1
|
Narayanan Z, Glick BR. Biotechnologically Engineered Plants. BIOLOGY 2023; 12:biology12040601. [PMID: 37106801 PMCID: PMC10135915 DOI: 10.3390/biology12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
The development of recombinant DNA technology during the past thirty years has enabled scientists to isolate, characterize, and manipulate a myriad of different animal, bacterial, and plant genes. This has, in turn, led to the commercialization of hundreds of useful products that have significantly improved human health and well-being. Commercially, these products have been mostly produced in bacterial, fungal, or animal cells grown in culture. More recently, scientists have begun to develop a wide range of transgenic plants that produce numerous useful compounds. The perceived advantage of producing foreign compounds in plants is that compared to other methods of producing these compounds, plants seemingly provide a much less expensive means of production. A few plant-produced compounds are already commercially available; however, many more are in the production pipeline.
Collapse
Affiliation(s)
- Zareen Narayanan
- Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA 98011, USA
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L3G1, Canada
| |
Collapse
|
2
|
Sariyatun R, Florence, Kajiura H, Ohashi T, Misaki R, Fujiyama K. Production of Human Acid-Alpha Glucosidase With a Paucimannose Structure by Glycoengineered Arabidopsis Cell Culture. FRONTIERS IN PLANT SCIENCE 2021; 12:703020. [PMID: 34335667 PMCID: PMC8318038 DOI: 10.3389/fpls.2021.703020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 08/25/2023]
Abstract
Plant cell cultures have emerged as a promising platform for the production of biopharmaceutics due to their cost-effectiveness, safety, ability to control the cultivation, and secrete products into culture medium. However, the use of this platform is hindered by the generation of plant-specific N-glycans, the inability to produce essential N-glycans for cellular delivery of biopharmaceutics, and low productivity. In this study, an alternative acid-alpha glucosidase (GAA) for enzyme replacement therapy of Pompe disease was produced in a glycoengineered Arabidopsis alg3 cell culture. The N-glycan composition of the GAA consisted of a predominantly paucimannosidic structure, Man3GlcNAc2 (M3), without the plant-specific N-glycans. Supplementing the culture medium with NaCl to a final concentration of 50 mM successfully increased GAA production by 3.8-fold. GAA from an NaCl-supplemented culture showed a similar N-glycan profile, indicating that the NaCl supplementation did not affect N-glycosylation. The results of this study highlight the feasibility of using a glycoengineered plant cell culture to produce recombinant proteins for which M3 or mannose receptor-mediated delivery is desired.
Collapse
Affiliation(s)
- Ratna Sariyatun
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
| | - Florence
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
| | - Hiroyuki Kajiura
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Takao Ohashi
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
| | - Ryo Misaki
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuhito Fujiyama
- Laboratory of Applied Microbiology, International Center for Biotechnology, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Hintze S, Limmer S, Dabrowska-Schlepp P, Berg B, Krieghoff N, Busch A, Schaaf A, Meinke P, Schoser B. Moss-Derived Human Recombinant GAA Provides an Optimized Enzyme Uptake in Differentiated Human Muscle Cells of Pompe Disease. Int J Mol Sci 2020; 21:ijms21072642. [PMID: 32290314 PMCID: PMC7177967 DOI: 10.3390/ijms21072642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/22/2022] Open
Abstract
Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The result of the GAA deficiency is a ubiquitous lysosomal and non-lysosomal accumulation of glycogen. The most affected tissues are heart, skeletal muscle, liver, and the nervous system. Replacement therapy with the currently approved enzyme relies on M6P-mediated endocytosis. However, therapeutic outcomes still leave room for improvement, especially with regard to skeletal muscles. We tested the uptake, activity, and effect on glucose metabolism of a non-phosphorylated recombinant human GAA produced in moss (moss-GAA). Three variants of moss-GAA differing in glycosylation pattern have been analyzed: two with terminal mannose residues in a paucimannosidic (Man3) or high-mannose (Man 5) configuration and one with terminal N-acetylglucosamine residues (GnGn). Compared to alglucosidase alfa the moss-GAA GnGn variant showed increased uptake in differentiated myotubes. Moreover, incubation of immortalized muscle cells of Gaa-/- mice with moss-GAA GnGn led to similarly efficient clearance of accumulated glycogen as with alglucosidase alfa. These initial data suggest that M6P-residues might not always be necessary for the cellular uptake in enzyme replacement therapy (ERT) and indicate the potential of moss-GAA GnGn as novel alternative drug for targeting skeletal muscle in Pompe patients.
Collapse
Affiliation(s)
- Stefan Hintze
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (S.H.); (S.L.); (P.M.)
| | - Sarah Limmer
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (S.H.); (S.L.); (P.M.)
| | | | - Birgit Berg
- Greenovation Biotech GmbH, 79108 Freiburg, Germany; (P.D.-S.); (B.B.); (N.K.); (A.B.); (A.S.)
| | - Nicola Krieghoff
- Greenovation Biotech GmbH, 79108 Freiburg, Germany; (P.D.-S.); (B.B.); (N.K.); (A.B.); (A.S.)
| | - Andreas Busch
- Greenovation Biotech GmbH, 79108 Freiburg, Germany; (P.D.-S.); (B.B.); (N.K.); (A.B.); (A.S.)
| | - Andreas Schaaf
- Greenovation Biotech GmbH, 79108 Freiburg, Germany; (P.D.-S.); (B.B.); (N.K.); (A.B.); (A.S.)
| | - Peter Meinke
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (S.H.); (S.L.); (P.M.)
