1
|
Zhao Z, Wu Y, Fan S, Li Z, Zou D, Guo A, Wei X. Biosynthesis of the Functional Component Spermidine from Bacillus amyloliquefaciens by Iterative Integration Expression. ACS Synth Biol 2025; 14:1745-1755. [PMID: 40338139 DOI: 10.1021/acssynbio.5c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Spermidine finds broad applications across both the nutraceutical and biomedical sectors. In this study, key regulatory genes affecting spermidine synthesis and efficient integration sites were identified to construct a chassis strain for green and sustainable spermidine production. First, the expression of argJ was increased, and the protein SAM2 was mutated to promote the synthesis of spermidine. Second, positional effects were examined in Bacillus amyloliquefaciens. Concurrently, bioinformatics analysis was conducted to uncover transport proteins Blt, YvdR, and Mta, as well as other key genes tcyJ, yxeM, appC, yngA, and orf03307 that affect spermidine synthesis. Ultimately, strain PM13 was constructed through the iterative integration of key genes, achieving a spermidine titer of 396.92 mg/L, 10.34 times higher than strain PM1. Furthermore, xylose fed-batch fermentation increased spermidine titer to 1.69 g/L, setting a new shake flask production record. In conclusion, this study amassed genetic resources and developed an integrated strain for efficient, stable spermidine synthesis.
Collapse
Affiliation(s)
- Ziyue Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingchao Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siying Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhou Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ailing Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang HD, Xu JZ, Zhang WG. Reduction of acetate synthesis, enhanced arginine export, and supply of precursors, cofactors, and energy for improved synthesis of L-arginine by Escherichia coli. Appl Microbiol Biotechnol 2023; 107:3593-3603. [PMID: 37097502 DOI: 10.1007/s00253-023-12532-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
L-arginine (L-Arg) is a semi-essential amino acid with many important physiological functions. However, achieving efficient manufacture of L-Arg on an industrial scale using Escherichia coli (E. coli) remains a major challenge. In previous studies, we constructed a strain of E. coli A7, which had good L-Arg production capacity. In this study, E. coli A7 was further modified, and E. coli A21 with more efficient L-Arg production capacity was obtained. Firstly, we reduced the acetate accumulation of strain A7 by weakening the poxB gene and overexpressing acs gene. Secondly, we improved the L-Arg transport efficiency of strains by overexpressing the lysE gene from Corynebacterium glutamicum (C. glutamicum). Finally, we enhanced the supplies of precursors for the synthesis of L-Arg and optimized the supplies of cofactor NADPH and energy ATP in strain. After fermentation in a 5-L bioreactor, the L-Arg titer of strain A21 was found to be 89.7 g/L. The productivity was 1.495 g/(L·h) and the glucose yield was 0.377 g/g. Our study further narrowed the titer gap between E. coli and C. glutamicum in the synthesis of L-Arg. In all recent studies on the L-Arg production by E. coli, this was the highest titer recorded. In conclusion, our study further promotes the efficient mass synthesis of L-Arg by E. coli. KEY POINTS: • The acetate accumulation of starting strain A7 was decreased. • Overexpression of gene lysE of C. glutamicum enhanced L-Arg transport in strain A10. • Enhance the supplies of precursors for the synthesis of L-Arg and optimize the supplies of cofactor NADPH and energy ATP. Finally, Strain A21 was detected to have an L-Arg titer of 89.7 g/L in a 5-L bioreactor.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
3
|
Chen GM, Li WL, Tong SG, Qiu YT, Han JZ, Lv XC, Ai LZ, Sun JY, Sun BG, Ni L. Effects of the microbial community on the formation of volatile compounds and biogenic amines during the traditional brewing of Hongqu rice wine. Curr Res Food Sci 2022; 5:1433-1444. [PMID: 36110382 PMCID: PMC9467907 DOI: 10.1016/j.crfs.2022.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022] Open
Abstract
