1
|
Ren Y, Wang G, Bai X, Su Y, Zhang Z, Han J. Research progress on remediation of organochlorine pesticide contamination in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:25. [PMID: 38225511 DOI: 10.1007/s10653-023-01797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Deteriorated soil pollution has grown into a worldwide environmental concern over the years. Organochlorine pesticide (OCP) residues, featured with ubiquity, persistence and refractoriness, are one of the main pollution sources, causing soil degradation, fertility decline and nutritional imbalance, and severely impacting soil ecology. Furthermore, residual OCPs in soil may enter the human body along with food chain accumulation and pose a serious health threat. To date, many remediation technologies including physicochemical and biological ways for organochlorine pollution have been developed at home and abroad, but none of them is a panacea suitable for all occasions. Rational selection and scientific decision-making are grounded in in-depth knowledge of various restoration techniques. However, soil pollution treatment often encounters the interference of multiple factors (climate, soil properties, cost, restoration efficiency, etc.) in complex environments, and there is still a lack of systematic summary and comparative analysis of different soil OCP removal methods. Thus, to better guide the remediation of contaminated soil, this review summarized the most commonly used strategies for OCP removal, evaluated their merits and limitations and discussed the application scenarios of different methods. It will facilitate the development of efficient, inexpensive and environmentally friendly soil remediation strategies for sustainable agricultural and ecological development.
Collapse
Affiliation(s)
- Ying Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Gang Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Xuanjiao Bai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yuying Su
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zheng Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
2
|
Aminian-Dehkordi J, Rahimi S, Golzar-Ahmadi M, Singh A, Lopez J, Ledesma-Amaro R, Mijakovic I. Synthetic biology tools for environmental protection. Biotechnol Adv 2023; 68:108239. [PMID: 37619824 DOI: 10.1016/j.biotechadv.2023.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Synthetic biology transforms the way we perceive biological systems. Emerging technologies in this field affect many disciplines of science and engineering. Traditionally, synthetic biology approaches were commonly aimed at developing cost-effective microbial cell factories to produce chemicals from renewable sources. Based on this, the immediate beneficial impact of synthetic biology on the environment came from reducing our oil dependency. However, synthetic biology is starting to play a more direct role in environmental protection. Toxic chemicals released by industries and agriculture endanger the environment, disrupting ecosystem balance and biodiversity loss. This review highlights synthetic biology approaches that can help environmental protection by providing remediation systems capable of sensing and responding to specific pollutants. Remediation strategies based on genetically engineered microbes and plants are discussed. Further, an overview of computational approaches that facilitate the design and application of synthetic biology tools in environmental protection is presented.
Collapse
Affiliation(s)
| | - Shadi Rahimi
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Amritpal Singh
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | - Javiera Lopez
- Department of Bioengineering, Imperial College London, London, SW72AZ, UK
| | | | - Ivan Mijakovic
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
4
|
Rebello S, Nathan VK, Sindhu R, Binod P, Awasthi MK, Pandey A. Bioengineered Microbes for Soil Health Restoration - Present Status and Future. Bioengineered 2021; 12:12839-12853. [PMID: 34775906 PMCID: PMC8810056 DOI: 10.1080/21655979.2021.2004645] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
According to the United Nations Environment Programme (UNEP), soil health is declining over the decades and it has an adverse impact on human health and food security. Hence, soil health restoration is a need of the hour. It is known that microorganisms play a vital role in remediation of soil pollutants like heavy metals, pesticides, hydrocarbons, etc. However, the indigenous microbes have a limited capacity to degrade these pollutants and it will be a slow process. Genetically modified organisms (GMOs) can catalyze the degradation process as their altered metabolic pathways lead to hypersecretions of various biomolecules that favor the bioremediation process. This review provides an overview on the application of bioengineered microorganisms for the restoration of soil health by degradation of various pollutants. It also sheds light on the challenges of using GMOs in environmental application as their introduction may affect the normal microbial community in soil. Since soil health also refers to the potential of native organisms to survive, the possible changes in the native microbial community with the introduction of GMOs are also discussed. Finally, the future prospects of using bioengineered microorganisms in environmental engineering applications to make the soil fertile and healthy have been deciphered. With the alarming rates of soil health loss, the treatment of soil and soil health restoration need to be fastened to a greater pace and the combinatorial efforts unifying GMOs, plant growth-promoting rhizobacteria, and other soil amendments will provide an effective solution to soil heath restoration ten years ahead.
Collapse
Affiliation(s)
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, Sastra University, Thanjavur, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum - 695 019, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi - 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow - 226 001, India.,Centre for Energy and Environmental Sustainability, Lucknow-226 029, Uttar Pradesh, India
| |
Collapse
|
5
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
6
|
Bilal M, Iqbal HM. Microbial bioremediation as a robust process to mitigate pollutants of environmental concern. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2020; 2:100011. [DOI: 10.1016/j.cscee.2020.100011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Liu L, Bilal M, Duan X, Iqbal HMN. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:444-454. [PMID: 30833243 DOI: 10.1016/j.scitotenv.2019.02.390] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
Industries are the paramount driving force for the economic and technological development of society. However, the flourishing industrialization and unimpeded growth of current production unit's result in widespread environmental pollution due to increased discharge of wastes loaded with baleful, hazardous, and carcinogenic contaminants. Physicochemical-based remediation means are costly, create a secondary disposal problem and remain inadequate for pollution mitigating because of the continuous emergence of new recalcitrant pollutants. Due to eco-friendly, social acceptance, and lesser health hazards, microbial bioremediation has received considerable global attention for pollution abatement. Moreover, with the recent advancement in biotechnology and microbiology, genetically engineered bacteria with high ability to remove environmental pollutants are widely used in the fields of environmental restoration, resulting in the bioremediation in a more viable and eco-friendly way. This review summarized the advantages of genetically engineered bacteria and their application in the treatment of a wide variety of environmental contaminants such as synthetic dyestuff, heavy metal, petroleum hydrocarbons, polychlorinated biphenyls, phenazines and agricultural chemicals which will include herbicides, pesticides, and fertilizers. Considering the risk of genetic material exchange by using genetically engineered bacteria, the challenges and limitations associated with the application of recombinant bacteria on contaminated sites are also discussed. An integrated microbiological, biological and ecological acquaintance accompanied by field engineering designs are the desired features for effective in situ bioremediation of hazardous waste polluted sites by recombinant bacteria.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
8
|
Liang B, Li L, Tang X, Lang Q, Wang H, Li F, Shi J, Shen W, Palchetti I, Mascini M, Liu A. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron 2013; 45:19-24. [DOI: 10.1016/j.bios.2013.01.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|