794984 DOI: 10.1016/j.jhazmat.2014.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
This review aims to present a global view of the efforts conducted to convert zeolites into efficient supports for the removal of heavy metal oxyanions. Despite lacking affinity for these species, due to inherent charge repulsion between zeolite framework and anionic species, zeolites have still received considerable attention from the scientific community, since their versatility allowed tailoring them to answer specific requirements. Different processes for the removal and recovery of toxic metals based on zeolites have been presented. These processes resort to modification of the zeolite surface to allow direct adsorption of oxyanions, or by combination with reducing agents for oxyanions that allow ion-exchange with the converted species by the zeolite itself. In order to testify zeolite versatility, as well as covering the wide array of physicochemical constraints that oxyanions offer, chromium and arsenic oxyanions were selected as model compounds for a review of treatment/remediation strategies, based on zeolite modification.
Collapse
Affiliation(s)
- Hugo Figueiredo
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Cristina Quintelas
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
31
|
Molybdenum reduction to molybdenum blue in Serratia sp. Strain DRY5 is catalyzed by a novel molybdenum-reducing enzyme. BIOMED RESEARCH INTERNATIONAL 2014; 2014:853084. [PMID: 24724104 PMCID: PMC3958783 DOI: 10.1155/2014/853084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 12/02/2022]
Abstract
The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a Vmax for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent Km for NADH was 0.79 mM. At 5 mM NADH, the apparent Vmax and apparent Km values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (kcat/Km) of the Mo-reducing enzyme was 5.47 M−1 s−1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.
Collapse
|
32
|
Detoxification of hexavalent chromate by Amphibacillus sp. KSUCr3 cells immobilised in silica-coated magnetic alginate beads. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0373-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Hexavalent molybdenum reduction to mo-blue by a sodium-dodecyl-sulfate-degrading Klebsiella oxytoca strain DRY14. BIOMED RESEARCH INTERNATIONAL 2013; 2013:384541. [PMID: 24383052 PMCID: PMC3872019 DOI: 10.1155/2013/384541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022]
Abstract
Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant.
Collapse
|
34
|
Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, Syed MA, Shukor MY. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BIOMED RESEARCH INTERNATIONAL 2013; 2013:371058. [PMID: 24369531 PMCID: PMC3863505 DOI: 10.1155/2013/371058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/28/2013] [Indexed: 11/18/2022]
Abstract
Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
Collapse
Affiliation(s)
- A. R. Othman
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - N. A. Bakar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. I. E. Halmi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - W. L. W. Johari
- Department of Environmental Science, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - S. A. Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - H. Jirangon
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. A. Syed
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - M. Y. Shukor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Höhener P, Ponsin V. In situ vadose zone bioremediation. Curr Opin Biotechnol 2013; 27:1-7. [PMID: 24863890 DOI: 10.1016/j.copbio.2013.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/06/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
Abstract
Contamination of the vadose zone with various pollutants is a world-wide problem, and often technical or economic constraints impose remediation without excavation. In situ bioremediation in the vadose zone by bioventing has become a standard remediation technology for light spilled petroleum products. In this review, focus is given on new in situ bioremediation strategies in the vadose zone targeting a variety of other pollutants such as perchlorate, nitrate, uranium, chromium, halogenated solvents, explosives and pesticides. The techniques for biostimulation of either oxidative or reductive degradation pathways are presented, and biotransformations to immobile pollutants are discussed in cases of non-degradable pollutants. Furthermore, research on natural attenuation in the vadose zone is presented.
Collapse
Affiliation(s)
- Patrick Höhener
- Aix-Marseille Université-CNRS, Laboratoire Chimie Environnement FRE 3416, Marseille, France.