As a typical representative of Chinese rice wine (Huangjiu), Hongqu rice wine is famous for its red color, mellow taste and strong fragrance. However, due to the open brewing environment and traditional fermentation technology, there are some safety risks in traditional brewed Hongqu rice wine, such as a certain amount of biogenic amines. In this study, the dynamic changes and the differences of microbial communities and volatile flavor components between two types of Hongqu rice wine with high and low biogenic amine contents (LBAW and HBAW) during the traditional brewing were systematically investigated. The results showed that the total biogenic amine contents in LBAW and HBAW were 20.91 and 69.06 mg/L, respectively. The contents of putrescine, cadaverine, spermine and spermidine in HBAW were significantly higher than those in LBAW, and it was noteworthy that spermine content in HBAW was 17.62 mg/L, which was not detected in LBAW. In addition, the volatile flavor characteristics of the two kinds of Hongqu rice wine were obviously different. The contents of acetophenone, n-butyl butanoate and benzothiazole were obviously higher in HBAW, while the contents of isoamyl acetate, ethyl lactate, ethyl caprate and phenylethyl alcohol were significantly higher in LBAW. High-throughput sequencing of 16S/ITS amplicon revealed that Weissella, Kosakonia, Pantoea, Monascus, Saccharomyces and Millerozyma were the predominant microbial genera during the traditional brewing of HBAW, while Weissella, Kosakonia, Monascus, Saccharomyces and Issatchenkia were the predominant microbial genera during the traditional brewing of LBAW. Correlation analysis revealed that biogenic amines were significantly negatively correlated with unclassified_o_Saccharomycetales, Cyberlindnera, Zygoascus, Aspergillus and Acinetobacter, but positively correlated with Lactobacillus, Pediococcus, Millerozyma and Apiotrichum. In addition, we also found that Lactobacillus, Pediococcus and Saccharomyces were significantly positively correlated with most of the volatile flavor components, while Candida, Trichosporon and Monascus were significantly negatively correlated with most of the volatile flavor components. In addition, bioinformatical analysis based on PICRUSt demonstrated that the key enzymes for biogenic amine biosynthesis were more abundant in the microbial community of HBAW than LBAW. These findings demonstrate that the formations of volatile flavor and biogenic amines in Hongqu rice wine are influenced by microbial community during the fermentation. This work facilitates scientific understanding of the formation mechanism of biogenic amines, and may be useful to develop effective strategies to improve the quality of Hongqu rice wine.
Collapse
Affiliation(s)
- Gui-Mei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wen-Long Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shan-Gong Tong
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Yun-Tao Qiu
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Jin-Zhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xu-Cong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Lian-Zhong Ai
- School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Jin-Yuan Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Bao-Guo Sun
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
4
|
Wang HD, Xu JZ, Zhang WG. Metabolic engineering of Escherichia coli for efficient production of L-arginine. Appl Microbiol Biotechnol 2022; 106:5603-5613. [PMID: 35931894 DOI: 10.1007/s00253-022-12109-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
As an important semi-essential amino acid, L-arginine (L-Arg) has important application prospects in medicine and health care. However, it remains a challenge to efficiently produce L-Arg by Escherichia coli (E. coli). In the present study, we obtained an E. coli A1 with L-Arg accumulation ability, and carried out a series of metabolic engineering on it, and finally obtained an E. coli strain A7 with high L-Arg production ability. First, genome analysis of strain A1 was performed to explore the related genes affecting L-Arg accumulation. We found that gene speC and gene speF played an important role in the accumulation of L-Arg. Second, we used two strategies to solve the feedback inhibition of the L-Arg pathway in E. coli. One was the combination of a mutation of the gene argA and the deletion of the gene argR, and the other was the combination of a heterologous insertion of the gene argJ and the deletion of the gene argR. The combination of exogenous argJ gene insertion and argR gene deletion achieved higher titer accumulation with less impact on strain growth. Finally, we inserted the gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamicum) to enhance the metabolic flux of the L-Arg pathway in E. coli. The final strain obtained 70.1 g/L L-Arg in a 5-L bioreactor, with a yield of 0.326 g/g glucose and a productivity of 1.17 g/(L· h). This was the highest level of L-Arg production by E. coli ever reported. Collectively, our findings provided valuable insights into the possibility of the industrial production of L-Arg by E. coli. KEY POINTS: • Genetic background of E. coli A1 genome analysis. • Heterologous argJ substitution of argA mutation promoted excessive accumulation of L-Arg in E. coli A1. • The overexpression of L-Arg synthesis gene cluster argCJBDF of Corynebacterium glutamicum (C. glutamate) promoted the accumulation of L-Arg, and 70.1 g/L L-Arg was finally obtained in fed-batch fermentation.
