1
|
Li Z, Li D, Pan D, Xia Q, Sun Y, Du L, He J, Zhou C, Geng F, Cao J. Insights into the mechanism of extracellular proteases from Penicillium on myofibrillar protein hydrolysis and volatile compound evolutions. Food Res Int 2024; 175:113774. [PMID: 38129063 DOI: 10.1016/j.foodres.2023.113774] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
To investigate the mechanism of Penicillium proteases on the hydrolysis of myofibrillar protein (MP) and volatile compound evolutions, enzymatic characteristics of Penicillium proteases, hydrolysis capacities for MP, interactions between Penicillium proteases and MP, and profile changes of volatile compounds were investigated. P. aethiopicum (PA) and P. chrysogenum (PC) proteases showed the largest hydrolysis activities at pH 9.0 and 7.0, and were identified as alkaline serine protease and serine protease by LC-MS/MS, respectively. The proteases of PA and PC significantly degraded myosin and actin, and PA protease showed higher hydrolysis capacity for myosin than that of PC protease, which was confirmed by higher proteolysis index (56.06 %) and lower roughness (3.99 nm) of MP after PA treatment. Molecular docking revealed that hydrogen bond and hydrophobic interaction were the major interaction forces of Penicillium proteases with myosin and actin, and PA protease showed more binding sites with myosin compared with PC protease. The total content of free amino acids increased to 6.02-fold for PA treatment and to 5.51-fold for PC treatment after 4 h hydrolysis of MP, respectively. GC-MS showed that aromatic aldehydes and pyrazines in PA showed the largest increase compared with the control and PC during the hydrolysis of MP. Correlation analysis demonstrated that Phe, Leu and Ile were positively related with the accumulation of benzaldehyde, benzeneacetaldehyde, 2,4-dimethyl benzaldehyde and 2,5-dimethyl pyrazine.
Collapse
Affiliation(s)
- Zimu Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Danni Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Lihui Du
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jun He
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province; College of Food Science and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Nguyen TTT, Kang KH, Kim DH, Kim SJ, Mun HY, Cheon W, Lee HB. Additions to the Knowledge of the Fungal Order Eurotiales in Korea: Eight Undescribed Species. MYCOBIOLOGY 2023; 51:417-435. [PMID: 38179116 PMCID: PMC10763837 DOI: 10.1080/12298093.2023.2290759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Eurotiales is a relatively large order of Ascomycetes, well-known for their ability to produce secondary metabolites with potential beneficial applications. To understand their diversity and distribution, different environmental sources including soil, freshwater, insect, and indoor air were investigated. Eight strains of Eurotiales were isolated and identified based on their morphological characters and a multi-gene phylogenetic analysis of the ITS, BenA, CaM, and RPB2 regions. We identified eight taxa that were previously not reported from Korea: Aspergillus baeticus, A. griseoaurantiacus, A. spinulosporus, Penicillium anthracinoglaciei, P. labradorum, P. nalgiovense, Talaromyces atroroseus, and T. georgiensis. Detailed descriptions, illustrations, and phylogenetic tree for the eight new records species are presented, and information regarding the records is also discussed.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Ki Hyun Kang
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Su Jin Kim
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| | - Hye Yeon Mun
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Wonsu Cheon
- Microbial Research Department, Fungal Research Team, Nakdonggang National Institute of Biological Resources, Sangju, South Korea
| | - Hyang Burm Lee
- Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Environmental Microbiology Lab, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
3
|
Pawar KS, Singh PN, Singh SK. Fungal alkaline proteases and their potential applications in different industries. Front Microbiol 2023; 14:1138401. [PMID: 37065163 PMCID: PMC10098022 DOI: 10.3389/fmicb.2023.1138401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
The consumption of various enzymes in industrial applications around the world has increased immensely. Nowadays, industries are more focused on incorporating microbial enzymes in multiple processes to avoid the hazardous effects of chemicals. Among these commercially exploited enzymes, proteases are the most abundantly used enzymes in different industries. Numerous bacterial alkaline proteases have been studied widely and are commercially available; however, fungi exhibit a broader variety of proteases than bacteria. Additionally, since fungi are often recognized as generally regarded as safe (GRAS), using them as enzyme producers is safer than using bacteria. Fungal alkaline proteases are appealing models for industrial use because of their distinct spectrum of action and enormous diversity in terms of being active under alkaline range of pH. Unlike bacteria, fungi are less studied for alkaline protease production. Moreover, group of fungi growing at alkaline pH has remained unexplored for their capability for the production of commercially valuable products that are stable at alkaline pH. The current review focuses on the detailed classification of proteases, the production of alkaline proteases from different fungi by fermentation (submerged and solid–state), and their potential applications in detergent, leather, food, pharmaceutical industries along with their important role in silk degumming, waste management and silver recovery processes. Furthermore, the promising role of alkali–tolerant and alkaliphilic fungi in enzyme production has been discussed briefly. This will highlight the need for more research on fungi growing at alkaline pH and their biotechnological potential.
