1
|
Mahmoodi M, Nassireslami E. Control algorithms and strategies of feeding for fed-batch fermentation of Escherichia coli: a review of 40 years of experience. Prep Biochem Biotechnol 2021; 52:823-834. [PMID: 34730470 DOI: 10.1080/10826068.2021.1998112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fed-batch cultivation is a well-known type of submerged fermentation that is frequently used in manufacture of recombinant proteins and various kinds of enzymes, owing to its ability to produce products with high concentrations and high efficiency. In fed-batch culture, several issues must be considered; most of them are also presented in batch culture. However, feed flow rate calculation only corresponds to fed-batch fermentation and its value has a significant impact on productivity, efficiency, final concentration of product, formation of by-products, and viscosity of the culture. From this background, the present review article is an effort to gather the information on feeding strategies for fed-batch cultivation of Escherichia coli, which is a well-known microorganism in the production of recombinant proteins and industrial enzymes, especially for therapeutic applications. Moreover, this review is an aid to comprehend and compare the fundamental concept of different feeding strategies and their advantages and drawbacks.
Collapse
Affiliation(s)
- Mohammad Mahmoodi
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zhu F, Deng H, He X, Song X, Chen N, Wang W. High-level expression of Thermobifida fusca glucose isomerase for high fructose corn syrup biosynthesis. Enzyme Microb Technol 2019; 135:109494. [PMID: 32146933 DOI: 10.1016/j.enzmictec.2019.109494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023]
Abstract
Glucose isomerase (GIase), an efficient enzyme in the isomerization of d-glucose to d-fructose, has been widely used in food processing. In this study, an efficient expression system for a Thermobifida fusca GIase (GIaseTfus) in Escherichia coli was firstly designed via a two-stage feeding strategy for improving expression level. The cultivation strategy was performed at an exponential feeding rate during the pre-induction phase, followed by a gradient-decreasing feeding rate at the induction phase in a 3-L fermenter. During this process, the effect of induction conditions and the complex nitrogen supplementation in feeding solutions on GIaseTfus production were investigated and optimized. Under the optimal conditions, the yield of GIaseTfus reached 124.1 U/mL, which is the highest expression level of GIase by recombinant E. coli reported to date. Additionally, the obtained GIaseTfus was performed to produce high fructose corn syrup (HFCS) with conversion approacing 55 % from glucose (45 %, w/v) to fructose. According to the molecular dynamic simulation, a number of hydrogen bonds existed in the enzyme-substrate complex could stablilize the transient states, and a appreciate reaction distance of M1 catalytic site and oxygen atom of glucose make the reaction proceed easily, thus resulting in the efficient biosynthesis of HFCS. The function of GIaseTfus renders it a valuable catalyst for HFCS-55 (containing 55 % d-fructose) manufacturing, the most favorable industrial product of HFCS. The efficient expression of GIaseTfus and its efficient HFCS production lays the foundation for its proming industrial application.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China
| | - Hui Deng
- College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China
| | - Xiaomei He
- College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China
| | - Xiangwen Song
- College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China
| | - Naifu Chen
- College of Biology and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Duan X, Hu S, Qi X, Gu Z, Wu J. Optimal extracellular production of recombinant Bacillus circulans β-galactosidase in Escherichia coli BL21(DE3). Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kick B, Hensler S, Praetorius F, Dietz H, Weuster-Botz D. Specific growth rate and multiplicity of infection affect high-cell-density fermentation with bacteriophage M13 for ssDNA production. Biotechnol Bioeng 2016; 114:777-784. [PMID: 27748519 DOI: 10.1002/bit.26200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023]
Abstract
The bacteriophage M13 has found frequent applications in nanobiotechnology due to its chemically and genetically tunable protein surface and its ability to self-assemble into colloidal membranes. Additionally, its single-stranded (ss) genome is commonly used as scaffold for DNA origami. Despite the manifold uses of M13, upstream production methods for phage and scaffold ssDNA are underexamined with respect to future industrial usage. Here, the high-cell-density phage production with Escherichia coli as host organism was studied in respect of medium composition, infection time, multiplicity of infection, and specific growth rate. The specific growth rate and the multiplicity of infection were identified as the crucial state variables that influence phage amplification rate on one hand and the concentration of produced ssDNA on the other hand. Using a growth rate of 0.15 h-1 and a multiplicity of infection of 0.05 pfu cfu-1 in the fed-batch production process, the concentration of pure isolated M13 ssDNA usable for scaffolded DNA origami could be enhanced by 54% to 590 mg L-1 . Thus, our results help enabling M13 production for industrial uses in nanobiotechnology. Biotechnol. Bioeng. 2017;114: 777-784. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benjamin Kick
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Samantha Hensler
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| | - Florian Praetorius
- Physik Department and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Hendrik Dietz
- Physik Department and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, Garching, 85748, Germany
| |
Collapse
|
5
|
Ohshida T, Hayashi J, Satomura T, Kawakami R, Ohshima T, Sakuraba H. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase. Protein Expr Purif 2016; 126:62-68. [DOI: 10.1016/j.pep.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
|
6
|
Jin H, Chen X, Yang J, Wu L, Wang L. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA TRANSACTIONS 2014; 53:1822-1837. [PMID: 25245525 DOI: 10.1016/j.isatra.2014.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/23/2014] [Accepted: 08/30/2014] [Indexed: 06/03/2023]
Abstract
The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process.