Collapse
Affiliation(s)
- Hai-De Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1,800# Lihu Road, 214122, WuXi, People's Republic of China.
| |
Collapse
|
5
|
Hai-De W, Shuai L, Bing-Bing W, Jie L, Jian-Zhong X, Wei-Guo Z. Metabolic engineering of Escherichia coli for efficient production of l-arginine. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:127-150. [PMID: 37085192 DOI: 10.1016/bs.aambs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a semi-essential amino acid, l-arginine (l-Arg) plays an important role in food, health care, and medical treatment. At present, the main method of producing l-Arg is the use of microbial fermentation. Therefore, the selection and breeding of high-efficiency microbial strains is the top priority. To continuously improve the l-Arg production performance of the strains, a series of metabolic engineering strategies have been tried to transform the strains. The production of l-Arg by metabolically engineered Corynebacterium glutamicum (C. glutamicum) reached a relatively high level. Escherichia coli (E. coli), as a strain with great potential for l-Arg production, also has a large number of research strategies aimed at screening effective E. coli for producing l-Arg. E. coli also has a number of advantages over C. glutamicum in producing l-Arg. Therefore, it is of great significance to screen out excellent and stable E. coli to produce l-Arg. Here, based on recent research results, we review the metabolic pathways of l-Arg production in E. coli, the research progress of l-Arg production in E. coli, and various regulatory strategies implemented in E. coli.
Collapse
|
6
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
7
|
Jiang Y, Sheng Q, Wu XY, Ye BC, Zhang B. l-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process. Crit Rev Biotechnol 2020; 41:172-185. [PMID: 33153325 DOI: 10.1080/07388551.2020.1844625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As an important semi-essential amino acid, l-arginine is extensively used in the food and pharmaceutical fields. At present, l-arginine production depends on cost-effective, green, and sustainable microbial fermentation by using a renewable carbon source. To enhance its fermentative production, various metabolic engineering strategies have been employed, which provide valid paths for reducing the cost of l-arginine production. This review summarizes recent advances in molecular biology strategies for the optimization of l-arginine-producing strains, including manipulating the principal metabolic pathway, modulating the carbon metabolic pathway, improving the intracellular biosynthesis of cofactors and energy usage, manipulating the assimilation of ammonia, improving the transportation and membrane permeability, and performing biosensor-assisted high throughput screening, providing useful insight into the current state of l-arginine production.
Collapse
Affiliation(s)
- Yan Jiang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China
| | - Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Jiangxi Agricultural University, Nanchang, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Tang C, Jin X, Klosterman SJ, Wang Y. Convergent and distinctive functions of transcription factors VdYap1, VdAtf1, and VdSkn7 in the regulation of nitrosative stress resistance, microsclerotia formation, and virulence in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2020; 21:1451-1466. [PMID: 32954659 PMCID: PMC7549003 DOI: 10.1111/mpp.12988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 05/13/2023]
Abstract
Reactive oxygen/nitrogen species (ROS/RNS) play a fundamental role in plant-fungal interactions. How pathogenic fungi manipulate plant-derived ROS/RNS is of importance to the outcomes of these interactions. In this study, we explored the individual and combined contributions of three transcription factors, VdAtf1, VdYap1, and VdSkn7, in the response to ROS/RNS, microsclerotia formation, and virulence in the plant wilt pathogen Verticillium dahliae. We showed that VdYap1 is essential for ROS response. Additionally, mutants lacking any combination of the three genes shared significant hypersensitivity to nitro-oxidative stress like sodium nitroprusside dehydrate and double deletions lacking VdYap1 and VdAtf1 resulted in further increased sensitivity to ROS. Double deletion of VdAtf1 and VdSkn7 reduced melanin production and virulence while simultaneous lack of VdSkn7 and VdYap1 disrupted nitrogen metabolism and ROS resistance. Finally, comparison of transcriptional profiles of the respective single or double mutants in response to nitro-oxidative stress revealed that the three transcription factors are involved in denitrification of nitrated alkanes and lipids to protect against nitro-oxidative stress. Taken together, our results demonstrate convergent and distinctive functions of VdYap1, VdAtf1, and VdSkn7 in V. dahliae, and provide new data on their roles in response to ROS/RNS in fungi.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| | - Xianjiang Jin
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceSalinasCaliforniaUSA
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest ControlCollege of ForestryBeijing Forestry UniversityBeijingChina
| |
Collapse
|
9
|
Mindt M, Walter T, Kugler P, Wendisch VF. Microbial Engineering for Production of N-Functionalized Amino Acids and Amines. Biotechnol J 2020; 15:e1900451. [PMID: 32170807 DOI: 10.1002/biot.201900451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/04/2020] [Indexed: 01/04/2023]
Abstract
N-functionalized amines play important roles in nature and occur, for example, in the antibiotic vancomycin, the immunosuppressant cyclosporine, the cytostatic actinomycin, the siderophore aerobactin, the cyanogenic glucoside linamarin, and the polyamine spermidine. In the pharmaceutical and fine-chemical industries N-functionalized amines are used as building blocks for the preparation of bioactive molecules. Processes based on fermentation and on enzyme catalysis have been developed to provide sustainable manufacturing routes to N-alkylated, N-hydroxylated, N-acylated, or other N-functionalized amines including polyamines. Metabolic engineering for provision of precursor metabolites is combined with heterologous N-functionalizing enzymes such as imine or ketimine reductases, opine or amino acid dehydrogenases, N-hydroxylases, N-acyltransferase, or polyamine synthetases. Recent progress and applications of fermentative processes using metabolically engineered bacteria and yeasts along with the employed enzymes are reviewed and the perspectives on developing new fermentative processes based on insight from enzyme catalysis are discussed.
