1
|
Yu J, Fu Y, Tang X, Bao W, Li Z, Wang X, Wang X. Enrichment of EPA and DHA in glycerides by selective enzymatic ethanolysis. Food Chem 2025; 463:141226. [PMID: 39270490 DOI: 10.1016/j.foodchem.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
It has been reported that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides have various biological functions. This study presents an effective method for enriching glycerides rich in EPA and DHA through lipase-catalyzed alcoholysis. The results showed that Eversa® Transform 2.0 had the strongest discrimination against DHA and EPA in alcoholysis, which was verified by molecular docking. Additionally, selectivity of the lipase and ratio of DHA and EPA in glyceride products were significantly affected by alcohol type. Under the optimal conditions, the contents of EPA and DHA in glycerides after ethanolysis reached 12.91 % and 55.40 %, respectively, with a DHA yield of 79.22 %. In this study, an interesting finding was that Eversa® Transform 2.0 could effectively differentiate EPA and DHA during alcoholysis to allow us to prepare DHA-enriched glycerides and EPA-enriched ethyl esters after removing saturated and monounsaturated ethyl esters.
Collapse
Affiliation(s)
- Junwen Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yijie Fu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiao Tang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Weijia Bao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Zongrun Li
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Xiaowen Wang
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Effciency in Loess Plateau, Shanxi Agricultural University, Taigu, Taiyuan, Shanxi, 030801, PR China.
| |
Collapse
|
2
|
Dong Z, Jin J, Wei W, Wang X, Wu G, Wang X, Jin Q. Fabrication of immobilized lipases from Candida rugosa on hierarchical mesoporous silica for enzymatic enrichment of ω-3 polyunsaturated fatty acids by selective hydrolysis. Food Chem X 2024; 22:101434. [PMID: 38779499 PMCID: PMC11108833 DOI: 10.1016/j.fochx.2024.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jun Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Wei
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaosan Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Santos HO, May TL, Bueno AA. Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits. Front Nutr 2023; 10:1107475. [PMID: 37143475 PMCID: PMC10153001 DOI: 10.3389/fnut.2023.1107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) play a significant role in the prevention and management of cardiometabolic diseases associated with a mild chronic pro-inflammatory background, including type 2 diabetes, hypertension, hypertriglyceridaemia, and fatty liver disease. The effects of n-3 PUFA supplements specifically, remain controversial regarding reducing risks of cardiovascular events. n-3 PUFA supplements come at a cost for the consumer and can result in polypharmacy for patients on pharmacotherapy. Sardines are a well-known, inexpensive source of n-3 PUFA and their consumption could reduce the need for n-3 PUFA supplementation. Moreover, sardines contain other cardioprotective nutrients, although further insights are crucial to translate a recommendation for sardine consumption into clinical practice. The present review discusses the matrix of nutrients contained in sardines which confer health benefits for cardiometabolism, beyond n-3 PUFA. Sardines contain calcium, potassium, magnesium, zinc, iron, taurine, arginine and other nutrients which together modulate mild inflammation and exacerbated oxidative stress observed in cardiovascular disease and in haemodynamic dysfunction. In a common serving of sardines, calcium, potassium, and magnesium are the minerals at higher amounts to elicit clinical benefits, whilst other nutrients are present in lower but valuable amounts. A pragmatic approach towards the consumption of such nutrients in the clinical scenario should be adopted to consider the dose-response relationship effects on physiological interactions. As most recommendations currently available are based on an indirect rationale of the physiological actions of the nutrients found in sardines, randomised clinical trials are warranted to expand the evidence on the benefits of sardine consumption.
