1
|
Zhao G, Zhou Z, Li Z, Liu S, Shan Z, Cheng F, Zhou W, Mao J. The differences in main components, enzyme activity, and microbial composition between substandard and normal jiuyao. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4293-4302. [PMID: 36750373 DOI: 10.1002/jsfa.12487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Jiuyao is a critical fermenting agent in traditional huangjiu brewing and it affects the quality of huangjiu. To assess and monitor the quality of jiuyao effectively we determined the differences between two common types of substandard jiuyao and normal jiuyao, with emphasis on the comparison of the main components, enzymatic activity, volatile substances, and microbial community structure. RESULTS The water and starch content, acid protease activity, and esterification capability of type I substandard jiuyao were significantly lower than those of the normal jiuyao, and the protein contents, liquefaction capability, glycation capability, and neutral protease activity were substantially higher than those of the normal jiuyao. Type II substandard jiuyao had significantly lower indices than the normal group except for the starch and free amino acid content, which were significantly higher than those of the normal jiuyao. Significant differences were observed between substandard and normal jiuyao in the content of 21 volatile compounds. 2-Pentylfuran could be used as a marker of substandard jiuyao. Type I substandard jiuyao contained a higher abundance of aerobic Pediococcus and Marivita in comparison with the normal jiuyao. Type II substandard jiuyao consisted of a greater abundance of anaerobic Mucor and Staphylococcus. CONCLUSION The quality of jiuyao was significantly affected by the water content. Due to the different abundances of aerobic and anaerobic bacteria in jiuyao, oxygen may also be an important parameter affecting the quality of jiuyao. We believe that the present study offers a theoretical basis for the evaluation and control of the quality of jiuyao. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoliang Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| | - Zhichu Shan
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Fei Cheng
- Zhejiang Pagoda Brand Shaoxing Rice Wine Co., Ltd, Shaoxing, Zhejiang Province, 312000, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jian Mao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, 163000, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu Province, 214000, China
- National Engineering Research Center for Huangjiu, Shaoxing, Zhejiang Province, 312000, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang Province, 312000, China
| |
Collapse
|
2
|
Methner Y, Magalhães F, Raihofer L, Zarnkow M, Jacob F, Hutzler M. Beer fermentation performance and sugar uptake of Saccharomycopsis fibuligera–A novel option for low-alcohol beer. Front Microbiol 2022; 13:1011155. [PMID: 36274745 PMCID: PMC9581282 DOI: 10.3389/fmicb.2022.1011155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
There is a growing trend for beers with novel flavor profiles, as consumers demand a more diversified product range. Such beers can be produced by using non-Saccharomyces yeasts. The yeast species Saccharomycopsis fibuligera is known to produce exceptionally pleasant plum and berry flavors during brewer’s wort fermentation while its mycelia growth is most likely a technological challenge in industrial-scale brewing. To better understand and optimize the physiological properties of this yeast species during the brewing process, maltose and maltotriose uptake activity trials were performed. These revealed the existence of active transmembrane transporters for maltose in addition to the known extracellular amylase system. Furthermore, a single cell isolate of S. fibuligera was cultured, which showed significantly less mycelial growth during propagation and fermentation compared to the mother culture and would therefore be much more suitable for application on an industrial scale due to its better flocculation and clarification properties. Genetic differences between the two cultures could not be detected in a (GTG)5 rep-PCR fingerprint and there was hardly any difference in the fermentation process, sugar utilization and flavor profiles of the beers. Accordingly, the characteristic plum and berry flavor could also be perceived by using the culture from the single cell isolate, which was complemented by a dried fruit flavor. A fermentation temperature of 20°C at an original gravity of 10 °P proved to be optimal for producing a low-alcohol beer at around 0.8% (v/v) by applying the S. fibuligera yeast culture from the single cell isolate.