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, 80336 Munich, Germany; (S.H.); (S.L.); (P.M.)
- Correspondence: ; Tel.: +49-(0)89-4400-57400; Fax: +49-(0)89-4400-57402
| |
Collapse
|
4
|
Rodriguez-Hernandez M, Triggiani D, Ivison F, Demurtas OC, Illiano E, Marino C, Franconi R, Massa S. Expression of a Functional Recombinant Human Glycogen Debranching Enzyme (hGDE) in N. benthamiana Plants and in Hairy Root Cultures. Protein Pept Lett 2020; 27:145-157. [PMID: 31622193 DOI: 10.2174/0929866526666191014154047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/14/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glycogen storage disease type III (GSDIII, Cori/Forbes disease) is a metabolic disorder due to the deficiency of the Glycogen Debranching Enzyme (GDE), a large monomeric protein (about 176 kDa) with two distinct enzymatic activities: 4-α-glucantransferase and amylo-α-1,6-glucosidase. Several mutations along the amylo-alpha-1,6-glucosidase,4-alphaglucanotransferase (Agl) gene are associated with loss of enzymatic activity. The unique treatment for GSDIII, at the moment, is based on diet. The potential of plants to manufacture exogenous engineered compounds for pharmaceutical purposes, from small to complex protein molecules such as vaccines, antibodies and other therapeutic/prophylactic entities, was shown by modern biotechnology through "Plant Molecular Farming". OBJECTIVE AND METHODS In an attempt to develop novel protein-based therapeutics for GSDIII, the Agl gene, encoding for the human GDE (hGDE) was engineered for expression as a histidinetagged GDE protein both in Nicotiana benthamiana plants by a transient expression approach, and in axenic hairy root in vitro cultures (HR) from Lycopersicum esculentum and Beta vulgaris. RESULTS In both plant-based expression formats, the hGDE protein accumulated in the soluble fraction of extracts. The plant-derived protein was purified by affinity chromatography in native conditions showing glycogen debranching activity. CONCLUSION These investigations will be useful for the design of a new generation of biopharmaceuticals based on recombinant GDE protein that might represent, in the future, a possible therapeutic option for GSDIII.
Collapse
Affiliation(s)
- Meilyn Rodriguez-Hernandez
- Center for Genetic Engineering and Biotechnology (CIGB), Direction of Agricultural Biotechnology, Havana,Cuba
| | - Doriana Triggiani
- Italian Glycogen Storage Disease Association (AIG) NPO, Assago, Milan, Italy
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Fiona Ivison
- Department of Biochemistry, Manchester University NHS Foundation Trust, Manchester,United Kingdom
| | - Olivia C Demurtas
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| | - Elena Illiano
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Carmela Marino
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Rosella Franconi
- Department of Sustainability (SSPT), Biomedical Technologies Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development ENEA, Rome,Italy
| | - Silvia Massa
- Department of Sustainability (SSPT), Biotechnology Laboratory, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome,Italy
| |
Collapse
|
5
|
Lakshmanasenthil S, Vinoth Kumar T, Geetharamani D, Shanthi Priya S. α-Amylase and α-Glucosidase InhibitoryActivity of Tetradecanoic Acid (TDA) from Sargassum wightii with Relevance to Type 2 Diabetes Mellitus. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/22311866.2018.1474803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S. Lakshmanasenthil
- CMS College of Science and Commerce, Chinnavedampati (P.O.), Coimbatore, Tamil Nadu, India
- CAS in Marine Biology, Annamalai University, Parangipettai, Chidambaram, Tamil Nadu, India
| | - T. Vinoth Kumar
- CMS College of Science and Commerce, Chinnavedampati (P.O.), Coimbatore, Tamil Nadu, India
| | - D. Geetharamani
- Dr. N.G.P. Colleges of Arts and Science, Coimbatore, Tamil Nadu, India
| | - S. Shanthi Priya
- CMS College of Science and Commerce, Chinnavedampati (P.O.), Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Abstract
Lysosomal storage diseases are a group of rare, inborn, metabolic errors characterized by deficiencies in normal lysosomal function and by intralysosomal accumulation of undegraded substrates. The past 25 years have been characterized by remarkable progress in the treatment of these diseases and by the development of multiple therapeutic approaches. These approaches include strategies aimed at increasing the residual activity of a missing enzyme (enzyme replacement therapy, hematopoietic stem cell transplantation, pharmacological chaperone therapy and gene therapy) and approaches based on reducing the flux of substrates to lysosomes. As knowledge has improved about the pathophysiology of lysosomal storage diseases, novel targets for therapy have been identified, and innovative treatment approaches are being developed.
Collapse
|