Collapse
|
4
|
Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol 2022; 22:36. [PMID: 36443757 PMCID: PMC9703648 DOI: 10.1186/s12896-022-00768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dead swine carcass composting is an excellent method for harmless treatment and resource utilization of swine carcass. However, poor biodegradation ability of traditional composting results in poor harmless treatment effect. Researches report that the biodegradation ability of composting can be improved by inoculation with enzyme-producing microorganisms or by inoculation with enzyme preparations. At present, the researches on improving the efficiency of dead swine carcass composting by inoculating enzyme-producing microorganisms have been reported. However, no work has been reported on the development of enzyme preparations for dead swine carcass composting. METHODOLOGY The protease-producing strain was isolated by casein medium, and was identified by 16 S rRNA gene sequencing. The optimal fermentation conditions for maximum protease production were gradually optimized by single factor test. The extracellular protease was purified by ammonium sulfate precipitation and Sephadex G-75 gel exclusion chromatography. The potential for composting applications of the purified protease was evaluated by characterization of its biochemical properties. And based on amino acid sequence analysis, molecular docking and inhibition test, the catalytic hydrolysis mechanism of the purified protease was elucidated. RESULTS In this study, a microbial protease was developed for swine carcass composting. A protease-producing strain DB1 was isolated from swine carcass compositing and identified as Serratia marcescen. Optimum fermentation conditions for maximum protease production were 5 g/L glucose, 5 g/L urea, 1.5 mmol/L Mg2+, initial pH-value 8, inoculation amount 5%, incubation temperature 30 °C and 60 h of fermentation time. The specific activity of purified protease reached 1982.77 U/mg, and molecular weight of the purified protease was 110 kDa. Optimum pH and temperature of the purified protease were 8 and 50 °C, respectively, and it had good stability at high temperature and in alkaline environments. The purified protease was a Ser/Glu/Asp triad serine protease which catalyzed substrate hydrolysis by Glu, Arg, Ser, Asp and Tyr active residues. CONCLUSIONS In general, the microbial protease developed in this study was suitable for industrial production and has the potential to enhance composting at thermophilic stage. Moreover, the catalytic hydrolysis mechanism of the protease was further analyzed in this study.
Collapse
Affiliation(s)
- Wei Zhai
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xintian Li
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Xinran Duan
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Changlong Gou
- grid.411647.10000 0000 8547 6673College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000 Inner Mongolia China
| | - Lixia Wang
- grid.9227.e0000000119573309Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 Jilin Province China
| | - Yunhang Gao
- grid.464353.30000 0000 9888 756XCollege of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
5
|
Kumari M, Padhi S, Sharma S, Phukon LC, Singh SP, Rai AK. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 2021; 11:479. [PMID: 34790503 DOI: 10.1007/s13205-021-03008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.
