1
|
Chen YY, Huang JC, Wu CY, Yu SQ, Wang YT, Ye C, Shi TQ, Huang H. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Crit Rev Biotechnol 2025; 45:148-163. [PMID: 38705840 DOI: 10.1080/07388551.2024.2336532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 05/07/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.
Collapse
Affiliation(s)
- Ying-Ying Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jia-Cong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cai-Yun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Shi-Qin Yu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Su H, Chen S, Chen X, Guo M, Liu H, Sun B. Utilizing a high-throughput visualization screening technology to develop a genetically encoded biosensor for monitoring 5-aminolevulinic acid production in engineered Escherichia coli. Biosens Bioelectron 2025; 267:116806. [PMID: 39353369 DOI: 10.1016/j.bios.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
5-Aminolevulinic acid (5-ALA) is a non-protein amino acid widely used in agriculture, animal husbandry and medicine. Currently, microbial cell factories are a promising production pathway, but the lack of high-throughput fermentation strain screening tools often hinders the exploration of engineering strategies to increase cell factory yields. Here, mutant AC103-3H was screened from libraries of saturating mutants after response-specific engineering of the transcription factor AsnC of L-asparagine (Asn). Based on mutant AC103-3H, a whole-cell biosensor EAC103-3H with a specific response to 5-ALA was constructed, which has a linear dynamic detection range of 1-12 mM and a detection limit of 0.094 mM, and can be used for in situ screening of potential high-producing 5-ALA strains. With its support, overexpression of the C5 pathway genes using promoter engineering assistance resulted in a 4.78-fold enhancement of 5-ALA production in the engineered E. coli. This study provides an efficient strain screening tool for exploring approaches to improve the 5-ALA productivity of engineered strains.
Collapse
Affiliation(s)
- Hongfei Su
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Shijing Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Xiaolin Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Mingzhang Guo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| |
Collapse
|
3
|
Zdubek A, Maliszewska I. On the Possibility of Using 5-Aminolevulinic Acid in the Light-Induced Destruction of Microorganisms. Int J Mol Sci 2024; 25:3590. [PMID: 38612403 PMCID: PMC11011456 DOI: 10.3390/ijms25073590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a method that specifically kills target cells by combining a photosensitizer and irradiation with light at the appropriate wavelength. The natural amino acid, 5-aminolevulinic acid (5-ALA), is the precursor of endogenous porphyrins in the heme biosynthesis pathway. This review summarizes the recent progress in understanding the biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts. The effectiveness of 5-ALA-aPDI in destroying various groups of pathogens (viruses, fungi, yeasts, parasites) was presented, but greater attention was focused on the antibacterial activity of this technique. Finally, the clinical applications of 5-ALA in therapies using 5-ALA and visible light (treatment of ulcers and disinfection of dental canals) were described.
Collapse
Affiliation(s)
| | - Irena Maliszewska
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
4
|
Luo Y, Su A, Yang J, Yu Q, Wang E, Yuan H. Production of 5-aminolevulinic acid from hydrolysates of cassava residue and fish waste by engineered Bacillus cereus PT1. Microb Biotechnol 2023; 16:381-391. [PMID: 35920136 PMCID: PMC9871517 DOI: 10.1111/1751-7915.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
The economical production of 5-aminolevulinic acid (ALA) has recently received increasing attention for its extensive use in agriculture. In this study, a strain of Bacillus cereus PT1 could initially produce ALA at a titre of 251.72 mg/L by using a hydrolysate mixture of low-cost cassava residue and fish waste. The integration of endogenous hemA encoding glutamyl-tRNA reductase led to a 39.30% increase in ALA production. Moreover, improving cell permeability by deletion of the LytR-CpsA-Psr (LCP) family gene tagU led to a further increase of 59.73% in ALA production. Finally, the engineered strain B. cereus PT1-hemA-ΔtagU produced 2.62 g/L of ALA from the previously mentioned hydrolysate mixture in a 7-L bioreactor. In a pot experiment, foliar spray of the ALA produced by B. cereus PT1-hemA-ΔtagU from the hydrolysates increased salt tolerance of cucumber by improving chlorophyll content and catalase activity, while decreasing malondialdehyde content. Overall, this study demonstrated an economic way to produce ALA using a microbial platform and evidenced the potential of ALA in agricultural application.