Collapse
Affiliation(s)
- Melanie Mindt
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany.,BU Bioscience, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Tatjana Walter
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Pierre Kugler
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Biology and CeBiTec, Bielefeld University, Bielefeld, 33615, Germany
| |
Collapse
|
10
|
Huang M, Zhao Y, Li R, Huang W, Chen X. Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering. 3 Biotech 2020; 10:126. [PMID: 32140378 DOI: 10.1007/s13205-020-2114-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/02/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-scale metabolic network model (GSMM) is an important in silico tool that can efficiently predict the target genes to be modulated. A Corynebacterium crenatum argB-M4 Cc_iKK446_arginine model was constructed on the basis of the GSMM of Corynebacterium glutamicum ATCC 13032 Cg_iKK446. Sixty-four gene deletion sites, twenty-four gene enhancement sites, and seven gene attenuation sites were determined for the improvement of l-arginine production in engineered C. crenatum. Among these sites, the effects of disrupting putP, cgl2310, pta, and Ncgl1221 and overexpressing lysE on l-arginine production were investigated. Moreover, the strain CCM007 with deleted putP, cgl2310, pta, and Ncgl1221 and overexpressed lysE produced 24.85 g/L l-arginine. This finding indicated a 106.8% improvement in l-arginine production compared with that in CCM01. GSMM is an excellent tool for identifying target genes to promote l-arginine accumulation in engineered C. crenatum.
Collapse
Affiliation(s)
- Mingzhu Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| | - Yue Zhao
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Rong Li
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Weihua Huang
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
| | - Xuelan Chen
- 1Department of Life Science, Jiangxi Normal University, Nanchang, 330096 People's Republic of China
- 2School of Life Science, Key Laboratory of Functional Small Organic Molecule of Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330096 People's Republic of China
| |
Collapse
|
11
|
Zhang X, Han R, Bao T, Zhao X, Li X, Zhu M, Yang T, Xu M, Shao M, Zhao Y, Rao Z. Synthetic engineering of Corynebacterium crenatum to selectively produce acetoin or 2,3-butanediol by one step bioconversion method. Microb Cell Fact 2019; 18:128. [PMID: 31387595 PMCID: PMC6683508 DOI: 10.1186/s12934-019-1183-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetoin (AC) and 2,3-butanediol (2,3-BD) as highly promising bio-based platform chemicals have received more attentions due to their wide range of applications. However, the non-efficient substrate conversion and mutually transition between AC and 2,3-BD in their natural producing strains not only led to a low selectivity but also increase the difficulty of downstream purification. Therefore, synthetic engineering of more suitable strains should be a reliable strategy to selectively produce AC and 2,3-BD, respectively. RESULTS In this study, the respective AC (alsS and alsD) and 2,3-BD biosynthesis pathway genes (alsS, alsD, and bdhA) derived from Bacillus subtilis 168 were successfully expressed in non-natural AC and 2,3-BD producing Corynebacterium crenatum, and generated recombinant strains, C. crenatum SD and C. crenatum SDA, were proved to produce 9.86 g L-1 of AC and 17.08 g L-1 of 2,3-BD, respectively. To further increase AC and 2,3-BD selectivity, the AC reducing gene (butA) and lactic acid dehydrogenase gene (ldh) in C. crenatum were then deleted. Finally, C. crenatumΔbutAΔldh SD produced 76.93 g L-1 AC in one-step biocatalysis with the yield of 0.67 mol mol-1. Meanwhile, after eliminating the lactic acid production and enhancing 2,3-butanediol dehydrogenase activity, C. crenatumΔldh SDA synthesized 88.83 g L-1 of 2,3-BD with the yield of 0.80 mol mol-1. CONCLUSIONS The synthetically engineered C. crenatumΔbutAΔldh SD and C. crenatumΔldh SDA in this study were proved as an efficient microbial cell factory for selective AC and 2,3-BD production. Based on the insights from this study, further synthetic engineering of C. crenatum for AC and 2,3-BD production is suggested.