Collapse
Affiliation(s)
- Megha Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
6
|
Duarte Neto JMW, Silva JDC, Sousa F, Gonçalves OSL, Wanderley MCDA, Sarmento B, Lima CDA, Neves-Petersen MT, Porto ALF. Structural and functional analysis of broad pH and thermal stable protease from Penicillium aurantiogriseum URM 4622. Prep Biochem Biotechnol 2021; 52:578-589. [PMID: 34533419 DOI: 10.1080/10826068.2021.1972429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to better characterize a recently purified stable extracellular alkaline peptidase produced by Penicillium aurantiogriseum (URM 4622) through fluorescence spectroscopy, far-UV circular dichroism, kinetic and thermodynamic models to understand its' structure-activity and denaturation. Fluorescence data showed that changing pH leads to tryptophan residues exposure to more hydrophilic environments at optimum activity pH 9.0 and 10.0. When thermally treated, it displayed less unfolding at these pH values, along with 4-fold less photoproducts formation than at neutral pH. Different pH CD spectra showed more β-sheet (21.5-43.0%) than α-helix (1-6.2%). At pH9.0, more than 2-fold higher α-helix content than any other pH. The melting temperature (Tm) was observed between 50 and 60 °C at all pH studied, with lower Tm at pH 9.0-11.0 (54.9-50.3 °C). The protease displayed two phase transition, with two energies of denaturation, and a 4-fold higher thermal stability (ΔH°m) than reports for other microorganism's proteases. An irreversible folding transition occurs between 50 and 60 °C. It displayed energies of denaturation suggesting higher thermal stability than reported for other microorganism's proteases. These results help elucidating the applicability of this new stable protease.
Collapse
Affiliation(s)
| | | | - Flávia Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | - Maria Teresa Neves-Petersen
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Lúcia Figueiredo Porto
- Keizo Asami Immunopathology Laboratory (LIKA), Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Morphology and Physiology, Federal Rural University of Pernambuco, UFRPE, Recife, PE, Brasil
| |
Collapse
|
7
|
Furhan J. Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview. J Genet Eng Biotechnol 2020; 18:36. [PMID: 32725297 PMCID: PMC7387391 DOI: 10.1186/s43141-020-00053-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Background Proteases or peptidases are an imperative class of hydrolytic enzymes capable of hydrolyzing large proteins into smaller peptides. The cold-adapted proteases show higher catalytic capacity in low temperatures as well as stability in alkaline conditions and appear as strong contenders for various applications in special industries. Main body In the past few decades, the interest in cold-adapted microorganisms producing cold-adapted proteases has increased at an exciting rate, and many of them have emerged as important biotechnological and industrial candidates. Industrial proteases are largely supplied from various types of microorganisms than plant or animal sources. Among diverse microbial sources, psychrophiles and psychrotrophs inhabiting permanently or partially cold environments have appeared as rich sources of cold-adapted proteases. Short conclusion The present review focuses on recent sources of cold-adapted protease producers along with the molecular adaptation of psychrotrophs and psychrophiles. The recent knowledge on production, kinetic properties, purification, and substrate specificity of cold-adapted proteases has been summarized. Recent advances in cold-adapted protease gene cloning and structural studies are also described. Moreover, the prospective applications of cold-adapted proteases are discussed which can help in evaluating their industrial potential.
Collapse
Affiliation(s)
- Junaid Furhan
- Department of Microbiology, SKIMS Medical College-Hospital, Bemina, Srinagar, Jammu and Kashmir, 190017, India.