Collapse
Affiliation(s)
- Huaiping Jin
- Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People׳s Republic of China.
| | - Xiangguang Chen
- Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People׳s Republic of China.
| | - Jianwen Yang
- Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People׳s Republic of China.
| | - Lei Wu
- Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People׳s Republic of China.
| | - Li Wang
- Department of Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People׳s Republic of China.
| |
Collapse
|
7
|
Collins T, Barroca M, Branca F, Padrão J, Machado R, Casal M. High Level Biosynthesis of a Silk-Elastin-like Protein in E. coli. Biomacromolecules 2014; 15:2701-8. [DOI: 10.1021/bm5005564] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tony Collins
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mário Barroca
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Fernando Branca
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jorge Padrão
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre
of Molecular and Environmental
Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Gu L, Zhang J, Liu B, Wu C, Du G, Chen J. High-level extracellular production of D-Psicose-3-epimerase with recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioprocess Biosyst Eng 2013; 36:1767-77. [PMID: 24037040 DOI: 10.1007/s00449-013-0952-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
Abstract
The aim of this study is to achieve high-level extracellular production of D-Psicose-3-epimerase (DPE) with recombinant Escherichia coli. High-level production of DPE is one of the key factors in D-Psicose production. In the present study, the gene AAL45544.1 from Agrobacterium tumefaciens str. C58 was modified by artificial synthesis for overexpression in E. coli. The total DPE activity reached 3.96 U mL(-1) after optimization of the media composition, induction temperature, and concentration of inducer. Furthermore, it was found that addition of glycine had a positive effect on the extracellular production of DPE, which reached 3.5 U mL(-1). Finally, a two-stage glycerol feeding strategy based on both the specific growth rate before induction and the amount of glycerol residues after induction was applied in a 3-L fermenter. After a series of optimal strategies in the 3-L fermenter, the total and extracellular DPE activity were 5.08- and 3.11-fold higher than that noted in the shake flask. The extracellular and intracellular DPE activity reached 10.9 and 13.2 U mL(-1), achieving 25.5 and 31.1 % conversion of D-fructose to D-psicose, respectively. The systemic strategies presented in this study provide valuable novel information for the industrial application of DPE.
Collapse
Affiliation(s)
- Lei Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China,
| | | | | | | | | | | |
Collapse
|
9
|
Fang S, Li J, Liu L, Du G, Chen J. Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. BIORESOURCE TECHNOLOGY 2011; 102:10671-10678. [PMID: 21945205 DOI: 10.1016/j.biortech.2011.09.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
This work aims to achieve the overproduction of alkaline polygalacturonate lyase (PGL) with recombinant Escherichia coli by a two-stage glycerol feeding approach. First, the PGL coding gene from Bacillus subtilis WSHB04-02 was expressed in E. coli BL21 (DE3) under the strong inducible T7 promoter of the pET20b (+) vector. And then the influence of media composition, induction temperature, and inducer isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration on cell growth and PGL production was investigated. Finally, a two-stage glycerol feeding strategy was proposed and applied in a 3-L fermenter, where cultivation was conducted at a controlled specific growth rate (μset=0.2) during pre-induction phase, followed by a constant glycerol feeding rate of 12 ml h(-1) at post-induction phase. The total PGL yield reached 371.86 U mL(-1), which is the highest PGL production by recombinant E. coli expression system.
Collapse
Affiliation(s)
- Shuying Fang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | |
Collapse
|
10
|
Increasing recombinant protein production in Escherichia coli through metabolic and genetic engineering. J Ind Microbiol Biotechnol 2011; 38:1891-910. [PMID: 21901404 DOI: 10.1007/s10295-011-1034-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Different hosts have been used for recombinant protein production, ranging from simple bacteria, such as Escherichia coli and Bacillus subtilis, to more advanced eukaryotes as Saccharomyces cerevisiae and Pichia pastoris, to very complex insect and animal cells. All have their advantages and drawbacks and not one seems to be the perfect host for all purposes. In this review we compare the characteristics of all hosts used in commercial applications of recombinant protein production, both in the area of biopharmaceuticals and industrial enzymes. Although the bacterium E. coli remains a very often used organism, several drawbacks limit its possibility to be the first-choice host. Furthermore, we show what E. coli strains are typically used in high cell density cultivations and compare their genetic and physiological differences. In addition, we summarize the research efforts that have been done to improve yields of heterologous protein in E. coli, to reduce acetate formation, to secrete the recombinant protein into the periplasm or extracellular milieu, and to perform post-translational modifications. We conclude that great progress has been made in the incorporation of eukaryotic features into E. coli, which might allow the bacterium to regain its first-choice status, on the condition that these research efforts continue to gain momentum.
Collapse
|
11
|
Pei XL, Wang QY, Li CL, Qiu XF, Xie KL, Huang LF, Wang AM, Zeng ZW, Xie T. Efficient Production of a Thermophilic 2-Deoxyribose-5-Phosphate Aldolase in Glucose-Limited Fed-Batch Cultivations of Escherichia coli by Continuous Lactose Induction Strategy. Appl Biochem Biotechnol 2011; 165:416-25. [DOI: 10.1007/s12010-011-9261-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 04/04/2011] [Indexed: 11/25/2022]
|