Collapse
Affiliation(s)
- Ying Luo
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Anping Su
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Qijun Yu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMexico CityMexico
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
5
|
Jiang M, Hong K, Mao Y, Ma H, Chen T, Wang Z. Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications. Front Bioeng Biotechnol 2022; 10:841443. [PMID: 35284403 PMCID: PMC8913508 DOI: 10.3389/fbioe.2022.841443] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is the key precursor for the biosynthesis of tetrapyrrole compounds, with wide applications in medicine, agriculture and other burgeoning fields. Because of its potential applications and disadvantages of chemical synthesis, alternative biotechnological methods have drawn increasing attention. In this review, the recent progress in biosynthetic pathways and regulatory mechanisms of 5-ALA synthesis in biological hosts are summarized. The research progress on 5-ALA biosynthesis via the C4/C5 pathway in microbial cells is emphasized, and the corresponding biotechnological design strategies are highlighted and discussed in detail. In addition, the detection methods and applications of 5-ALA are also reviewed. Finally, perspectives on potential strategies for improving the biosynthesis of 5-ALA and understanding the related mechanisms to further promote its industrial application are conceived and proposed.
Collapse
Affiliation(s)
- Meiru Jiang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Kunqiang Hong
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yufeng Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
From Lab to Farm: Elucidating the Beneficial Roles of Photosynthetic Bacteria in Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9122453. [PMID: 34946055 PMCID: PMC8707939 DOI: 10.3390/microorganisms9122453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Photosynthetic bacteria (PSB) possess versatile metabolic abilities and are widely applied in environmental bioremediation, bioenergy production and agriculture. In this review, we summarize examples of purple non-sulfur bacteria (PNSB) through biofertilization, biostimulation and biocontrol mechanisms to promote plant growth. They include improvement of nutrient acquisition, production of phytohormones, induction of immune system responses, interaction with resident microbial community. It has also been reported that PNSB can produce an endogenous 5-aminolevulinic acid (5-ALA) to alleviate abiotic stress in plants. Under biotic stress, these bacteria can trigger induced systemic resistance (ISR) of plants against pathogens. The nutrient elements in soil are significantly increased by PNSB inoculation, thus improving fertility. We share experiences of researching and developing an elite PNSB inoculant (Rhodopseudomonas palustris PS3), including strategies for screening and verifying beneficial bacteria as well as the establishment of optimal fermentation and formulation processes for commercialization. The effectiveness of PS3 inoculants for various crops under field conditions, including conventional and organic farming, is presented. We also discuss the underlying plant growth-promoting mechanisms of this bacterium from both microbial and plant viewpoints. This review improves our understanding of the application of PNSB in sustainable crop production and could inspire the development of diverse inoculants to overcome the changes in agricultural environments created by climate change.
Collapse
|
7
|
Shih IT, Yi YC, Ng IS. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli. Appl Biochem Biotechnol 2021; 193:2858-2871. [PMID: 33860878 DOI: 10.1007/s12010-021-03571-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
5-Aminolevulinic acid (ALA) is an essential intermediate for many organisms and has been considered for the applications of medical especially in photodynamic therapy of cancer recently. However, ALA production via chemical approach is complicated; hence, microbial manufacturing has received more attentions. In this study, a modular design to simultaneously express ALA synthase from Rhodobacter sphaeroides (RshemA), a non-specific ALA exporter (RhtA), and chaperones was first developed and discussed. The ALA production was significantly increased by coexpressing RhtA and RshemA. Besides, ALA was enhanced by the cofactor pyridoxal phosphate (PLP) which was supplied by expressing genes of pdxK and pdxY or direct addition. However, inclusion bodies of RshemA served as an obstacle; thus, chaperones DnaK and GroELS were introduced to reform the conformation of proteins and successfully improved ALA production. Finally, a plasmid-free strain RrGI, as the robust chassis, was established and a 6.23-fold enhancement on ALA biosynthesis and led to 7.47 g/L titer and 0.588 g/L/h productivity under the optimal cultural condition.