Collapse
Affiliation(s)
- Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Rumeng Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210 China
| | - Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Manchi Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Youxi Zhao
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemical Engineering, Beijing Union University, Beijing, 10023 People’s Republic of China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
12
|
Nguyen LT, Lee EY. Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:147. [PMID: 31223337 PMCID: PMC6570963 DOI: 10.1186/s13068-019-1490-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Methane is the primary component of natural gas and biogas. The huge abundance of methane makes it a promising alternative carbon source for industrial biotechnology. Herein, we report diamine compound, putrescine, production from methane by an industrially promising methanotroph Methylomicrobium alcaliphilum 20Z. RESULTS We conducted adaptive evolution to improve putrescine tolerance of M. alcaliphilum 20Z because putrescine highly inhibits the cell growth. The evolved strain 20ZE was able to grow in the presence of 400 mM of putrescine dihydrochloride. The expression of linear pathway ornithine decarboxylase genes from Escherichia coli and Methylosinus trichosporium OB3b allowed the engineered strain to produce putrescine. A higher putrescine titer of 12.44 mg/L was obtained in the strain 20ZE-pACO with ornithine decarboxylase from M. trichosporium OB3b. For elimination of the putrescine utilization pathway, spermidine synthase (MEALZ_3408) was knocked out, resulting in no spermidine formation in the strain 20ZES1-pACO with a putrescine titer of 18.43 mg/L. Next, a genome-scale metabolic model was applied to identify gene knockout strategies. Acetate kinase (MEALZ_2853) and subsequently lactate dehydrogenase (MEALZ_0534) were selected as knockout targets, and the deletion of these genes resulted in an improvement of the putrescine titer to 26.69 mg/L. Furthermore, the putrescine titer was improved to 39.04 mg/L by overexpression of key genes in the ornithine biosynthesis pathway under control of the pTac promoter. Finally, suitable nitrogen sources for growth of M. alcaliphilum 20Z and putrescine production were optimized with the supplement of 2 mM ammonium chloride to nitrate mineral salt medium, and this led to the production of 98.08 mg/L putrescine, almost eightfold higher than that from the initial strain. Transcriptome analysis of the engineered strains showed upregulation of most genes involved in methane assimilation, citric acid cycle, and ammonia assimilation in ammonia nitrate mineral salt medium, compared to nitrate mineral salt medium. CONCLUSIONS The engineered M. alcaliphilum 20ZE4-pACO strain was able to produce putrescine up to 98.08 mg/L, almost eightfold higher than the initial strain. This study represents the bioconversion of methane to putrescine-a high value-added diamine compound.
Collapse
Affiliation(s)
- Linh Thanh Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
13
|
Tuning of the Carbon-to-Nitrogen Ratio for the Production of l-Arginine by Escherichia coli. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Yang J, Yang S. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 2017; 18:940. [PMID: 28198668 PMCID: PMC5310272 DOI: 10.1186/s12864-016-3255-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Corynebacterium glutamicum is a non-pathogenic bacterium widely used in industrial amino acid production and metabolic engineering research. Although the genome sequences of some C. glutamicum strains are available, comprehensive comparative genome analyses of these species have not been done. Six wild type C. glutamicum strains were sequenced using next-generation sequencing technology in our study. Together with 20 previously reported strains, we present a comprehensive comparative analysis of C. glutamicum genomes. Results By average nucleotide identity (ANI) analysis, we show that 10 strains, which were previously classified either in the genus Brevibacterium, or as some other species within the genus Corynebacterium, should be reclassified as members of the species C. glutamicum. C. glutamicum has an open pan-genome with 2359 core genes. An additional NAD+/NADP+ specific glutamate dehydrogenase (GDH) gene (gdh) was identified in the glutamate synthesis pathway of some C. glutamicum strains. For analyzing variations related to amino acid production, we have developed an efficient pipeline that includes three major steps: multi locus sequence typing (MLST), phylogenomic analysis based on single nucleotide polymorphisms (SNPs), and a thorough comparison of all genomic variation amongst ancestral or closely related wild type strains. This combined approach can provide new perspectives on the industrial use of C. glutamicum. Conclusions This is the first comprehensive comparative analysis of C. glutamicum genomes at the pan-genomic level. Whole genome comparison provides definitive evidence for classifying the members of this species. Identifying an aditional gdh gene in some C. glutamicum strains may accelerate further research on glutamate synthesis. Our proposed pipeline can provide a clear perspective, including the presumed ancestor, the strain breeding trajectory, and the genomic variations necessary to increase amino acid production in C. glutamicum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3255-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junjie Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China.,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China. .,Shanghai Research Center of Industrial Biotechnology, Shanghai, 201201, China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.