| | - Violaine Ponsin
- Aix-Marseille Université-CNRS, Laboratoire Chimie Environnement FRE 3416, Marseille, France; French Environment and Energy Management Agency, 20 avenue du Grésillé, BP 90406, Angers Cedex 01, France
| |
Collapse
|
36
|
Pillai P, Archana G. A novel process for biodegradation and effective utilization of chrome shavings, a solid waste generated in tanneries, using chromium resistant Bacillus subtilis P13. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Mills CT, Goldhaber MB. Laboratory investigations of the effects of nitrification-induced acidification on Cr cycling in vadose zone material partially derived from ultramafic rocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:363-373. [PMID: 22868043 DOI: 10.1016/j.scitotenv.2012.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 05/03/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Sacramento Valley (California, USA) soils and sediments have high concentrations of Cr(III) because they are partially derived from ultramafic material. Some Cr(III) is oxidized to more toxic and mobile Cr(VI) by soil Mn oxides. Valley soils typically have neutral to alkaline pH at which Cr(III) is highly immobile. Much of the valley is under cultivation and is both fertilized and irrigated. A series of laboratory incubation experiments were conducted to assess how cultivation might impact Cr cycling in shallow vadose zone material from the valley. The first experiments employed low (7.1 mmol N per kg soil) and high (35 mmol Nkg(-1)) concentrations of applied (NH(4))(2)SO(4). Initially, Cr(VI) concentrations were up to 45 and 60% greater than controls in low and high incubations, respectively. After microbially-mediated oxidation of all NH(4)(+), Cr(VI) concentrations dropped below control values. Increased nitrifying bacterial populations (estimated by measurement of phospholipid fatty acids) may have increased the Cr(VI) reduction capacity of the vadose zone material resulting in the observed decreases in Cr(VI). Another series of incubations employed vadose zone material from a different location to which low (45 meq kg(-1)) and high (128 meq kg(-1)) amounts of NH(4)Cl, KCl, and CaCl(2) were applied. All treatments, except high concentration KCl, resulted in mean soil Cr(VI) concentrations that were greater than the control. High concentrations of water-leachable Ba(2+) (mean 38 μmol kg(-1)) in this treatment may have limited Cr(VI) solubility. A final set of incubations were amended with low (7.1 mmol Nkg(-1)) and high (35 mmol Nkg(-1)) concentrations of commercial liquid ammonium polyphosphate (APP) fertilizer which contained high concentrations of Cr(III). Soil Cr(VI) in the low APP incubations increased to a concentration of 1.8 μmol kg(-1) (5× control) over 109 days suggesting that Cr(III) added with the APP fertilizer was more reactive than naturally-occurring soil Cr(III).
Collapse
Affiliation(s)
- Christopher T Mills
- U.S. Geological Survey, Crustal Geophysics and Geochemistry Science Center, Building 20, MS964D, Denver Federal Center, Denver, CO 80225, United States.
| | | |
Collapse
|
38
|
Dey S, Paul AK. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. JOURNAL OF HAZARDOUS MATERIALS 2012; 213-214:200-206. [PMID: 22361630 DOI: 10.1016/j.jhazmat.2012.01.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
Arthrobacter sp. SUK 1201, a chromium resistant and reducing bacterium having 99% sequence homology of 16S rDNA with Arthrobacter sp. GZK-1 was isolated from chromite mine overburden dumps of Orissa, India. The objective of the present study was to optimize the cultural conditions for chromate reduction by Arthrobacter sp. SUK 1201. The strain showed 67% reduction of 2mM chromate in 7 days and was associated with the formation of green insoluble precipitate, which showed characteristic peak of chromium in to energy dispersive X-ray analysis. However, Fourier transform infrared spectra have failed to detect any complexation of end products of Cr(VI) reduction with the cell mass. Reduction of chromate increased with increased cell density and was maximum at 10(10)cells/ml, but the reduction potential decreased with increase in Cr(VI) concentration. Chromate reducing efficiency was promoted when glycerol and glucose was used as electron donors. Optimum pH and temperature of Cr(VI) reduction was 7.0 and 35 °C respectively. The reduction process was inhibited by several metal ions and metabolic inhibitors but not by Cu(II) and DNP. These findings suggest that Arthrobacter sp. SUK 1201 has great promise for use in Cr(VI) detoxification under a wide range of environmental conditions.