Collapse
Affiliation(s)
- Yvonne Methner
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Frederico Magalhães
- Chair of Brewing and Beverage Technology, Technical University of Berlin, Berlin, Germany
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Luis Raihofer
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
- *Correspondence: Mathias Hutzler,
| |
Collapse
|
3
|
Liu W, Si Z, Zhang H, Wei P, Xu Z. Efficient poly(β-L-malic acid) production from cassava hydrolysate by cell recycle of Aureobasidium pullulans. Appl Microbiol Biotechnol 2022; 106:2855-2868. [PMID: 35445856 DOI: 10.1007/s00253-022-11911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 04/02/2022] [Indexed: 11/02/2022]
Abstract
Poly(β-L-malic acid) (PMLA) is a water-soluble, biodegradable, and biocompatible polymer with broad prospective applications and can be hydrolyzed to produce widely used acidulant L-malic acid. In order to meet an increasing demand of PMLA, we employed two effective cell-recycling strategies to produce PMLA from raw cassava hydrolysate by Aureobasidium pullulans ZD-3d. In fed-batch fermentation with raw cassava hydrolysate, 101.9 g/L PMLA was obtained with the productivity and yield of 0.77 g/L/h and 0.40 g/g, respectively. Further, three times of membrane filtration-based cell recycling fermentation was carried out, with a high productivity and yield of 1.04-1.64 g/L/h and 0.5-0.84 g/g achieved, respectively. While harnessing centrifugation-based cell recycling fermentation for five times, the productivity and yield approached 0.98-1.76 g/L/h and 0.78-0.86 g/g, respectively. To our knowledge, the processes showed the highest average PMLA productivity compared with others using low-cost biomass, which offered efficient and economical alternatives for PMLA production. KEY POINTS: • PMLA production from raw cassava hydrolysate by Aureobasidium pullulans was studied • High PMLA productivity and yield were obtained via two cell recycling strategies • The highest average PMLA productivity from low-cost biomass to date was achieved.
Collapse
Affiliation(s)
- Wei Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.,Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhenjun Si
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Huili Zhang
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peilian Wei
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People's Republic of China
| | - Zhinan Xu
- Institute of Biological Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China. .,Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
4
|
Methner Y, Hutzler M, Zarnkow M, Prowald A, Endres F, Jacob F. Investigation of Non-Saccharomyces Yeast Strains for Their Suitability for the Production of Non-Alcoholic Beers with Novel Flavor Profiles. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2021.2012747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yvonne Methner
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Mathias Hutzler
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Martin Zarnkow
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| | - Alexandra Prowald
- Institute of Electrochemistry and Brewery, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| | - Frank Endres
- Institute of Electrochemistry and Brewery, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| | - Fritz Jacob
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Freising, Germany
| |
Collapse
|
5
|
Li C, Dong G, Bian M, Liu X, Gong J, Hao J, Wang W, Li K, Ou W, Xia T. Brewing rich 2-phenylethanol beer from cassava and its producing metabolisms in yeast. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4050-4058. [PMID: 33349937 DOI: 10.1002/jsfa.11040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/08/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cassava is rich in nutrition and has high edible value, but the development of the cassava industry is limited by the traditional low added value processing and utilization mode. In this study, cassava tuber was used as beer adjunct to develop a complete set of fermentation technology for manufacturing cassava beer. RESULTS The activities of transaminase, phenylpyruvate decarboxylase and dehydrogenase in 2-phenylethanol Ehrlich biosynthesis pathway of Saccharomyces cerevisiae were higher in cassava beer than that of malt beer. Aminotransferase ARO9 gene and phenylpyruvate decarboxylase ARO10 gene were up-regulated in the late stage of fermentation, which indicated that they were the main regulated genes of 2-phenylethanol Ehrlich pathway with phenylalanine as substrate in cassava beer preparation. CONCLUSIONS Compared with traditional wheat beer, cassava beer was similar in the content of nutrition elements, diacetyl, total acid, alcohol and carbon dioxide, but has the characteristics of fresh fragrance and better taste. The hydrocyanic acid contained in cassava root tubes was catabolized during fermentation and compliant with the safety standard of beverage. Further study found that the content of 2-phenylethanol in cassava beer increased significantly, which gave cassava beer a unique elegant and delicate rose flavor. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Can Li
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Geyu Dong
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Meng Bian
