1
|
Wang X, Li J, Lin X, Zhang Y. The s-oph enzyme for efficient degradation of polyvinyl alcohol: soluble expression and catalytic properties. Mol Biol Rep 2023; 50:8523-8535. [PMID: 37644367 DOI: 10.1007/s11033-023-08712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Polyvinyl alcohol (PVA) is one of the most widely used water-soluble polymers with remarkable mechanical properties. However, water-soluble polymers are among the major organic pollutants of streams, river, and marine ecosystems. Once dispersed in aqueous systems, they can directly interfere with the life cycle of aquatic organisms via direct toxic effects. There is thus an urgent need for microorganisms or enzymes that can efficiently degrade them. Oxidized PVA hydrolase plays an important role in the pathway of PVA biodegradation. It is the key enzyme in the second step of the pathway for complete degradation of PVA. METHODS AND RESULTS The s-oph gene was cloned from the laboratory-isolated strain Sphingopyxis sp. M19. This gene was expressed in the Escherichia coli system pET32a/s-oph expression vector, with the products forming an inclusion body. By binding with a molecular chaperone, pET32a/s-oph/BL21 (DE3)/pGro7 was successfully constructed, which enabled the s-oph gene to be solubly expressed in E. coli. The protein encoded by the s-oph gene was purified at a yield of 16.8 mg L-1, and its catalytic activity reached 852.71 U mg-1. In the s-oph enzyme reaction system, the efficiency of PVA degradation was increased to 233.5% compared with that of controls. CONCLUSIONS The s-oph enzyme exhibited the characteristics of being able to degrade PVA with high efficiency, specificity, and stability. This enzyme has good potential for practical application in ameliorating plastic pollution and protecting the environment.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Jiaxuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Xiaoshan Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Yi Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Chen R, Wen Y, Yu E, Yang J, Liang Y, Song D, Wen Y, Wu R, Zhao Q, Du S, Yan Q, Han X, Cao S, Huang X. Identification of an immunodominant neutralizing epitope of porcine Deltacoronavirus spike protein. Int J Biol Macromol 2023:125190. [PMID: 37276902 DOI: 10.1016/j.ijbiomac.2023.125190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 μg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.
Collapse
Affiliation(s)
- Rui Chen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yimin Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Enbo Yu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Junpeng Yang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yixiao Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Daili Song
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinfeng Han
- Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station for Veterinary Drugs and Veterinary Diagnostic Technology, Ministry of Agriculture, Chengdu, 611130, China.
| |
Collapse
|
3
|
von Haugwitz G, Donnelly K, Di Filippo M, Breite D, Phippard M, Schulze A, Wei R, Baumann M, Bornscheuer UT. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew Chem Int Ed Engl 2023; 62:e202216962. [PMID: 36637456 DOI: 10.1002/anie.202216962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
Collapse
Affiliation(s)
- Gerlis von Haugwitz
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Kian Donnelly
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mara Di Filippo
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Max Phippard
- Aquapak Polymers Ltd, Hollymoor Point, Hollymoor Way, Rubery, B31 5HE, Birmingham, UK
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Marcus Baumann
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
4
|
Mohamed H, Shah AM, Nazir Y, Naz T, Nosheen S, Song Y. Biodegradation of poly (vinyl alcohol) by an orychophragmus rhizosphere-associated fungus Penicillium brevicompactum OVR-5, and its proposed PVA biodegradation pathway. World J Microbiol Biotechnol 2021; 38:10. [PMID: 34866162 DOI: 10.1007/s11274-021-03197-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
In recent years, the utilisation of endophytes has emerged as a promising biological treatment technology for the degradation of plastic wastes such as biodegradation of synthetic plastics. This study, therefore, aimed to explore and extensively screen endophytic fungi (from selected plants) for efficient in vitro polyvinyl alcohol (PVA) biodegradation. In total, 76 endophytic fungi were isolated and cultivated on a PVA screening agar medium. Among these fungi, 10 isolates showed potential and were subsequently identified based on phenotypical characteristics, ITS ribosomal gene sequences, and phylogenetic analyses. Four strains exhibited a maximum level of PVA-degradation in the liquid medium when cultivated for 10 days at 28 °C and 150 rpm. These strains showed varied PVA removal rates of 81% (Penicillium brevicompactum OVR-5), 67% (Talaromyces verruculosus PRL-2), 52% (P. polonicum BJL-9), and 41% (Aspergillus tubingensis BJR-6) respectively. The most promising PVA biodegradation isolate 'OVR-5', with an optimal pH at 7.0 and optimal temperature at 30 °C, produced lipase, manganese peroxidase, and laccase enzymes. Based on analyses of its metabolic intermediates, as identified with GC-MS, we proposed the potential PVA degradation pathway of OVR-5. Biodegradation results were confirmed through scanning electron microscopy and Fourier transform infrared spectroscopy. This study provides the first report on an endophytic P. brevicompactum strain (associated with Orychophragmus violaceus) that has a great ability for PVA degradation providing more insight on potential fungus-based applications in plastic waste degradation.