1
|
Ma K, Chen N, Wang H, Li Q, Shi H, Su M, Zhang Y, Ma Y, Li T. The regulatory role of BMP4 in testicular Sertoli cells of Tibetan sheep. J Anim Sci 2023; 101:skac393. [PMID: 36440761 PMCID: PMC9838805 DOI: 10.1093/jas/skac393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to determine the regulatory mechanism of bone morphogenetic protein 4 (BMP4) gene in the testes of Tibetan sheep and its role in the blood-testis barrier (BTB). First, we cloned BMP4 gene for bioinformatics analysis, and detected the mRNA and protein expression levels of BMP4 in the testes of Tibetan sheep pre-puberty (3-mo-old), during sexual maturity (1-yr-old), and in adulthood (3-yr-old) by qRT-PCR and Western blot. In addition, the subcellular localization of BMP4 was analyzed by immunohistochemical staining. Next, BMP4 overexpression and silencing vectors were constructed and transfected into primary Sertoli cells (SCs) to promote and inhibit the proliferation of BMP4, respectively. Then, CCK-8 was used to detect the proliferation effect of SCs. The expression of BMP4 and downstream genes, pathway receptors, tight junction-related proteins, and cell proliferation and apoptosis-related genes in SCs were studied using qRT-PCR and Western blot. The results revealed that the relative expression of BMP4 mRNA and protein in testicular tissues of 1Y group and 3Y group was dramatically higher than that of 3M group (P < 0.01), and BMP4 protein is mainly located in SCs and Leydig cells at different development stages. The CDS region of the Tibetan sheep BMP4 gene was 1,229 bp. CCK-8 results demonstrated that the proliferation rate of BMP4 was significantly increased in the overexpression group (pc-DNA-3.1(+)-BMP4; P < 0.05). In addition, the mRNA and protein expressions of SMAD5, BMPR1A, and BMPR1B and tight junction-related proteins Claudin11, Occludin, and ZO1 were significantly increased (P < 0.05). The mRNA expression of cell proliferation-related gene Bcl2 was significantly enhanced (P < 0.05), and the expression of GDNF was enhanced (P > 0.05). The mRNA expression of apoptosis-related genes Caspase3 and Bax decreased significantly (P < 0.05), while the mRNA expression of cell cycle-related genes CyclinA2 and CDK2 increased significantly (P < 0.05). It is worth noting that the opposite results were observed after transfection with si-BMP4. In summary, what should be clear from the results reported here is that BMP4 affects testicular development by regulating the Sertoli cells and BTB, thereby modulating the spermatogenesis of Tibetan sheep.
Collapse
Affiliation(s)
- Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
2
|
Comparison of Selected Non-Coding RNAs and Gene Expression Profiles between Common Osteosarcoma Cell Lines. Cancers (Basel) 2022; 14:cancers14184533. [PMID: 36139691 PMCID: PMC9496707 DOI: 10.3390/cancers14184533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a malignant tumour affecting mainly children and elderly people. Despite significant advances in cancer medicine, osteosarcoma patients’ survival is not improving. The primary treatment methods are established using in vitro models that rely upon the application of well-established cell lines, including U-2 OS, Saos-2 and MG-63. The molecular phenotype of these cell lines is still not fully outlined. Therefore, our study aimed to establish the expression profile of molecular markers related to osteosarcoma survival, progression and metastasis. Non-bone-related cells were used as a reference, i.e. HeLa cell line and human adipose-derived stromal cells (hASCs). Evaluated osteosarcoma cell lines showed characteristic phenotypes with unique patterns related to upregulation of MMP-7, MMP-14, BMP-7, miR-21-5p, miR-124-3p and downregulation of lncRNA MEG3. Our findings may facilitate the selection of the most reliable cellular model for pre-clinical investigations focused on developing new and satisfying methods of osteosarcoma therapy. Abstract Osteosarcoma (OS) is a bone tumour affecting adolescents and elderly people. Unfortunately, basic treatment methods are still underdeveloped, which has a high impact on the poor survivability of the patients. Studies designed to understand the underlying mechanisms of osteosarcoma development, as well as preclinical investigations aimed at establishing novel therapeutic strategies, rely significantly upon in vitro models, which apply well-established cell lines such as U-2 OS, Saos-2 and MG-63. In this study, the expression of chosen markers associated with tumour progression, metastasis and survival were identified using RT-qPCR. Levels of several onco-miRs (miR-21-5p, miR-124-3p, miR-223-3p and miR-320a-3p) and long non-coding RNA MEG3 were established. The mRNA