| |
Collapse
|
15
|
Controlling the transcription levels of argGH redistributed l-arginine metabolic flux in N-acetylglutamate kinase and ArgR-deregulated Corynebacterium crenatum. ACTA ACUST UNITED AC 2016; 43:55-66. [DOI: 10.1007/s10295-015-1692-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/21/2015] [Indexed: 12/12/2022]
Abstract
Abstract
Corynebacterium crenatum SYPA5-5, an l-arginine high-producer obtained through multiple mutation-screening steps, had been deregulated by the repression of ArgR that inhibits l-arginine biosynthesis at genetic level. Further study indicated that feedback inhibition of SYPA5-5 N-acetylglutamate kinase (CcNAGK) by l-arginine, as another rate-limiting step, could be deregulated by introducing point mutations. Here, we introduced two of the positive mutations (H268N or R209A) of CcNAGK into the chromosome of SYPA5-5, however, resulting in accumulation of large amounts of the intermediates (l-citrulline and l-ornithine) and decreased production of l-arginine. Genetic and enzymatic levels analysis involved in l-arginine biosynthetic pathway of recombinants SYPA5-5-NAGKH268N (H-7) and SYPA5-5-NAGKR209A (R-8) showed that the transcription levels of argGH decreased accompanied with the reduction of argininosuccinate synthase and argininosuccinase activities, respectively, which led to the metabolic obstacle from l-citrulline to l-arginine. Co-expression of argGH with exogenous plasmid in H-7 and R-8 removed this bottleneck and increased l-arginine productivity remarkably. Compared with SYPA5-5, fermentation period of H-7/pDXW-10-argGH (H-7-GH) reduced to 16 h; meanwhile, the l-arginine productivity improved about 63.6 %. Fed-batch fermentation of H-7-GH in 10 L bioreactor produced 389.9 mM l-arginine with the productivity of 5.42 mM h−1. These results indicated that controlling the transcription of argGH was a key factor for regulating the metabolic flux toward l-arginine biosynthesis after deregulating the repression of ArgR and feedback inhibition of CcNAGK, and therefore functioned as another regulatory mode for l-arginine production. Thus, deregulating all these three regulatory modes was a powerful strategy to construct l-arginine high-producing C. crenatum.
Collapse
|
16
|
Zhao X, Zhang X, Rao Z, Bao T, Li X, Xu M, Yang T, Yang S. Identification and characterization of a novel 2,3-butanediol dehydrogenase/acetoin reductase from Corynebacterium crenatum SYPA5-5. Lett Appl Microbiol 2015; 61:573-9. [PMID: 26393961 DOI: 10.1111/lam.12495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 11/28/2022]
Abstract
UNLABELLED Acetoin and 2,3-butanediol are widely used in the chemical and pharmaceutical industries. The enzyme, 2,3-butanediol dehydrogenase/acetoin reductase (2,3-BDH/AR), plays a significant role in the microbial production of acetoin and 2,3-butanediol by catalysing a reversible reaction between acetoin and 2,3-butanediol. To date, a 2,3-BDH has not been characterized from Corynebacterium crenatum. 2,3-BDH was cloned from Coryne. crenatum SYPA5-5 and expressed in Escherichia coli BL21. Sequence analysis suggested that the 2,3-BDH from Coryne. crenatum SYPA5-5 belongs to the short-chain dehydrogenase/reductase superfamily. Its maximum specific activity was obtained at 35°C, however, it became very unstable when the temperature was above 35°C. Its optimal pH was 4·0 for reduction reaction and 10·0 for oxidation reaction. The 2,3-BDH activity was increased to some extent by Ca(2+) , Mg(2+) , Zn(2+) and Mn(2+) ions. In particular, Ca(2+) induced about 1·5-fold increase. The value of kcat /Km for diacetyl and acetoin are higher than for 2,3-butanediol indicating that 2,3-BDH can easily reduce diacetyl or acetoin to 2,3-butanediol under lower pH conditions. The characteristics of 2,3-BDH from Coryne. crenatum SYPA5-5 will give guide to further studies for the production of acetoin and 2,3-butanediol with engineered Coryne. crenatum SYPA5-5. SIGNIFICANCE AND IMPACT OF THE STUDY Acetoin and 2,3-butanediol are commonly used as platform chemicals and widely used in pharmaceutical industries. 2,3-butanediol dehydrogenase/acetoin reductase (2,3-BDH/AR) plays a significant role in the microbial production of acetoin and 2,3-butanediol. In this study, 2,3-BDH was cloned from Corynebacterium crenatum SYPA5-5, was expressed in Escherichia coli BL21 and characterized with respect to the optimal temperature, pH, substrate specificity and kinetics. The results will guide further studies in Coryne. crenatum SYPA5-5 for the production of acetoin and 2,3-butanediol.