| |
Collapse
|
8
|
Omrane Benmrad M, Moujehed E, Ben Elhoul M, Mechri S, Bejar S, Zouari R, Baffoun A, Jaouadi B. Production, purification, and biochemical characterization of serine alkaline protease from Penicillium chrysogenium strain X5 used as excellent bio-additive for textile processing. Int J Biol Macromol 2018; 119:1002-1016. [DOI: 10.1016/j.ijbiomac.2018.07.194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
9
|
Boratyński F, Szczepańska E, Grudniewska A, Gniłka R, Olejniczak T. Improving of hydrolases biosythesis by solid-state fermentation of Penicillium camemberti on rapeseed cake. Sci Rep 2018; 8:10157. [PMID: 29976981 PMCID: PMC6033886 DOI: 10.1038/s41598-018-28412-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/21/2018] [Indexed: 02/01/2023] Open
Abstract
The study show usefulness of rapeseed cake, rich in fats and proteins byproduct generated after oil production, which may be used as a microbial medium for lipase and protease biosynthesis. Of 26 different filamentous fungi screened by solid-state fermentation, Penicillium camemberti AM83 was found to abundantly produce lipase and protease. Various process parameters were then optimized to maximize lipase and protease secretion, including carbon and nitrogen source, C/N ratio, metal ions, temperature, moisture content, initial pH, and inoculum size. Lipase production increased approximately 11.2-fold in solid-state cultures on rapeseed cake supplemented with lactose and calcium chloride, alkalinized to pH 8, hydrated to 80%, and inoculated with 1.2 × 106 spores/mL. Similarly, protease production increased approximately 8.4-fold in optimized cultures inoculated with 3.2 × 108 spores/mL, and grown on rapeseed cake with lactose and ammonium sulfate at pH 9 and moisture content 60%. The results highlight the potential economic value of solid-state fermentation on rapeseed cake to produce industrial hydrolases.
Collapse
Affiliation(s)
- Filip Boratyński
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wrocław, 50-375, Poland.
| | - Ewa Szczepańska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| | - Aleksandra Grudniewska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| | - Radosław Gniłka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| | - Teresa Olejniczak
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Wrocław, 50-375, Poland
| |
Collapse
|
10
|
da Silva OS, de Almeida EM, de Melo AHF, Porto TS. Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. Int J Biol Macromol 2018; 117:1081-1088. [PMID: 29870814 DOI: 10.1016/j.ijbiomac.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/25/2022]
Abstract
An extracellular serine-protease from Aspergillus tamarii URM4634 was purified and characterized. The possibility of using Aspergillus tamarii URM4634 protease in detergent formulations and collagenolytic activity was investigated. The protease demonstrated excellent stability at pH range 7.0-11.0, the optimum being at pH 9.0. The enzyme was stable at 40 °C for 180 min, enhanced by Mg++ and Ca++, but inhibited by Zn++, and strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), suggested as serine-protease. The azocasein substrate result showed Km = 0.434 mg/mL and Vmax = 7.739 mg/mL/min. SDS-PAGE and azocasein zymography showed that the purified alkaline protease (2983.8 U/mg) had a molecular mass of 49.3 kDa. The enzyme was purified by column chromatography using Sephadex A50 resin. The proteolytic activity was activated by SDS (sodium dodecyl sulfate), Tween-80, Tween 20 and Triton-100. This study demonstrated that A. tamarii URM4634 protease has potent, stable and compatible collagenolytic activity to the desired level in local laundry detergent brands compared with similar enzymes produced by solid-state fermentation. This protease can thus be chosen as an option in both the food industry to tenderization meat and the detergent industry to washing process.
Collapse
Affiliation(s)
- Osmar Soares da Silva
- Northeast Biotechnology Network/RENORBIO, Federal Rural University of Pernambuco/UFRPE, Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Elizane Melo de Almeida
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Allan Henrique Félix de Melo
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil
| | - Tatiana Souza Porto
- Academic Unit of Garanhuns/UAG, Federal Rural University of Pernambuco/UFRPE, Av. Bom Pastor, s/n, Boa Vista, 55296-901 Garanhuns, PE, Brazil.