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Xinli Liu
- School of Bioengineering, Qilu University of Technology, Jinan, China
| | - Jing Gong
- TsingTao Brewery (Jinan) Co. LTD, Jinan, China
| | - Jingxin Hao
- TsingTao Brewery (Jinan) Co. LTD, Jinan, China
| | - Wenquan Wang
- College of Tropical Crops, Hainan University, Haiko, China
| | - Kaimian Li
- Tropical Crops Genetics Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haiko, China
| | - Wenjun Ou
- Tropical Crops Genetics Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haiko, China
| | - Tao Xia
- School of Bioengineering, Qilu University of Technology, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| |
Collapse
|
6
|
Ma R, Sui L, Zhang J, Hu J, Liu P. Polyphasic Characterization of Yeasts and Lactic Acid Bacteria Metabolic Contribution in Semi-Solid Fermentation of Chinese Baijiu (Traditional Fermented Alcoholic Drink): Towards the Design of a Tailored Starter Culture. Microorganisms 2019; 7:microorganisms7050147. [PMID: 31130618 PMCID: PMC6560444 DOI: 10.3390/microorganisms7050147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/18/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Chinese Baijiu is principally produced through a spontaneous fermentation process, which involves complex microorganism communities. Among them, yeasts and lactic acid bacteria (LAB) are important communities. The study examined the isolated strains from fermented grains of Baijiu regarding their activity of α-amylase and glucoamylase, ethanol tolerance, glucose utilization, as well as metabolite production in the process of laboratory-scale sorghum-based fermentation. Selected strains (Saccharomycopsis fibuligera 12, Saccharomyces cerevisiae 3, and Pediococcus acidilactici 4) were blended in different combinations. The influence of selected strains on the metabolic variation in different semi-solid fermentations was investigated by gas chromatography–mass spectrometry (GC–MS) accompanied by multivariate statistical analysis. According to the principal component analysis (PCA), the metabolites produced varied in different mixtures of pure cultures. S. fibuligera produced various enzymes, particularly α-amylase and glucoamylase, and exhibited a better performance compared with other species regarding the ability to convert starch to soluble sugars and positively affect the production process of volatile compounds. S. cerevisiae had a high fermentation capacity, thereby contributing to substrates utilization. Lactic acid bacteria had a good ability to produce lactic acid. This study attaches importance to the special functions of S. fibuligera, S. cerevisiae, and P. acidilactici in Chinese Baijiu making, and investigates their metabolic characteristics in the process of lab-scale semi-solid fermentation.
Collapse
Affiliation(s)
- Rufei Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Lu Sui
- Jilin Alcohol Research Institute Co., Ltd, Changchun 130000, China.
| | - Jingsheng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jinrong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ping Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Li RY, Zheng XW, Zhang X, Yan Z, Wang XY, Han BZ. Characterization of bacteria and yeasts isolated from traditional fermentation starter (Fen-Daqu) through a 1H NMR-based metabolomics approach. Food Microbiol 2018; 76:11-20. [PMID: 30166130 DOI: 10.1016/j.fm.2018.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Daqu is a traditional fermentation starter for the production of baijiu and vinegar. It is an important saccharifying and fermenting agent associated with alcoholic fermentation and also a determining factor for the flavour development of these products. Bacterial and yeast isolates from a traditional fermentation starter (Fen-Daqu) were examined for their amylolytic activity, ethanol tolerance and metabolite production during sorghum-based laboratory-scale alcoholic fermentation. The selected strains (Bacillus licheniformis, Pediococcus pentosaceus, Lactobacillus plantarum, Pichia kudriavzevii, Wickerhamomyces anomalus, Saccharomyces cerevisiae, and Saccharomycopsis fibuligera) were blended in different combinations, omitting one particular strain in each mixture. 1H nuclear magnetic resonance (NMR) spectroscopy coupled with multivariate statistical analysis was used to investigate the influence of the selected strains on the metabolic changes observed under the different laboratory-controlled fermentation conditions. Principal component analysis showed differences in the metabolites produced by different mixtures of pure cultures. S. cerevisiae was found to be superior to other species with respect to ethanol production. S. fibuligera and B. licheniformis converted starch or polysaccharides to soluble sugars. Lactic acid bacteria had high amylolytic and proteolytic activities, thereby contributing to increased saccharification and protein degradation. W. anomalus was found to have a positive effect on the flavour of the Daqu-derived product. This study highlights the specific functions of S. cerevisiae, S. fibuligera, B. licheniformis, W. anomalus and lactic acid bacteria in the production of light-flavour baijiu (fen-jiu). Our results show that all investigated species deliver an important contribution to the functionality of the fermentation starter Daqu.