Collapse
Affiliation(s)
- Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
- *Correspondence: Heitor O. Santos,
| | - Theresa L. May
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Allain A. Bueno
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
4
|
Zhang M, Wang P, Jin D, Jian S, Wu J, Huang M, Xie H, Zhao Q, Yang H, Luo P, Yuan H, Xue J, Shen Q. Chain-locked precursor ion scanning based HPLC–MS/MS for in-depth molecular analysis of lipase-catalyzed transesterification of structured phospholipids containing ω-3 fatty acyl chains. Food Chem 2023; 399:133982. [DOI: 10.1016/j.foodchem.2022.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
5
|
Xie D, Chen Y, Yu J, Yang Z, Wang X, Wang X. Progress in enrichment of n-3 polyunsaturated fatty acid: a review. Crit Rev Food Sci Nutr 2022; 63:11310-11326. [PMID: 35699651 DOI: 10.1080/10408398.2022.2086852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
n-3 Polyunsaturated fatty acids (n-3 PUFA) has been widely used in foods, and pharmaceutical products due to its beneficial effects. The content of n-3 PUFA in natural oils is usually low, which decreases its added value. Thus, there is an increasing demand on the market for n-3 PUFA concentrates. This review firstly introduces the differences in bioavailability and oxidative stability between different types of PUFA concentrate (free fatty acid, ethyl ester and acylglycerol), and then provides a comprehensive discussion of different methods for enrichment of lipids with n-3 PUFA including physical-chemical methods and enzymatic methods. Lipases used for catalyzing esterification, transesterification and hydrolysis reactions play an important role in the production of highly enriched various types of n-3 PUFA concentrates. Lipase-catalyzed alcoholysis or hydrolysis reactions are the mostly employed method to prepare high-quality n-3 PUFA of structural acylglycerols. Although many important advantages offered by lipases in enrichment of n-3 PUFA, the high cost of enzyme limits its industrial-scale production. Further research should focus on looking for biological enzymes with extraordinary catalytic ability and clear selectivity. Other novel technologies such as protein engineering and immobilization may be needed to modify lipases to improve its selectivity, catalytic ability and reuse.
Collapse
Affiliation(s)
- Dan Xie
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
| | - Ye Chen
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Junwen Yu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, PR China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Zhuangzhuang Yang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiaosan Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
6
|
Continuous Production of DHA and EPA Ethyl Esters via Lipase-Catalyzed Transesterification in an Ultrasonic Packed-Bed Bioreactor. Catalysts 2022. [DOI: 10.3390/catal12040404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ethyl esters of omega-3 fatty acids are active pharmaceutical ingredients used for the reduction in triglycerides in the treatment of hyperlipidemia. Herein, an ultrasonic packed-bed bioreactor was developed for continuous production of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) ethyl esters from DHA+EPA concentrate and ethyl acetate (EA) using an immobilized lipase, Novozym® 435, as a biocatalyst. A three-level–two-factor central composite design combined with a response surface methodology (RSM) was employed to evaluate the packed-bed bioreactor with or without ultrasonication on the conversion of DHA + EPA ethyl ester. The highest conversion of 99% was achieved with ultrasonication at the condition of 1 mL min−1 flow rate and 100 mM DHA + EPA concentration. Our results also showed that the ultrasonic packed-bed bioreactor has a higher external mass transfer coefficient and a lower external substrate concentration on the surface of the immobilized enzyme. The effect of ultrasound was also demonstrated by a kinetic model in the batch reaction that the specificity constant (V′max/K2) in the ultrasonic bath was 8.9 times higher than that of the shaking bath, indicating the ultrasonication increased the affinity between enzymes and substrates and, therefore, increasing reaction rate. An experiment performed under the highest conversion conditions showed that the enzyme in the bioreactor remained stable at least for 5 days and maintained a 98% conversion.
Collapse
|
7
|
Zhang M, Lu W, Yang H, Zheng P, Xie H, Chen K, Xue J, Shen Q. Lipidomics study on the molecular changes of eicosapentaenoic and docosahexaenoic acyl structured glycerides during enzyme-catalysis and chemocatalysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Wang X, Zhao X, Qin X, Zhao Z, Yang B, Wang Y. Properties of immobilized MAS1-H108A lipase and its application in the efficient synthesis of n-3 PUFA-rich triacylglycerols. Bioprocess Biosyst Eng 2020; 44:575-584. [PMID: 33216225 DOI: 10.1007/s00449-020-02470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
This study reports the properties of immobilized MAS1-H108A lipase from marine Streptomyces sp. strain W007 on XAD1180 resin and its application in the synthesis of n-3 polyunsaturated fatty acids (PUFA)-rich triacylglycerols (TAG) for the first time. It was found that the optimal temperature and pH for both immobilized MAS1-H108A lipase and free lipase MAS1-H108A were 70 °C and 7.0, respectively. However, immobilized MAS1-H108A lipase exhibited higher thermostability when compared with free lipase MAS1-H108A. It was also interesting that both immobilized MAS1-H108A lipase and free lipase MAS1-H108A showed no regiospecificity in the hydrolysis of triolein. Subsequently, immobilized MAS1-H108A lipase and free lipase MAS1-H108A were employed to catalyze glycerolysis of n-3 PUFA-rich ethyl esters (EE) and esterification of n-3 PUFA with glycerol under vacuum in the solvent-free system. The results showed that n-3 PUFA-rich TAG were synthesized efficiently by non-regiospecific immobilized MAS1-H108A lipase and TAG contents separately reached 92.07% and 76.13% during the esterification and glycerolysis reactions, which were significantly higher than those (71.82% and 39.62%, respectively) obtained by free lipase MAS1-H108A. Besides, TAG exhibited similar n-3 PUFA composition to the substrate. These findings indicated that non-regiospecific immobilized MAS1-H108A lipase is a promising and efficient biocatalyst for the industrial synthesis of n-3 PUFA-rich TAG.