| |
Collapse
|
11
|
Duarte Neto JMW, Wanderley MCDA, Lima CDA, Porto ALF. Single step purification via magnetic nanoparticles of new broad pH active protease from Penicillium aurantiogriseum. Protein Expr Purif 2018; 147:22-28. [PMID: 29448066 DOI: 10.1016/j.pep.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
A new set of applications can be achieved when using high stability proteases. Industrially, high costs can be related to production medium and purification process. Magnetic nanoparticles have been successfully used for rapid and scalable purification. In this work, azocasein were immobilized on magnetite nanoparticles and applied in a single step purification of protease produced by Penicillium aurantiogriseum using soybean flour medium, and the new purified enzyme was characterized. Glutaraldehyde activated nanoparticles were used in azocasein immobilization and then incubated with dialyzed 60-80% saline precipitation fraction of crude extract for purification. Adsorbents were washed 7 times (0.1 M NaCl solution) and eluted 3 times (1 M NaCl solution), these final elutions contained the purified protease. This protease was purified 55.68-fold, retaining 46% of its original activity. Presented approximately 40 kDa on SDS-PAGE and optimum activity at 45 °C and pH 9.0. Maintained over 60% of activity from pH 6.0 to 11.0. Kept more than 50% activity from 15 to 55 °C, did not lose any activity over 48 h at 25 °C. Inhibitors assay suggested a serine protease with aspartic residues on its active site. Results report a successful application of an alternative purification method and novel broad pH tolerant protease.
Collapse
Affiliation(s)
- José Manoel Wanderley Duarte Neto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil
| | - Maria Carolina de Albuquerque Wanderley
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil
| | - Carolina de Albuquerque Lima
- Faculdade de Ciência, Educação e Tecnologia de Garanhuns, Universidade de Pernambuco - UPE, Av. Capitão Pedro Rodrigues, n° 105, Garanhuns, PE, Brazil
| | - Ana Lúcia Figueiredo Porto
- Laboratorio de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco - UFPE, Av. Prof. Moraes Lins do Rego, s/n, 50670-901, Recife, PE, Brazil; Departmento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco - UFRPE, Av. Dom Manoel de Medeiros, s/n, 52171-900, Recife, PE, Brazil.
| |
Collapse
|
12
|
Gong BL, Mao RQ, Xiao Y, Jia ML, Zhong XL, Liu Y, Xu PL, Li G. Improvement of enzyme activity and soluble expression of an alkaline protease isolated from oil-polluted mud flat metagenome by random mutagenesis. Enzyme Microb Technol 2017; 106:97-105. [DOI: 10.1016/j.enzmictec.2017.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/19/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
|
13
|
Takenaka S, Umeda M, Senba H, Koyama D, Tanaka K, Yoshida KI, Doi M. Heterologous expression and characterisation of the Aspergillus aspartic protease involved in the hydrolysis and decolorisation of red-pigmented proteins. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:95-101. [PMID: 26919469 DOI: 10.1002/jsfa.7688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Aspergillus repens strain MK82 produces an aspartic protease (PepA_MK82) that efficiently decolorises red-pigmented proteins during dried bonito fermentation. However, further expansion of the industrial applications of PepA_MK82 requires the high-level production and efficient preparation of the recombinant enzyme. RESULTS The genomic DNA and cDNA fragments encoding the protease were cloned from strain MK82 and sequenced. Phylogenetic analysis of PepA_MK82 and comparisons with previously reported fungal aspartic proteases showed that PepA_MK 82 clusters with different groups of these enzymes. Heterologous expression of PepA_MK82 in Pichia pastoris yielded preparations of higher purity than obtained with an Escherichia coli expression system. Total protease activity in a 100-mL culture of the P. pastoris transformant was 14 times higher than that from an equivalent culture of A. repense MK82. The recombinant PepA_MK82 was easily obtained via acetone precipitation; the final recovery was 83%. PepA_MK82 and its recombinant had similar characteristics in terms of their optimal pH, thermostability, and decolorisation activity. The recombinant was also able to decolorise flaked, dried bonito and to bleach a blood-stained cloth. CONCLUSION Given its ability to hydrolyse and decolorise red-pigmented proteins, recombinant PepA_MK8 can be exploited in the food industry and as a stain-removal agent in laundry applications. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Mayo Umeda