expression of bone morphogenetic proteins (BMPs), including BMP-2, BMP-3, BMP-4, BMP-6, BMP-7, as well as their receptors: BMPR-IA, BMPR-IB and BMPR-II was also determined. Other tested markers included metalloproteinases, i.e., MMP-7 and MMP-14 and survivin (BIRC5), C-MYC, as well as CYCLIN D (CCND1). The analysis included comparing obtained profiles with transcript levels established for the osteogenic HeLa cell line and human adipose-derived stromal cells (hASCs). The tested OS cell lines were characterised by a cancer-related phenotype, such as increased expression of mRNA for BMP-7, as well as MMP-7 and MMP-14. Osteosarcoma cells differ considerably in miR-21-5p and miR-124-3p levels, which can be related to uncontrolled tumour growth. The comprehensive examination of osteosarcoma transcriptome profiles may facilitate the selection of appropriate cell models for preclinical investigations aimed at the development of new strategies for OS treatment.
Collapse
|
3
|
Cui N, Li L, Feng Q, Ma HM, Lei D, Zheng PS. Hexokinase 2 Promotes Cell Growth and Tumor Formation Through the Raf/MEK/ERK Signaling Pathway in Cervical Cancer. Front Oncol 2020; 10:581208. [PMID: 33324557 PMCID: PMC7725710 DOI: 10.3389/fonc.2020.581208] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
Hexokinase 2 (HK2) is a member of the hexokinases (HK) that has been reported to be a key regulator during glucose metabolism linked to malignant growth in many types of cancers. In this study, stimulation of HK2 expression was observed in squamous cervical cancer (SCC) tissues, and HK2 expression promoted the proliferation of cervical cancer cells in vitro and tumor formation in vivo by accelerating cell cycle progression, upregulating cyclin A1, and downregulating p27 expression. Moreover, transcriptome sequencing analysis revealed that MAPK3 (ERK1) was upregulated in HK2-overexpressing HeLa cells. Further experiments found that the protein levels of p-Raf, p-MEK1/2, ERK1/2, and p-ERK1/2 were increased in HK2 over-expressing SiHa and HeLa cells. When ERK1/2 and p-ERK1/2 expression was blocked by an inhibitor (FR180204), reduced cyclin A1 expression was observed in HK2 over-expressing cells, with induced p27 expression and inhibited cell growth. Therefore, our data demonstrated that HK2 promoted the proliferation of cervical cancer cells by upregulating cyclin A1 and down-regulating p27 expression through the Raf/MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Lu Li
- Hebei Key Laboratory of Environment and Human Health, Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Qian Feng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Dan Lei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Section of Cancer Stem Cell Research, Ministry of Education of the People's Republic of China, Xi'an, China
| |
Collapse
|
4
|
Karaöz E, Tepeköy F. Differentiation Potential and Tumorigenic Risk of Rat Bone Marrow Stem Cells Are Affected By Long-Term In Vitro Expansion. Turk J Haematol 2019; 36:255-265. [PMID: 31284704 PMCID: PMC6863016 DOI: 10.4274/tjh.galenos.2019.2019.0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Mesenchymal stem cells (MSCs) have the capacity for extensive expansion and adipogenic, osteogenic, chondrogenic, myogenic, and neural differentiation in vitro. The aim of our study was to determine stemness, differentiation potential, telomerase activity, and ultrastructural characteristics of long-term cultured rat bone marrow (rBM)-MSCs. Materials and Methods: rBM-MSCs from passages 3, 50, and 100 (P3, P50, and P100) were evaluated through immunocytochemistry, reverse transcription-polymerase chain reaction, telomerase activity assays, and electron microscopy. Results: A dramatic reduction in the levels of myogenic markers actin and myogenin was detected in P100. Osteogenic markers Coll1, osteonectin (Sparc), and osteocalcin as well as neural marker c-Fos and chondrogenic marker Coll2 were significantly reduced in P100 compared to P3 and P50. Osteogenic marker bone morphogenic protein-2 (BMP2) and adipogenic marker peroxisome proliferator-activated receptor gamma (Pparγ) expression was reduced in late passages. The expression of stemness factor Rex-1 was lower in P100, whereas Oct4 expression was decreased in P50 compared to P3 and P100. Increased telomerase activity was observed in long-term cultured cells, signifying tumorigenic risk. Electron microscopic evaluations revealed ultrastructural changes such as smaller number of organelles and increased amount of autophagic vacuoles in the cytoplasm in long-term cultured rBM-MSCs. Conclusion: This study suggests that long-term culture of rBM-MSCs leads to changes in differentiation potential and increased tumorigenic risk.