Collapse
Affiliation(s)
- Xiumei Wang
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoxu Zhao
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Kuo CH, Huang CY, Chen JW, Wang HMD, Shieh CJ. Concentration of Docosahexaenoic and Eicosapentaenoic Acid from Cobia Liver Oil by Acetone Fractionation of Fatty Acid Salts. Appl Biochem Biotechnol 2020; 192:517-529. [DOI: 10.1007/s12010-020-03341-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
|
10
|
Xia Q, Akanbi TO, Li R, Wang B, Yang W, Barrow CJ. Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Food Funct 2019; 10:3142-3149. [PMID: 31157352 DOI: 10.1039/c9fo00668k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this work, Candida antarctica lipase A was applied to selectively remove saturated fatty acids from palm oil to prepare palm oil acylglycerol concentrate (POAC), where palmitic acid decreased from 40.0 to 28.7% and oleic acid increased from 40.0 to 50.5% after 3 h of hydrolysis. Lipozyme RMIM from Rhizomucor miehei was then used to incorporate either alpha linolenic acid (ALA) or eicosapentaenoic acid (EPA) into the resulting POAC. Optimum omega-3 incorporation was achieved when POAC to omega-3 ratio was 6 : 3, reaction temperature was 40 °C and reaction time was 18 h. Under these conditions, the ALA content in the separated ALA incorporated structured lipid (POAC-ALA) was 27.1%, and the EPA content in the EPA incorporated structured lipids (POAC-EPA) was 30.9%. The formed structured lipids had lower levels of saturated fatty acids, and significantly lower melting points, in both cases below 8 °C. The enzymatic process developed produces new structured lipids, with lower saturated fat and higher omega-3, with potential as a healthy palm oil derived lipid ingredient.
Collapse
Affiliation(s)
- Qiuyu Xia
- Coconuts Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan 571339, P.R China
| | | | | | | | | | | |
Collapse
|
11
|
Zhang M, Yu XW, Xu Y, Guo RT, Swapna GVT, Szyperski T, Hunt JF, Montelione GT. Structural Basis by Which the N-Terminal Polypeptide Segment of Rhizopus chinensis Lipase Regulates Its Substrate Binding Affinity. Biochemistry 2019; 58:3943-3954. [PMID: 31436959 PMCID: PMC7195698 DOI: 10.1021/acs.biochem.9b00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Rey-Ting Guo
- Industrial Enzyme National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260. USA
| | - John F. Hunt
- Department of Biological Science, Columbia University, New York, New York 10027, USA
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
12
|
Neia VJC, da Silva dos Santos PD, Galuch MB, dos Santos Pizzo J, Ito AAR, Santos OO, Visentainer JEL, Visentainer JV. Fatty Acid Composition and Lipid Profile of Oral/Enteral Nutrition Supplements Available on the Brazilian Market. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Hosseini H, Ghorbani M, Jafari SM, Sadeghi Mahoonak A. Encapsulation of EPA and DHA concentrate from Kilka fish oil by milk proteins and evaluation of its oxidative stability. Journal of Food Science and Technology 2018; 56:59-70. [PMID: 30728547 DOI: 10.1007/s13197-018-3455-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 11/28/2022]
Abstract
Glyceride product from lipase-catalyzed hydrolysis of fish oil (large-scale) is a rich source of n-3 PUFA (49.62%); but it is prone to oxidation. Our aim was to encapsulate this product by a mixture of whey powder and sodium caseinate (4:1) as a new wall material. The emulsification was done using ultrasonication in different powers (180-380 W) and times (1-3 min) and, then, the emulsions were freeze-dried to obtain the powders. Based on encapsulation efficiency, sonication (88-94%) could inhibit the presence of oil at the surface of powder particles in comparison with the samples prepared without sonication (control, 68%). The highest oxidation rate and the lowest L-value were found for the unencapsulated glyceride product stored in air atmosphere followed by the control powder, the powders from sonication treatment and the unencapsulated glyceride product under N2, respectively. In the case of oxidative stability of the samples, the sonication time was more significant than sonication power. According to our results, a sonication treatment of 380 W for 3 min was recommended to prepare parent emulsions during fish oil encapsulation.