Collapse
Affiliation(s)
- I-Tai Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
8
|
Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli. Appl Biochem Biotechnol 2019; 191:299-312. [PMID: 31845195 DOI: 10.1007/s12010-019-03178-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
5-Aminolevulinic acid (ALA) is an important metabolic intermediate compound with high value and has recently been used in agriculture and medicine. In this study, we have constructed six recombinant Escherichia coli (E. coli) strains that are involved in pET system under the regulation of the T7 promoter and LacI to express codon-optimized hemA gene from Rhodobacter capsulatus (RchemA) for ALA production via the C4 pathway. Due to codon optimization, hemA has a high transcriptional level; however, most RcHemA proteins were formed as inclusion body. To improve expression in soluble form, the vector with TrxA fusion tag was successfully used and co-expressed with partner GroELS as chaperone in another vector. As a result, ALA production increased significantly from 1.21 to 3.67 g/L. In addition, optimal ALA production was developed through adjustment of induction time and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, as well as substrate addition conditions. By adopting a two-stage induction strategy, the highest ALA reached 5.66 g/L when 0.1 mM of IPTG was added at early exponential phase (i.e., OD600 was equal to 0.7 to 0.8), while 6 g/L of glycine, 2 g/L of succinate, and 0.03 mM of pyridoxal 5'-phosphate (PLP) were provided in the mid-exponential phase in fermentation.
Collapse
|
9
|
Aiguo Z, Meizhi Z. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli. World J Microbiol Biotechnol 2019; 35:175. [PMID: 31673852 DOI: 10.1007/s11274-019-2750-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The important metabolic intermediate 5-aminolevulinic acid (ALA) is useful for cancer treatment or plant growth regulation and has consequently received much attention. In this study, we introduced the HemA1 and pgr7 genes from the higher plant Arabidopsis thaliana into recombinant Escherichia coli to overproduce extracellular 5-aminolevulinic acid via the C5 pathway. In the E. coli BL21 (DE3) strain background, the ALA concentration of the strain expressing both HemA1 and pgr7 was the highest and reached 3080.62 mg/L. Among the 7 tested hosts, ALA production was the highest in E. coli Transetta (DE3). In E. coli Transetta GTR/GBP, the expression levels of zwf, gnd, pgl and RhtA were upregulated. Glutamate induced the expression of the GltJ, GltK, GltL and GltS genes that are in involved in glutamate uptake. The recombinant E. coli Transetta GTR/GBP was able to produce 7642 mg/L ALA in modified minimal medium supplemented with 10 g/L glutamate and 15 g/L glucose after 48 h of fermentation at 22 °C. The results provide persuading evidence for the efficient production of ALA from glucose and glutamate in E. coli expressing A. thaliana HemA1 and pgr7. Further optimization of the fermentation process should be done to improve the ALA production to an industrially relevant level.
Collapse
Affiliation(s)
- Zhao Aiguo
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhai Meizhi
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Production of 5-aminolevulinic Acid by Recombinant Streptomyces coelicolor Expressing hemA from Rhodobacter sphaeroides. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0484-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Ren J, Zhou L, Wang C, Lin C, Li Z, Zeng AP. An Unnatural Pathway for Efficient 5-Aminolevulinic Acid Biosynthesis with Glycine from Glyoxylate Based on Retrobiosynthetic Design. ACS Synth Biol 2018; 7:2750-2757. [PMID: 30476433 DOI: 10.1021/acssynbio.8b00354] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design of novel metabolic pathways for efficient biosynthesis of natural products has received much interest, but often lacks systematic approach and chemistry-based guideline. Here we propose carbon skeleton reconstruction based on retrobiosynthetic design as a new approach and chemistry-guideline to solve the problem of properly matching precursors, one of the key issues for efficient biosynthesis. It is demonstrated for the development of an unnatural pathway for efficient biosynthesis of 5-aminolevulinic acid. The new pathway has several advantages compared to the existing natural ones such as high carbon utilization efficiency and orthogonality. It is particularly useful for overcoming the problem of glycine supply. The unnatural pathway is verified in vitro in an enzymatic cascade and in vivo in recombinant E. coli with an exogenous glyoxylate transaminase as a key enzyme.