Collapse
Affiliation(s)
- Satarupa Dey
- Microbiology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India.
| | | |
Collapse
|
39
|
Xu L, Luo M, Jiang C, Wei X, Kong P, Liang X, Zhao J, Yang L, Liu H. In vitro reduction of hexavalent chromium by cytoplasmic fractions of Pannonibacter phragmitetus LSSE-09 under aerobic and anaerobic conditions. Appl Biochem Biotechnol 2011; 166:933-41. [PMID: 22161214 DOI: 10.1007/s12010-011-9481-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Hexavalent chromate reductase was characterized and was found to be localized in the cytoplasmic fraction of a chromium-resistant bacterium Pannonibacter phragmitetus LSSE-09. The Cr(VI) reductase activity of cell-free extract (S₁₂) was significantly improved by external electron donors, such as NADH, glucose, acetate, formate, citrate, pyruvate, and lactate. The reductase activity was optimal at pH 7.0 with NADH as the electron donor. The aerobic and anaerobic Cr(VI)-reduction enhanced by 0.1 mM NADH were respectively 3.5 and 3.4 times as high as that without adding NADH. The Cr(VI) reductase activity was inhibited by Mn²⁺, Cd²⁺, Fe³⁺, and Hg²⁺, whereas Cu²⁺ enhanced the chromate reductase activity by 29% aerobically and 33% anaerobically. The aerobic and anaerobic specific Michaelis-Menten constant K(m) of S₁₂ fraction was estimated to be 64.95 and 47.65 μmol L⁻¹, respectively. The soluble S₁₅₀ fractions showed similar activity to S₁₂ and could reduce 39.7% and 53.4% of Cr(VI) after 1 h of incubation aerobically and anaerobically while the periplasmic contents showed no obvious reduction activity, suggesting an effective enzymatic mechanism of Cr(VI) reduction in the cytoplasmic fractions of the bacterium. Results suggest that the enzymatic reduction of Cr(VI) could be useful for Cr(VI) detoxification in wastewater.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Bei Er Tiao, Zhong Guan Cun, Haidian District, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Leles DMA, Lemos DA, Filho UC, Romanielo LL, de Resende MM, Cardoso VL. Evaluation of the bioremoval of Cr(VI) and TOC in biofilters under continuous operation using response surface methodology. Biodegradation 2011; 23:441-54. [PMID: 22119895 DOI: 10.1007/s10532-011-9523-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/16/2011] [Indexed: 11/28/2022]
Abstract
In the present study, the bioremoval of Cr(VI) and the removal of total organic carbon (TOC) were achieved with a system composed by an anaerobic filter and a submerged biofilter with intermittent aeration using a mixed culture of microorganisms originating from contaminated sludge. In the aforementioned biofilters, the concentrations of chromium, carbon, and nitrogen were optimized according to response surface methodology. The initial concentration of Cr(VI) was 137.35 mg l(-1), and a bioremoval of 85.23% was attained. The optimal conditions for the removal of TOC were 4 to 8 g l(-1) of sodium acetate, >0.8 g l(-1) of ammonium chloride and 60 to 100 mg l(-1) of Cr(VI). The results revealed that ammonium chloride had the strongest effect on the TOC removal, and 120 mg l(-1) of Cr(VI) could be removed after 156 h of operation. Moreover, 100% of the Cr(VI) and the total chromium content of the aerobic reactor output were removed, and TOC removals of 80 and 87% were attained after operating the anaerobic and aerobic reactors for 130 and 142 h, respectively. The concentrations of cells in both reactors remained nearly constant over time. The residence time distribution was obtained to evaluate the flow through the bioreactors.
Collapse
Affiliation(s)
- Daniela M A Leles
- Faculty of Chemical Engineering, Uberlândia Federal University, P.O. Box 593, Av. João Naves de Ávila, 2121, Campus Santa Mônica, Bloco 1K, Uberlândia, MG, 38408-100, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Lim HK, Syed MA, Shukor MY. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem. J Basic Microbiol 2011; 52:296-305. [DOI: 10.1002/jobm.201100121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 11/06/2022]
|
42
|
Dutta S, Bhattacharyya A, De P, Ray P, Basu S. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). JOURNAL OF HAZARDOUS MATERIALS 2009; 172:888-896. [PMID: 19692174 DOI: 10.1016/j.jhazmat.2009.07.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 05/28/2023]
Abstract
In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.
Collapse
Affiliation(s)
- Susmita Dutta
- Department of Chemical Engineering, National Institute of Technology, Durgapur, Durgapur 713209, India.
| | | | | | | | | |
Collapse
|