Collapse
Affiliation(s)
- Rui-Yao Li
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| | - Xiao-Wei Zheng
- Biotechnology Center, Nutrition & Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Beijing, China; Beijing Key Laboratory of Nutrition, Health and Food Safety & Beijing Engineering Laboratory for Geriatric Nutrition Food Research, Nutrition & Health Research Institute, COFCO Corporation, Beijing, 102209, China.
| | - Xin Zhang
- Shanxi Xinghuacun Fenjiu Distillery Co. Ltd., Fenyang, 032205, China
| | - Zheng Yan
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, China.
| | - Xiao-Yong Wang
- Shanxi Xinghuacun Fenjiu Distillery Co. Ltd., Fenyang, 032205, China
| | - Bei-Zhong Han
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Adetunji CO, Adejumo IO, Oloke JK, Akpor OB. Production of Phytotoxic Metabolites with Bioherbicidal Activities from Lasiodiplodia pseudotheobromae Produced on Different Agricultural Wastes Using Solid-State Fermentation. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2017. [DOI: 10.1007/s40995-017-0369-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Li S, Cui Y, Zhou Y, Luo Z, Liu J, Zhao M. The industrial applications of cassava: current status, opportunities and prospects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2282-2290. [PMID: 28233322 DOI: 10.1002/jsfa.8287] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/27/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a drought-tolerant, staple food crop that is grown in tropical and subtropical areas. As an important raw material, cassava is a valuable food source in developing countries and is also extensively employed for producing starch, bioethanol and other bio-based products (e.g. feed, medicine, cosmetics and biopolymers). These cassava-based industries also generate large quantities of wastes/residues rich in organic matter and suspended solids, providing great potential for conversion into value-added products through biorefinery. However, the community of cassava researchers is relatively small and there is very limited information on cassava. Therefore this review summarizes current knowledge on the system biology, economic value, nutritional quality and industrial applications of cassava and its wastes in an attempt to accelerate understanding of the basic biology of cassava. The review also discusses future perspectives with respect to integrating and utilizing cassava information resources for increasing the economic and environmental sustainability of cassava industries. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yanyan Cui
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yuan Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Zhiting Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Mouming Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Tchakouteu SS, Kopsahelis N, Chatzifragkou A, Kalantzi O, Stoforos NG, Koutinas AA, Aggelis G, Papanikolaou S. Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: Adaptation dynamics and lipid production. Eng Life Sci 2016; 17:237-248. [PMID: 32624771 DOI: 10.1002/elsc.201500125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 11/07/2022] Open
Abstract
In the present report and for the first time in the international literature, the impact of the addition of NaCl upon growth and lipid production on the oleaginous yeast Rhodosporidium toruloides was studied. Moreover, equally for first time, lipid production by R. toruloides was performed under nonaseptic conditions. Therefore, the potentiality of R. toruloides DSM 4444 to produce lipid in media containing several initial concentrations of NaCl with glucose employed as carbon source was studied. Preliminary batch-flask trials with increasing amounts of NaCl revealed the tolerance of the strain against NaCl content up to 6.0% w/v. However, 4.0% w/v of NaCl stimulated lipid accumulation for this strain, by enhancing lipid production up to 71.3% w/w per dry cell weight. The same amount of NaCl was employed in pasteurized batch-flask cultures in order to investigate the role of the salt as bacterial inhibiting agent. The combination of NaCl and high glucose concentrations was found to satisfactorily suppress bacterial contamination of R. toruloides cultures under these conditions. Batch-bioreactor trials of the yeast in the same media with high glucose content (up to 150 g/L) resulted in satisfactory substrate assimilation, with almost linear kinetic profile for lipid production, regardless of the initial glucose concentration imposed. Finally, fed-batch bioreactor cultures led to the production of 37.2 g/L of biomass, accompanied by 64.5% w/w of lipid yield. Lipid yield per unit of glucose consumed received the very satisfactory value of 0.21 g/g, a value among the highest ones in the literature. The yeast lipid produced contained mainly oleic acid and to lesser extent palmitic and stearic acids, thus constituting a perfect starting material for "second generation" biodiesel.