Collapse
Affiliation(s)
- X Zhao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - X Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Z Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - T Bao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - X Li
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - M Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - T Yang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - S Yang
- Department of Chemical Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Jensen JVK, Eberhardt D, Wendisch VF. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 2015; 214:85-94. [PMID: 26393954 DOI: 10.1016/j.jbiotec.2015.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
The glutamate-derived bioproducts ornithine, citrulline, proline, putrescine, and arginine have applications in the food and feed, cosmetic, pharmaceutical, and chemical industries. Corynebacterium glutamicum is not only an excellent producer of glutamate but also of glutamate-derived products. Here, engineering targets beneficial for ornithine production were identified and the advantage of rationally constructing a platform strain for the production of the amino acids citrulline, proline, and arginine, and the diamine putrescine was demonstrated. Feedback alleviation of N-acetylglutamate kinase, tuning of the promoter of glutamate dehydrogenase gene gdh, lowering expression of phosphoglucoisomerase gene pgi, along with the introduction of a second copy of the arginine biosynthesis operon argCJB(A49V,M54V)D into the chromosome resulted in a C. glutamicum strain producing ornithine with a yield of 0.52 g ornithine per g glucose, an increase of 71% as compared to the parental ΔargFRG strain. Strains capable of producing 0.41 g citrulline per g glucose, 0.29 g proline per g glucose, 0.30 g arginine per g glucose, and 0.17 g putrescine per g glucose were derived from the ornithine-producing platform strain by plasmid-based overexpression of appropriate pathway modules with one to three genes.
Collapse
Affiliation(s)
- Jaide V K Jensen
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | - Dorit Eberhardt
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| |
Collapse
|
18
|
Hao N, Mu J, Hu N, Xu S, Shen P, Yan M, Li Y, Xu L. Implication of ornithine acetyltransferase activity on l-ornithine production in Corynebacterium glutamicum. Biotechnol Appl Biochem 2015; 63:15-21. [PMID: 25630515 DOI: 10.1002/bab.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/25/2015] [Indexed: 11/07/2022]
Abstract
l-Ornithine is an intermediate of the l-arginine biosynthetic pathway in Corynebacterium glutamicum. The effect of ornithine acetyltransferase (OATase; ArgJ) on l-ornithine production was investigated, and C. glutamicum 1006 was engineered to overproduce l-ornithine as a major product by inactivating regulatory repressor argR gene and overexpressing argJ gene. A genome sequence analysis indicated that the argF gene encoding ornithine carbamoyltransferase in C. glutamicum 1006 was mutated, resulting in the accumulation of a certain amount of l-ornithine (20.5 g/L). The assays using a crude extract of C. glutamicum 1006 indicated that the l-ornithine concentration for 50% inhibition of OAT was 5 mM. To enhance l-ornithine production, the argJ gene from C. glutamicum ATCC 13032 was overexpressed. In flask cultures, the resulting strain, C. glutamicum 1006∆argR-argJ, produced 31.6 g/L l-ornithine, which is 54.15% more than that produced by C. glutamicum 1006. The OAT activity of C. glutamicum 1006∆argR-argJ was significantly greater than that of C. glutamicum 1006, and this study achieved the highest conversion ratio of sugar to acid (0.396 g/g) compared with those of previous reports. ArgJ strongly influences the production of l-ornithine in C. glutamicum.
Collapse
Affiliation(s)
- Ning Hao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Jingrui Mu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Nan Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Peng Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Ming Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| | - Lin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Chen M, Chen X, Wan F, Zhang B, Chen J, Xiong Y. Effect of Tween 40 and DtsR1 on L-arginine overproduction in Corynebacterium crenatum. Microb Cell Fact 2015; 14:119. [PMID: 26264811 PMCID: PMC4534012 DOI: 10.1186/s12934-015-0310-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/04/2015] [Indexed: 01/26/2023] Open
Abstract
Background l-Glutamate is an important precursor in the l-arginine (l-Arg) biosynthetic pathway. Various methods, including polyoxyethylene sorbitan monopalmitate (Tween 40) addition and dtsR1 disruption, have been widely used to induce l-glutamate overproduction in Corynebacterium glutamicum. In this study, a novel strategy for l-Arg overproduction through Tween 40 trigger and ΔdtsR1 mutant were proposed in Corynebacterium crenatum. Results Corynebacterium crenatum mutant (CCM01) was selected as a host strain, whose argR was lethal via mutagenesis screening, the proB gene was knocked out, and argB was replaced by argB M4 (E19R, H26E, D311R, and D312R) to release l-Arg feedback resistance. After Tween 40 trigger in the logarithmic period, l-Arg production increased from 15.22 to 17.73 g/L in CCM01 strain. When NCgl1221 and dtsR1 disruption (CCM03), l-Arg production drastically increased to 27.45 g/L and then further to 29.97 g/L after Tween 40 trigger. Moreover, the specific activity of α-oxoglutarate dehydrogenase complex (ODHC) decreased, whereas the regeneration of NADP+/NADPH significantly increased after dtsR1 disruption and Tween 40 trigger. Results of real-time PCR showed that the transcriptional levels of odhA, sucB, and lpdA (encoding three subunits of the ODHC complex) were downregulated after Tween 40 trigger or dtsR1 disruption. By contrast, zwf transcription (encoding glucose-6-phosphate dehydrogenase) showed no significant difference among CCM01, CCM02 (ΔNCgl1221), and CCM03 (ΔNCgl1221ΔdtsR1) strains without Tween 40 trigger but evidently increased by 5.50 folds after Tween 40 trigger. Conclusion A novel strategy for l-Arg overproduction by dtsR1 disruption and Tween 40 trigger in C. crenatum was reported. Tween 40 addition exhibited a bifunctional mechanism for l-Arg overproduction, including reduced ODHC activity and enhanced NADPH pools accumulation by downregulated dtsR1 expression and upregulated zwf expression, respectively.