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Aabid Manzoor Shah
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yusuf Nazir
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.,Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Tahira Naz
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Shaista Nosheen
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Yuanda Song
- Colin Ratledge Center of Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
5
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Bian H, Cao M, Wen H, Tan Z, Jia S, Cui J. Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int J Biol Macromol 2019; 124:10-16. [DOI: 10.1016/j.ijbiomac.2018.11.204] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/15/2023]
|
7
|
Bioinformatics Analysis and Characterization of Highly Efficient Polyvinyl Alcohol (PVA)-Degrading Enzymes from the Novel PVA Degrader Stenotrophomonas rhizophila QL-P4. Appl Environ Microbiol 2017; 84:AEM.01898-17. [PMID: 29079625 DOI: 10.1128/aem.01898-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 01/24/2023] Open
Abstract
Polyvinyl alcohol (PVA) is used widely in industry, and associated environmental pollution is a serious problem. Herein, we report a novel, efficient PVA degrader, Stenotrophomonas rhizophila QL-P4, isolated from fallen leaves from a virgin forest in the Qinling Mountains. The complete genome was obtained using single-molecule real-time (SMRT) technology and corrected using Illumina sequencing. Bioinformatics analysis revealed eight PVA/vinyl alcohol oligomer (OVA)-degrading genes. Of these, seven genes were predicted to be involved in the classic intracellular PVA/OVA degradation pathway, and one (BAY15_3292) was identified as a novel PVA oxidase. Five PVA/OVA-degrading enzymes were purified and characterized. One of these, BAY15_1712, a PVA dehydrogenase (PVADH), displayed high catalytic efficiency toward PVA and OVA substrate. All reported PVADHs only have PVA-degrading ability. Most importantly, we discovered a novel PVA oxidase (BAY15_3292) that exhibited higher PVA-degrading efficiency than the reported PVADHs. Further investigation indicated that BAY15_3292 plays a crucial role in PVA degradation in S. rhizophila QL-P4. Knocking out BAY15_3292 resulted in a significant decline in PVA-degrading activity in S. rhizophila QL-P4. Interestingly, we found that BAY15_3292 possesses exocrine activity, which distinguishes it from classic PVADHs. Transparent circle experiments further proved that BAY15_3292 greatly affects extracellular PVA degradation in S. rhizophila QL-P4. The exocrine characteristics of BAY15_3292 facilitate its potential application to PVA bioremediation. In addition, we report three new efficient secondary alcohol dehydrogenases (SADHs) with OVA-degrading ability in S. rhizophila QL-P4; in contrast, only one OVA-degrading SADH was reported previously.IMPORTANCE With the widespread application of PVA in industry, PVA-related environmental pollution is an increasingly serious issue. Because PVA is difficult to degrade, it accumulates in aquatic environments and causes chronic toxicity to aquatic organisms. Biodegradation of PVA, as an economical and environment-friendly method, has attracted much interest. To date, effective and applicable PVA-degrading bacteria/enzymes have not been reported. Herein, we report a new efficient PVA degrader (S. rhizophila QL-P4) that has five PVA/OVA-degrading enzymes with high catalytic efficiency, among which BAY15_1712 is the only reported PVADH with both PVA- and OVA-degrading abilities. Importantly, we discovered a novel PVA oxidase (BAY15_3292) that is not only more efficient than other reported PVA-degrading PVADHs but also has exocrine activity. Overall, our findings provide new insight into PVA-degrading pathways in microorganisms and suggest S. rhizophila QL-P4 and its enzymes have the potential for application to PVA bioremediation to reduce or eliminate PVA-related environmental pollution.
Collapse
|
8
|
Ben Halima N. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 2016. [DOI: 10.1039/c6ra05742j] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Poly(vinyl alcohol) is a promising class of synthetic polymer biodegradable under a two-step metabolism consisting of an oxidation and hydrolysis.
Collapse
|