Collapse
Affiliation(s)
- Jie Ren
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Libang Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Chuang Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - Chen Lin
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | - Zhidong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
| | - An-Ping Zeng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029, Beijing, China
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| |
Collapse
|
12
|
Liu S, Zheng Z, Tie J, Kang J, Zhang G, Zhang J. Impacts of Fe 2+ on 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment by regulating nif gene expression. J Environ Sci (China) 2018; 70:11-19. [PMID: 30037398 DOI: 10.1016/j.jes.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 06/08/2023]
Abstract
This study aimed to increase bacterial growth and 5-aminolevulinic acid (ALA) biosynthesis of Rhodobacter sphaeroides in wastewater treatment through adding ferrous ion (Fe2+). Results demonstrated that Fe2+ effectively enhanced the biomass production and ALA yield of R. sphaeroides. Moreover, the optimal Fe2+ dosage was found to be 400μmol/L, which was associated with the highest biomass of 4015.3mg/L and maximum ALA yield of 15.9mg/g-dry cell weight (mg/g-DCW). Mechanism analysis revealed that Fe2+ vastly improved Adenosine Triphosphate (ATP) production by up-regulating the nif gene expression, and increasing ATP enhanced the biomass and ALA yield by supplying energy for bacterial growth and ALA biosynthesis, respectively. Correlation analysis showed that the ALA and ATP yields had positive relation with nifA and nifU gene expression. In addition, the nifA and nifU gene expression displayed high consistency of co-transcription at the optimal Fe2+ dosage.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China.
| | - Zhihong Zheng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China
| | - Jingxi Tie
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing 100872, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1127-1135. [PMID: 28382525 DOI: 10.1007/s10295-017-1940-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
5-Aminolevulinic acid (ALA), the first committed intermediate for natural biosynthesis of tetrapyrrole compounds, has recently drawn intensive attention due to its broad potential applications. In this study, we describe the construction of recombinant Escherichia coli strains for ALA production from glucose via the C4 pathway. The hemA gene from Rhodobacter capsulatus was optimally overexpressed using a ribosome binding site engineering strategy, which enhanced ALA production substantially from 20 to 689 mg/L. Following optimization of biosynthesis pathways towards coenzyme A and precursor (glycine and succinyl-CoA), and downregulation of hemB expression, the production of ALA was further increased to 2.81 g/L in batch-fermentation.
Collapse
|
14
|
Li T, Guo YY, Qiao GQ, Chen GQ. Microbial Synthesis of 5-Aminolevulinic Acid and Its Coproduction with Polyhydroxybutyrate. ACS Synth Biol 2016; 5:1264-1274. [PMID: 27238205 DOI: 10.1021/acssynbio.6b00105] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
5-Aminolevulinic acid (ALA), an important cell metabolic intermediate useful for cancer treatments or plant growth regulator, was produced by recombinant Escherichia coli expressing the codon optimized mitochondrial 5-aminolevulinic acid synthase (EC: 2.3.1.37, hem1) from Saccharomyces cerevisiae controlled via the plasmid encoding T7 expression system with a T7 RNA polymerase. When a more efficient autoinduced expression approach free of IPTG was applied, the recombinant containing antibiotic-free stabilized plasmid was able to produce 3.6 g/L extracellular ALA in shake flask studies under optimized temperature. A recombinant E. coli expressing synthesis pathways of poly-3-hydroxybutyrate (PHB) and ALA resulted in coproduction of 43% PHB in the cell dry weights and 1.6 g/L extracellular ALA, leading to further reduction on ALA cost as two products were harvested both intracellularly and extracellularly. This was the first study on coproduction of extracellular ALA and intracellular PHB for improving bioprocessing efficiency. The cost of ALA production could be further reduced by employing a Halomonas spp. TD01 able to grow and produce ALA and PHB under continuous and unsterile conditions even though ALA had the highest titer of only 0.7 g/L at the present time.