Collapse
Affiliation(s)
- Minliang Chen
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Xuelan Chen
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Fang Wan
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Bin Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, People's Republic of China.
| | - Jincong Chen
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| | - Yonghua Xiong
- College of Life Science, Nanchang University, Nanchang, 330031, People's Republic of China. .,State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
20
|
Shin JH, Lee SY. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives. Microb Cell Fact 2014; 13:166. [PMID: 25467280 PMCID: PMC4258820 DOI: 10.1186/s12934-014-0166-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 12/18/2022] Open
Abstract
L-arginine (ARG) is an important amino acid for both medicinal and industrial applications. For almost six decades, the research has been going on for its improved industrial level production using different microorganisms. While the initial approaches involved random mutagenesis for increased tolerance to ARG and consequently higher ARG titer, it is laborious and often leads to unwanted phenotypes, such as retarded growth. Discovery of L-glutamate (GLU) overproducing strains and using them as base strains for ARG production led to improved ARG production titer. Continued effort to unveil molecular mechanisms led to the accumulation of detailed knowledge on amino acid metabolism, which has contributed to better understanding of ARG biosynthesis and its regulation. Moreover, systems metabolic engineering now enables scientists and engineers to efficiently construct genetically defined microorganisms for ARG overproduction in a more rational and system-wide manner. Despite such effort, ARG biosynthesis is still not fully understood and many of the genes in the pathway are mislabeled. Here, we review the major metabolic pathways and its regulation involved in ARG biosynthesis in different prokaryotes including recent discoveries. Also, various strategies for metabolic engineering of bacteria for the overproduction of ARG are described. Furthermore, metabolic engineering approaches for producing ARG derivatives such as L-ornithine (ORN), putrescine and cyanophycin are described. ORN is used in medical applications, while putrescine can be used as a bio-based precursor for the synthesis of nylon-4,6 and nylon-4,10. Cyanophycin is also an important compound for the production of polyaspartate, another important bio-based polymer. Strategies outlined here will serve as a general guideline for rationally designing of cell-factories for overproduction of ARG and related compounds that are industrially valuable.
Collapse
Affiliation(s)
- Jae Ho Shin
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea. .,BioProcess Engineering Research Center, KAIST, Daejeon, 305-701, Republic of Korea. .,BioInformatics Research Center, KAIST, Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
21
|
Bertaccini D, Vaca S, Carapito C, Arsène-Ploetze F, Van Dorsselaer A, Schaeffer-Reiss C. An Improved Stable Isotope N-Terminal Labeling Approach with Light/Heavy TMPP To Automate Proteogenomics Data Validation: dN-TOP. J Proteome Res 2013; 12:3063-70. [DOI: 10.1021/pr4002993] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Diego Bertaccini
- Laboratoire de Spectrométrie
de Masse BioOrganique, IPHC, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Sebastian Vaca
- Laboratoire de Spectrométrie
de Masse BioOrganique, IPHC, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie
de Masse BioOrganique, IPHC, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Florence Arsène-Ploetze
- Laboratoire de Génétique
Moléculaire, Génomique et Microbiologie, Université de Strasbourg, CNRS UMR7156, Strasbourg,
France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie
de Masse BioOrganique, IPHC, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie
de Masse BioOrganique, IPHC, Université de Strasbourg, CNRS, UMR7178, Strasbourg, France
| |
Collapse
|
22
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|