Collapse
Affiliation(s)
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Afroditi Chatzifragkou
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Ourania Kalantzi
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Nikolaos G Stoforos
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Apostolis A Koutinas
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - George Aggelis
- Unit of Microbiology Department of Biology Division of Genetics Cell and Development Biology University of Patras Patras Greece.,Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
| | - Seraphim Papanikolaou
- Department of Food Science and Technology Agricultural University of Athens Athens Greece
| |
Collapse
|
11
|
Kim MS, Kim S, Ha BS, Park HY, BaeK SY, Yeo SH, Ro HS. Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk. THE KOREAN JOURNAL OF MYCOLOGY 2014. [DOI: 10.4489/kjm.2014.42.3.191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zaky AS, Tucker GA, Daw ZY, Du C. Marine yeast isolation and industrial application. FEMS Yeast Res 2014; 14:813-25. [PMID: 24738708 PMCID: PMC4262001 DOI: 10.1111/1567-1364.12158] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 11/29/2022] Open
Abstract
Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields.
Collapse
Affiliation(s)
- Abdelrahman Saleh Zaky
- School of Biosciences, University of NottinghamNottingham, UK
- Department of Microbiology, Faculty of Agriculture, Cairo UniversityGiza, Egypt
| | | | - Zakaria Yehia Daw
- Department of Microbiology, Faculty of Agriculture, Cairo UniversityGiza, Egypt
| | - Chenyu Du
- School of Biosciences, University of NottinghamNottingham, UK
| |
Collapse
|
13
|
Saptoro A, Herng MTH, Teng ELW. Oxygen transfer to cassava starch solutions in an aerated, well-mixed bioreactor: Experimental and mass transfer studies. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-013-0251-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
López JA, Lázaro CDC, Castilho LDR, Freire DMG, Castro AMD. Characterization of multienzyme solutions produced by solid-state fermentation of babassu cake, for use in cold hydrolysis of raw biomass. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Expression of TPS1 Gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 Enhances Trehalose Accumulation, Ethanol Tolerance, and Ethanol Production. Mol Biotechnol 2013; 56:72-8. [DOI: 10.1007/s12033-013-9683-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Levansucrase optimization using solid state fermentation and levan biological activities studies. Carbohydr Polym 2013; 96:332-41. [DOI: 10.1016/j.carbpol.2013.03.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/21/2013] [Accepted: 03/26/2013] [Indexed: 01/07/2023]
|
17
|
Zhang Q, Qu Y, Zhou J, Zhang X, Zhou H, Ma Q, Li X. Optimization of 2,3-dihydroxybiphenyl 1,2-dioxygenase expression and its application for biosensor. BIORESOURCE TECHNOLOGY 2011; 102:10553-10560. [PMID: 21924604 DOI: 10.1016/j.biortech.2011.08.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/14/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
In this study, two statistical experimental designs, Plackett-Burman design (PBD) and response surface methodology (RSM), were employed to enhance the expression of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC_LA-4), which was subsequently used for the construction of catechol biosensor. Ten important factors were evaluated by PBD, and four significant parameters were then optimized by RSM. Under the favorable fermentation conditions, the maximal specific activity of BphC_LA-4 was about 0.58U/mg with catechol as substrate. Meanwhile, homology modeling and molecular docking were utilized to help understand the interaction between BphC_LA-4 and catecholic substrates, which illustrated that BphC_LA-4 presented lower binding affinity towards 4-methylcatechol in comparison with 3-methylcatechol and catechol. Interestingly, the BphC_LA-4 enzyme electrode prepared by SiO2 sol-gel showed good response to all these three catecholic compounds. The differences of selectivity to 4-methylcatechol between free and immobilized enzyme implied that the introduction of electro-catalysis might have an effect on the enzyme-catalysis process.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Fine Chemicals and Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu GL, Wang DS, Wang LF, Zhao SF, Chi ZM. Mig1 is involved in mycelial formation and expression of the genes encoding extracellular enzymes in Saccharomycopsis fibuligera A11. Fungal Genet Biol 2011; 48:904-13. [DOI: 10.1016/j.fgb.2011.04.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/15/2011] [Accepted: 04/22/2011] [Indexed: 11/30/2022]