Collapse
Affiliation(s)
- Tian Li
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying-Ying Guo
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Guan-Qing Qiao
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- Peking-Tsinghua
Center for Life Sciences, School of Life Science, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- MOE
Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing 100081, China
| |
Collapse
|
15
|
Liu S, Zhang G, Zhang J, Li X, Li J. Performance, 5-aminolevulinic acid (ALA) yield and microbial population dynamics in a photobioreactor system treating soybean wastewater: Effect of hydraulic retention time (HRT) and organic loading rate (OLR). BIORESOURCE TECHNOLOGY 2016; 210:146-52. [PMID: 26818577 DOI: 10.1016/j.biortech.2016.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Effects of hydraulic retention time (HRT) and influent organic loading rate (OLR) were investigated in a photobioreactor containing PNSB (Rhodobacter sphaeroides)-chemoheterotrophic bacteria to treat soybean wastewater. Pollutants removal, biomass production and ALA yield in different phases were investigated in together with functional microbial population dynamics. The results showed that proper HRT and OLR increased the photobioreactor performance including pollutants removal, biomass and ALA productions. 89.5% COD, 90.6% TN and 91.2% TP removals were achieved as well as the highest biomass production of 2655mg/L and ALA yield of 7.40mg/g-biomass under the optimal HRT of 60h and OLR of 2.48g/L/d. In addition, HRT and OLR have important impacts on PNSB and total bacteria dynamics.
Collapse
Affiliation(s)
- Shuli Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing 100872, China; School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Jianzheng Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
16
|
A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield. Appl Environ Microbiol 2016; 82:2709-2717. [PMID: 26921424 DOI: 10.1128/aem.00224-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/20/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED 5-Aminolevulinic acid (ALA), a nonprotein amino acid involved in tetrapyrrole synthesis, has been widely applied in agriculture, medicine, and food production. Many engineered metabolic pathways have been constructed; however, the production yields are still low. In this study, several 5-aminolevulinic acid synthases (ALASs) from different sources were evaluated and compared with respect to their ALA production capacities in an engineered Corynebacterium glutamicum CgS1 strain that can accumulate succinyl-coenzyme A (CoA). A codon-optimized ALAS from Rhodobacter capsulatus SB1003 displayed the best potential. Recombinant strain CgS1/pEC-SB produced 7.6 g/liter ALA using a mineral salt medium in a fed-batch fermentation mode. Employing two-stage fermentation, 12.46 g/liter ALA was produced within 17 h, with a productivity of 0.73 g/liter/h, in recombinant C. glutamicum Through overexpression of the heterologous nonspecific ALA exporter RhtA from Escherichia coli, the titer was further increased to 14.7 g/liter. This indicated that strain CgS1/pEC-SB-rhtA holds attractive industrial application potential for the future. IMPORTANCE In this study, a two-stage fermentation strategy was used for production of the value-added nonprotein amino acid 5-aminolevulinic acid from glucose and glycine in a generally recognized as safe (GRAS) host,Corynebacterium glutamicum The ALA titer represented the highest in the literature, to our knowledge. This high production capacity, combined with the potential easy downstream processes, made the recombinant strain an attractive candidate for industrial use in the future.
Collapse
|
17
|
Liu S, Zhang G, Li J, Li X, Zhang J. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology. Appl Biochem Biotechnol 2016; 179:444-58. [PMID: 26875086 DOI: 10.1007/s12010-016-2005-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Microbial 5-aminolevulinic acid (ALA) produced from wastewater is considered as potential renewable energy. However, many hurdles are needed to be overcome such as the regulation of key influencing factors on ALA yield. Biomass and ALA production by Rhodobacter sphaeroides was optimized using response surface methodology. The culturing medium was artificial volatile fatty acids wastewater. Three additives were optimized, namely succinate and glycine that are precursors of ALA biosynthesis, and D-glucose that is an inhibitor of ALA dehydratase. The optimal conditions were achieved by analyzing the response surface plots. Statistical analysis showed that succinate at 8.56 mmol/L, glycine at 5.06 mmol/L, and D-glucose at 7.82 mmol/L were the best conditions. Under these optimal conditions, the highest biomass production and ALA yield of 3.55 g/L and 5.49 mg/g-biomass were achieved. Subsequent verification experiments at optimal values had the maximum biomass production of 3.41 ± 0.002 g/L and ALA yield of 5.78 ± 0.08 mg/g-biomass.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450000, China
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing, 100872, China. .,School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China.