Collapse
Affiliation(s)
- Hamed Hosseini
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Ghorbani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alireza Sadeghi Mahoonak
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Xu J, Zhu Y, Li H, Chen L, Chen W, Cui M, Han L, Hou W, Li D. Alanine mother liquor as a nitrogen source for docosahexaenoic acid production by Schizochytrium sp. B4D1. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Hosseini H, Ghorbani M, Jafari SM, Mahoonak AS. Investigating the effect of lipase from Candida rugosa on the production of EPA and DHA concentrates from Kilka fish (Clupeonella cultiventris caspia). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Haq M, Park SK, Kim MJ, Cho YJ, Chun BS. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis. J Food Drug Anal 2018; 26:545-556. [PMID: 29567223 PMCID: PMC9322207 DOI: 10.1016/j.jfda.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) rich 2-monoacylglycerols (2-MAG), omega-3 polyunsaturated free fatty acids (ω-3 PUFFAs) concentrate, and PUFA enriched acylglycerols were prepared from salmon frame bone oil (SFBO) by enzymatic alcoholysis, urea complexation, and enzymatic esterification, respectively. The yields of 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols were 40.25, 16.52, and 15.65%, respectively. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed darker red color than SFBO and 2-MAG due to aggregation of astaxanthin pigment in ω-3 PUFFAs concentrate during urea complexation. The viscosity and specific gravity of SFBO and PUFA enriched acylglycerols showed similar values whereas 2-MAG and ω-3 PUFFAs showed significantly (p < 0.05) lower values. Stability parameters like acid value, peroxide value, free fatty acid value, and p-anisidine value of SFBO and ω-3 PUFAs concentrates were within acceptable limits except extreme high acid value and free fatty acid value of ω-3 PUFFAs concentrate. Thermogravimetric analysis showed similar and higher thermal stability of SFBO and PUFA enriched acylglycerols than 2-MAG and ω-3 PUFFAs concentrate. The ω-3 PUFAs content in 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols was increased to 20.81, 52.96, and 51.74% respectively from 13.54% in SFBO. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed higher DPPH and ABTS radical scavenging activity than SFBO and 2-MAG. The results obtained from this study suggest the production of PUFA enriched acylglycerols rich in ω-3 PUFAs supplements from fish oil for human and pet animals.
Collapse
|
17
|
Satari B, Karimi K. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Appl Microbiol Biotechnol 2017; 102:1097-1117. [DOI: 10.1007/s00253-017-8691-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
|
18
|
Purification and Characterization of a Lipase with High Thermostability and Polar Organic Solvent-Tolerance from Aspergillus niger AN0512. Lipids 2015. [DOI: 10.1007/s11745-015-4052-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Kim BH, Akoh CC. Recent Research Trends on the Enzymatic Synthesis of Structured Lipids. J Food Sci 2015; 80:C1713-24. [PMID: 26189491 DOI: 10.1111/1750-3841.12953] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
Structured lipids (SLs) are lipids that have been chemically or enzymatically modified from their natural biosynthetic form. Because SLs are made to possess desired nutritional, physicochemical, or textural properties for various applications in the food industry, many research activities have been aimed at their commercialization. The production of SLs by enzymatic procedures has a great potential in the future market because of the specificity of lipases and phospholipases used as the biocatalysts. The aim of this review is to provide concise information on the recent research trends on the enzymatic synthesis of SLs of commercial interest, such as medium- and long-chain triacylglycerols, human milk fat substitutes, cocoa butter equivalents, trans-free or low-trans plastic fats (such as margarines and shortenings), low-calorie fats/oils, health-beneficial fatty acid-rich fats/oils, mono- or diacylglycerols, and structurally modified phospholipids. This limited review covers 108 research articles published between 2010 and 2014 which were searched in Web of Science.
Collapse
Affiliation(s)
- Byung Hee Kim
- Dept. of Food Science and Technology, Chung-Ang Univ, Anseong, 456-756, Republic of Korea
| | - Casimir C Akoh
- Dept. of Food Science and Technology, The Univ. of Georgia, Food Science Building, Athens, GA, 30602-2610, U.S.A
| |
Collapse
|