1
|
Shaw D, Miravet‐Verde S, Piñero‐Lambea C, Serrano L, Lluch‐Senar M. LoxTnSeq: random transposon insertions combined with cre/lox recombination and counterselection to generate large random genome reductions. Microb Biotechnol 2021; 14:2403-2419. [PMID: 33325626 PMCID: PMC8601177 DOI: 10.1111/1751-7915.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Samuel Miravet‐Verde
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Carlos Piñero‐Lambea
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Present address:
Pulmobiotics ltdDr. Aiguader 88Barcelona08003Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Universitat Pompeu Fabra (UPF)Barcelona08002Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Maria Lluch‐Senar
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Basic Sciences DepartmentFaculty of Medicine and Health SciencesUniversitat Internacional de CatalunyaSant Cugat del Vallès08195Spain
| |
Collapse
|
2
|
Shaw D, Serrano L, Lluch-Senar M. Lox'd in translation: contradictions in the nomenclature surrounding common lox-site mutants and their implications in experiments. MICROBIOLOGY (READING, ENGLAND) 2021; 167:000997. [PMID: 33284099 PMCID: PMC8116776 DOI: 10.1099/mic.0.000997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022]
Abstract
The Cre-Lox system is a highly versatile and powerful DNA recombinase mechanism, mainly used in genetic engineering to insert or remove desired DNA sequences. It is widely utilized across multiple fields of biology, with applications ranging from plants, to mammals, to microbes. A key feature of this system is its ability to allow recombination between mutant lox sites. Two of the most commonly used mutant sites are named lox66 and lox71, which recombine to create a functionally inactive double mutant lox72 site. However, a large portion of the published literature has incorrectly annotated these mutant lox sites, which in turn can lead to difficulties in replication of methods, design of proper vectors and confusion over the proper nomenclature. Here, we demonstrate common errors in annotations, the impacts they can have on experimental viability, and a standardized naming convention. We also show an example of how this incorrect annotation can induce toxic effects in bacteria that lack optimal DNA repair systems, exemplified by Mycoplasma pneumoniae.
Collapse
Affiliation(s)
- Daniel Shaw
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Pulmobiotics SL, Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
4
|
Engineering microbial electrocatalysis for chemical and fuel production. Curr Opin Biotechnol 2014; 29:93-8. [DOI: 10.1016/j.copbio.2014.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/19/2022]
|
5
|
Latif H, Zeidan AA, Nielsen AT, Zengler K. Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 2014; 27:79-87. [DOI: 10.1016/j.copbio.2013.12.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
|
6
|
Tan Y, Liu J, Chen X, Zheng H, Li F. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically. MOLECULAR BIOSYSTEMS 2014; 9:2775-84. [PMID: 24056499 DOI: 10.1039/c3mb70232d] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clostridium ljungdahlii DSM 13528 represents a promising platform organism for production of a whole variety of different biofuels and biochemicals from syngas. Although the publication of its genome gave us the first possibility to understand the molecular mechanism for carbon utilization, reports on the profiling of the transcriptome were unavailable. In this study, RNA-seq-based global transcriptome analysis was performed to compare the transcriptomes of C. ljungdahlii grown on CO-CO2 with those grown on fructose. In total, 1852 differentially expressed genes were identified, which included 366 upregulated genes and 1486 downregulated genes under CO-CO2 conditions. These up- and downregulated genes are predicted to be involved in the Wood-Ljungdahl pathway, CO2 reduction to acetic acid, fructose fermentation, central carbon metabolism and transport, and vitamin B12 synthesis. In addition, 36 small RNAs were identified, 20 of which were novel small RNAs. Quantitative real-time PCR (qRT-PCR) and RT-PCR analysis of the selected functional genes and sRNA genes expression profiles were found to be consistent with the RNA-seq data. The study allowed a deeper understanding of the molecular mechanisms underlying syngas utilization and could help guide the design of rational strategies to increase the efficiency of syngas fixation in the future.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road No. 189, Qingdao 266101, China.
| | | | | | | | | |
Collapse
|
7
|
Gak E, Tyurin M, Kiriukhin M. Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst. J Ind Microbiol Biotechnol 2014; 41:763-81. [PMID: 24659176 DOI: 10.1007/s10295-014-1416-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 02/06/2014] [Indexed: 11/24/2022]
Abstract
The cell energy fraction that powered maintenance and expression of genes encoding pro-phage elements, pta-ack cluster, early sporulation, sugar ABC transporter periplasmic proteins, 6-phosphofructokinase, pyruvate kinase, and fructose-1,6-disphosphatase in acetogen Clostridium sp. MT871 was re-directed to power synthetic operon encoding isobutanol biosynthesis at the expense of these genes achieved via their elimination. Genome tailoring decreased cell duplication time by 7.0 ± 0.1 min (p < 0.05) compared to the parental strain, with intact genome and cell duplication time of 68 ± 1 min (p < 0.05). Clostridium sp. MT871 with tailored genome was UVC-mutated to withstand 6.1 % isobutanol in fermentation broth to prevent product inhibition in an engineered commercial biocatalyst producing 5 % (674.5 mM) isobutanol during two-step continuous fermentation of CO2/H2 gas blend. Biocatalyst Clostridium sp. MT871RG- 11IBR6 was engineered to express six copies of synthetic operon comprising optimized synthetic format dehydrogenase, pyruvate formate lyase, acetolactate synthase, acetohydroxyacid reductoisomerase, 2,3-dihydroxy-isovalerate dehydratase, branched-chain alpha-ketoacid decarboxylase gene, aldehyde dehydrogenase, and alcohol dehydrogenase, regaining cell duplication time of 68 ± 1 min (p < 0.05) for the parental strain. This is the first report on isobutanol production by an engineered acetogen biocatalyst suitable for commercial manufacturing of this chemical/fuel using continuous fermentation of CO2/H2 blend thus contributing to the reversal of global warming.