Collapse
Affiliation(s)
- Erdal Karaöz
- İstinye University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey,İstinye University Center for Stem Cell and Tissue Engineering Research and Practice, İstanbul, Turkey,Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell), İstanbul, Turkey
| | - Filiz Tepeköy
- İstinye University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey,Altınbaş University Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| |
Collapse
|
5
|
Investigating the mincing method for isolation of adipose-derived stem cells from pregnant women fat. Cytotechnology 2017; 70:55-66. [PMID: 29234944 DOI: 10.1007/s10616-017-0162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 01/16/2023] Open
Abstract
The success of stem cell application in regenerative medicine, usually require a stable source of stem or progenitor cells. Fat tissue represents a good source of stem cells because it is rich in stem cells and there are fewer ethical issues related to the use of such stem cells, unlike embryonic stem cells. Therefore, there has been increased interest in adipose-derived stem cells (ADSCs) for tissue engineering applications. Here, we aim to provide an easy processing method for isolating adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery. We used a homogenizer to mince fat and compared the results with those obtained from the traditional cut method involving a sterile scalpel and forceps. Our results showed that our method provides another stable and quality source of stem cells that could be used in cases with a large quantity of fat. Furthermore, we found that pregnancy adipose-derived stem cells (P-ADSCs) could be maintained in vitro for extended periods with a stable population doubling and low senescence levels. P-ADSCs could also differentiate in vitro into adipogenic, osteogenic, chondrogenic, and insulin-producing cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirates, adipose tissues obtained from pregnant women contain multipotent cells with better proliferation and showed great promise for use in both stem cell banking studies as well as in stem cell therapy.
Collapse
|
6
|
Song K, Yan X, Li S, Zhang Y, Wang H, Wang L, Lim M, Liu T. Preparation and detection of calcium alginate/bone powder hybrid microbeads forin vitroculture of ADSCs. J Microencapsul 2015; 32:811-9. [DOI: 10.3109/02652048.2015.1094533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Kedong S, Wenfang L, Yanxia Z, Hong W, Ze Y, Mayasari L, Tianqing L. Dynamic Fabrication of Tissue-Engineered Bone Substitutes Based on Derived Cancellous Bone Scaffold in a Spinner Flask Bioreactor System. Appl Biochem Biotechnol 2014; 174:1331-1343. [DOI: 10.1007/s12010-014-1132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/30/2014] [Indexed: 12/29/2022]
|
8
|
Song K, Wang Z, Li W, Zhang C, Lim M, Liu T. In Vitro Culture, Determination, and Directed Differentiation of Adult Adipose-Derived Stem Cells Towards Cardiomyocyte-Like Cells Induced by Angiotensin II. Appl Biochem Biotechnol 2013; 170:459-70. [DOI: 10.1007/s12010-013-0210-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/18/2013] [Indexed: 10/27/2022]
|
9
|
Wang L, Song K, Qu X, Wang H, Zhu H, Xu X, Zhang M, Tang Y, Yang X. hTERT Gene Immortalized Human Adipose-Derived Stem Cells and its Multiple Differentiations: a Preliminary Investigation. Appl Biochem Biotechnol 2013; 169:1546-56. [DOI: 10.1007/s12010-012-0019-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/04/2012] [Indexed: 01/19/2023]
|