|
19
|
Wang D, Chi Z, Zhao S, Chi ZM. Disruption of the acid protease gene in Saccharomycopsis fibuligera A11 enhances amylolytic activity and stability as well as trehalose accumulation. Enzyme Microb Technol 2011; 49:88-93. [DOI: 10.1016/j.enzmictec.2011.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 12/21/2010] [Accepted: 03/09/2011] [Indexed: 11/24/2022]
|
20
|
Hybrid on-line optimal control strategy for producing α-amylase by Bacillus subtilis. Biosci Biotechnol Biochem 2011; 75:694-9. [PMID: 21512239 DOI: 10.1271/bbb.100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The combined effect of macronutrients in the extraction medium on α-amylase produced by Bacillus subtilis were studied by using response surface methodology in shaken flask cultures. The production of amylase was significantly affected by the interaction between wheat bran and the cotton seed extract in the extraction medium and by the interaction between the cotton seed extract and starch. The optimal combination in the extraction medium for maximum α-amylase production was determined as 10.80 g·L⁻¹ of wheat bran, 9.90 g·L⁻¹ of cotton seed extract, 0.5 g·L⁻¹ of starch, 2.0 g·L⁻¹ of yeast extract, 5.00 g·L⁻¹ of NaCl and 2.00 g·L⁻¹ of CaCl₂. A 12.55-fold increase of enzyme activity was recorded in the optimized medium compared to the result acquired in a minimum essential medium. The optimized medium was used to compare different cultivation strategies in fermenters. The pH-stat strategy for reducing cellular stress response and the substrate concentration-stat strategy for reducing substrate inhibition were independently investigated. The temperature-limited strategy has been proposed to solve the proteolytic digestion problem, although the high-pressure strategy resulted in high productivity. A hybrid strategy simultaneously controlling pH, temperature, substrate concentration and pO₂ was finally investigated to enhance the efficiency of the process. This hybrid strategy resulted in high activity of α-amylase, increasing the productivity almost three-fold as compared to an ordinary fed-batch culture.
Collapse
|
21
|
|
22
|
Chi Z, Wang JM, Chi ZM, Ye F. Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. J Ind Microbiol Biotechnol 2009; 37:19-25. [PMID: 19967448 DOI: 10.1007/s10295-009-0644-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/15/2009] [Indexed: 12/01/2022]
Abstract
In this study, corn starch was used as the substrate for cell growth and trehalose accumulation by Saccharomycopsis fibuligera A11. Effect of different aeration rates, agitation speeds, and concentrations of corn starch on direct conversion of corn starch to trehalose by S. fibuligera A11 were examined using a Biostat B2 2-l fermentor. We found that the optimal conditions for direct conversion of corn starch to trehalose by this yeast strain were that agitation speed was 200 rpm, aeration rate was 4.0 l/min, concentration of corn starch was 2.0% (w/v), initial pH was 5.5, fermentation temperature was 30 degrees C. Under these conditions, over 22.9 g of trehalose per 100 g of cell dry weight was accumulated in the yeast cells, cell mass was 15.2 g/l of the fermentation medium, 0.12% (w/v) of reducing sugar, and 0.21% (w/v) of total sugar were left in the fermented medium within 48 h of the fermentation. It was found that trehalose in the yeast cells could be efficiently extracted by the hot distilled water (80 degrees C). After isolation and purification, the crystal trehalose was obtained from the extract of the cells.
Collapse
Affiliation(s)
- Zhe Chi
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
23
|
Saccharomycopsis fibuligera and its applications in biotechnology. Biotechnol Adv 2009; 27:423-31. [DOI: 10.1016/j.biotechadv.2009.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/12/2009] [Accepted: 03/12/2009] [Indexed: 11/23/2022]
|