Collapse
|
8
|
Kiriukhin M, Tyurin M, Gak E. UVC-mutagenesis in acetogens: resistance to methanol, ethanol, acetone, or n-butanol in recombinants with tailored genomes as the step in engineering of commercial biocatalysts for continuous CO₂/H₂ blend fermentations. World J Microbiol Biotechnol 2014; 30:1559-74. [PMID: 24415498 DOI: 10.1007/s11274-013-1579-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Abstract
Time- and cost-efficient six-step UVC-mutagenesis was developed and validated to generate acetogen mutants with preliminary reduced genomes to prevent product inhibition in the to-be-engineered commercial biocatalysts. Genome reduction was performed via elimination of pta, ack, spo0A, spo0J and some pro-phage genes. UVC-mutants such as Clostridium sp. MT1784RG, Clostridium sp. MT653RG, Clostridium sp. MT896RG, and Clostridium sp. MT1962RG (all 4 share 97 % DNA homology with Clostridium ljungdahlii ATCC 55383) were selected based on resistance to methanol (3 M), ethanol (3.6 M), acetone (2.5 M), or n-butanol (0.688 M), respectively. As a part of the biocatalyst engineering algorithm, genome reduction step was associated with integration of attTn7 recognition sequence to the chromosomes of each of the above strains to prepare the defined integration sites for future integration of multi-copy synthetic operons encoding biosynthesis of methanol, ethanol, acetone or n-butanol. Reduced genome mutants had cell duplication times decreased compared to the same for the respective parental strains. All groups of mutants had decreased share of palmitic (C16:0) and increased share of oleic (C18:1) acids along with detection of isopropylstearate (C20) compared to the parental strains. Mutants resistant to acetone and n-butanol also had monounsaturated fatty acid (C20:1) not found in parental strains. Cyclopropane fatty acid (C21) was identified only in n-butanol resistant mutants.
Collapse
Affiliation(s)
- Michael Kiriukhin
- Ajinomoto-Genetika Research Institute, 1st Dorozhny Pr. 1-1, 117545, Moscow, Russia
| | | | | |
Collapse
|
9
|
Bengelsdorf FR, Straub M, Dürre P. Bacterial synthesis gas (syngas) fermentation. ENVIRONMENTAL TECHNOLOGY 2013; 34:1639-51. [PMID: 24350425 DOI: 10.1080/09593330.2013.827747] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acetogenic bacteria employing the Wood-Ljungdahl pathway can be used as biocatalysts in syngas fermentation for the production ofbiofuels such as ethanol or butanol as well as biocommodities such as acetate, lactate, butyrate, 2,3 butanediol, and acetone. The potential of such processes can be projected by the global syngas output, which was 70,817 megawatts thermal in 2010 and is expected to increase up to 72% in 2016. To date, different acetogens are used as commercial production strains for industrial syngas fermentations in pilot or demonstration plants (Coskata, INEOS Bio, LanzaTech) and first commercial units are expected to launch operation in the near future (INEOS Bio, LanzaTech). Considerations on potential yields are quite promising for fermentative production. New methods for metabolic engineering were established to construct novel recombinant acetogenic biocatalysts. Synthetic biology will certainly play a major role in constructing strains for commercial operations. This way, a cheap and abundant carbon source most probably replace, processes based on crude oil or sugar in the near future.
Collapse
Affiliation(s)
- Frank R Bengelsdorf
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany.
| | - Melanie Straub
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| |
Collapse
|
10
|
Kiriukhin M, Tyurin M. Expression of amplified synthetic ethanol pathway integrated using Tn7-tool and powered at the expense of eliminated pta, ack, spo0A and spo0J during continuous syngas or CO2 /H2 blend fermentation. J Appl Microbiol 2013; 114:1033-45. [PMID: 23289641 DOI: 10.1111/jam.12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/08/2012] [Accepted: 12/24/2012] [Indexed: 11/28/2022]
Abstract
AIMS To engineer acetogen biocatalyst selectively overproducing ethanol from synthesis gas or CO2 /H2 as the only liquid carbonaceous product. METHODS AND RESULTS Ethanol-resistant mutant originally capable of producing only acetate from CO2 /CO was engineered to eliminate acetate production and spore formation using our proprietary Cre-lox66/lox71-system. Bi-functional aldehyde/alcohol dehydrogenase was inserted into the chromosome of the engineered mutant using Tn7-based approach. Recombinants with three or six copies of the inserted gene produced 525 mmol l(-1) and 1018 mmol l(-1) of ethanol, respectively, in five independent single-step fermentation runs 25 days each (P < 0.005) in five independent repeats using syngas blend 60% CO and 40% H2 . Ethanol production was 64% if only CO2 + H2 blend was used compared with syngas blend (P < 0.005). CONCLUSIONS Elimination of genes unnecessary for syngas fermentation can boost artificial integrated pathway performance. SIGNIFICANCE AND IMPACT OF THE STUDY Cell energy released via elimination of phosphotransacetylase, acetate kinase and early-stage sporulation genes boosted ethanol production. Deletion of sporulation genes added theft-proof feature to the engineered biocatalyst. Production of ethanol from CO2 /H2 blend might be utilized as a tool to mitigate global warming proportional to CO2 fermentation scale.
Collapse
Affiliation(s)
- M Kiriukhin
- Ajinomoto-Genetika Research Institute, Moscow, Russia
| | | |
Collapse
|