| | - Jianzheng Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Huanghe Road 73, Harbin, 150090, China
| |
Collapse
|
18
|
Liu S, Zhang G, Li J, Li X, Zhang J. Effects of metal ions on biomass and 5-aminolevulinic acid production in Rhodopseudomonas palustris wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:382-388. [PMID: 26819394 DOI: 10.2166/wst.2015.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work investigated the effects of eight metal ions on Rhodopseudomonas palustris growth and 5-aminolevulinic acid (ALA) yield in wastewater treatment. Results show that metal ions (Mg(2+) of 15 mmol/L, Fe(2+) of 400 μmol/L, Co(2+) of 4 μmol/L, Ni(2+) of 8 μmol/L and Zn(2+) of 4 μmol/L) could effectively improve the chemical oxygen demand (COD) removal, Rp. palustris biomass and ALA yield. The highest ALA yield of 13.1 mg/g-biomass was achieved with Fe(2+) of 400 μmol/L. ALA yields were differentially increased under different metal ions in the following order: Fe(2+) group > Mg(2+) group > Co(2+) group = Ni(2+) group > Zn(2+) group = Mo(2+) group > control. Cu(2+) and Mn(2+) inhibited Rp. palustris growth and ALA production. Mechanism analysis revealed that metal ions changed ALA yields by influencing the activities of ALA synthetase and ALA dehydratase.
Collapse
Affiliation(s)
- Shuli Liu
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Guangming Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China E-mail: ; School of Environment and Resource, Renmin University of China, Beijing 100872, China
| | - Jianzheng Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Xiangkun Li
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China E-mail:
| | - Jie Zhang
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China E-mail:
| |
Collapse
|
19
|
Liu S, Zhang G, Li X, Zhang J. Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 2014; 98:7349-57. [DOI: 10.1007/s00253-014-5925-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 10/25/2022]
|
20
|
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42. [PMID: 22537876 DOI: 10.1016/j.biotechadv.2012.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
21
|
Harris F, Pierpoint L. Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 2011; 32:1292-327. [PMID: 21793017 DOI: 10.1002/med.20251] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exogenous 5-aminolevulinic acid (ALA) is taken up directly by bacteria, yeasts, fungi, and some parasites, which then induces the accumulation of protoporphyrin IX (PPIX). Subsequent light irradiation of PPIX leads to the inactivation of these organisms via photodamage to their cellular structures. ALA uptake and light irradiation of PPIX produced by host cells leads to the inactivation of other parasites, along with some viruses, via the induction of an immune response. ALA-mediated PPIX production by host cells and light irradiation result in the inactivation of other viruses via either the induction of a host cell response or direct photodynamic attack on viral particles. This ALA-mediated production of light-activated PPIX has been extensively used as a form of photodynamic therapy (PDT) and has shown varying levels of efficacy in treating conditions that are associated with microbial infection, ranging from acne and verrucae to leishmaniasis and onychomycosis. However, for the treatment of some of these conditions by ALA-based PDT, the role of an antimicrobial effect has been disputed and in general, the mechanisms by which the technique inactivates microbes are not well understood. In this study, we review current understanding of the antimicrobial mechanisms used by ALA-based PDT and its role in the treatment of microbial infections along with its potential medical and nonmedical applications.
Collapse
Affiliation(s)
- Frederick Harris
- School of Forensic and Investigative Sciences, University of Central Lancashire, Preston, Lancashire, United Kingdom. fharris1@.ac.uk
| | | |
Collapse
|
22
|
Kang Z, Wang Y, Gu P, Wang Q, Qi Q. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 2011; 13:492-8. [PMID: 21620993 DOI: 10.1016/j.ymben.2011.05.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/05/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
5-Aminolevulinic acid (ALA) recently received much attention due to its potential applications in many fields. In this study, we developed a metabolic strategy to produce ALA directly from glucose in recombinant Escherichia coli via the C5 pathway. The expression of a mutated hemA gene, encoding a glutamyl-tRNA reductase from Salmonella arizona, significantly improved ALA production from 31.1 to 176mg/L. Glutamate-1-semialdehyde aminotransferase from E. coli was found to have a synergistic effect with HemA(M) from S. arizona on ALA production (2052mg/L). In addition, we identified a threonine/homoserine exporter in E. coli, encoded by rhtA gene, which exported ALA due to its broad substrate specificity. The constructed E. coli DALA produced 4.13g/L ALA in modified minimal medium from glucose without adding any other co-substrate or inhibitor. This strategy offered an attractive potential to metabolic production of ALA in E. coli.
Collapse
Affiliation(s)
- Zhen Kang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | | | | | | | | |
Collapse
|