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Hisanori Senba
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Dai Koyama
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime, 799-3192, Japan
| | - Kosei Tanaka
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Ken-Ichi Yoshida
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Mikiharu Doi
- Marutomo Co., Ltd, 1696 Kominato, Iyo, Ehime, 799-3192, Japan
| |
Collapse
|
14
|
Devi SG, Fathima AA, Sanitha M, Iyappan S, Curtis WR, Ramya M. Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge. J Biosci Bioeng 2016; 122:694-700. [PMID: 27323930 DOI: 10.1016/j.jbiosc.2016.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 11/17/2022]
Abstract
Metagenomics has the potential to facilitate the discovery of novel enzymes; however, to date, only a few alkaline proteases have been characterized from environmentally-sourced DNA. We report the identification and characterization of an alkaline serine protease designated as Prt1A from the metagenomic library of tannery activated sludge. Sequence analysis revealed that Prt1A is closely related to S8A family subtilisins with a catalytic triad of Asp143, His173, and Ser326. The putative protease gene (prt-1A) was subcloned in pET 28a (+) vector and overexpressed in Escherichia coli BL21(DE3)pLysS cells. This 38.8 KDa recombinant protease was purified to homogeneity by nickel affinity chromatography and exhibited optimal enzyme activity at elevated pH (11.0) and temperature (55°C). The enzyme activity was enhanced by the addition of 5 mM Ca2+ ions, and was stable in the presence of anionic detergent, oxidizing agent and various organic solvents. The enzyme displayed high affinity and catalytic efficiency for casein under standard assay conditions (Vmax = 279 U/mg/min, Km = 1.70 mg/mL) and was also compatible with commercial detergents. These results suggest that Prt1A protease could act as an efficient enzyme in various industrial applications.
Collapse
Affiliation(s)
| | | | - Mary Sanitha
- Department of Genetic Engineering, SRM University, Tamilnadu 603203, India
| | - Sellamuthu Iyappan
- Department of Genetic Engineering, SRM University, Tamilnadu 603203, India
| | - Wayne R Curtis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mohandass Ramya
- Department of Genetic Engineering, SRM University, Tamilnadu 603203, India.
| |
Collapse
|
15
|
Xie L, Xiao Y, Gao X. Purification and Characterization of a Halotolerant Alkaline Serine Protease fromPenicillium citrinumYL-1 Isolated from Traditional Chinese Fish Sauce. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2016.1168305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Penicillium salamii strain ITEM 15302: A new promising fungal starter for salami production. Int J Food Microbiol 2016; 231:33-41. [PMID: 27183229 DOI: 10.1016/j.ijfoodmicro.2016.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 11/21/2022]
Abstract
Traditional sausages are often considered of superior quality to sausages inoculated with commercial starter cultures and this is partially due to the action of the typical house microflora. Penicillium nalgiovense is the species commonly used as starter culture for dry-cured meat production. Recently a new species, Penicillium salamii, was described as typical colonizer during salami seasoning. In order to understand its contribution to the seasoning process, two different experiments on curing of fresh pork sausages were conducted using P. salamii ITEM 15302 in comparison with P. nalgiovense ITEM 15292 at small and industrial scale, and the dry-cured sausages were subjected to sensory analyses. Additionally, proteolytic and lipolytic in vitro assays were performed on both strains. P. salamii ITEM 15302 proved to be a fast growing mould on dry-cured sausage casings, well adapted to the seasoning process, with high lipolytic and proteolytic enzymatic activity that confers typical sensory characteristics to meat products. Therefore, P. salamii ITEM 15302 was shown to be a good candidate as new starter for meat industry.
Collapse
|
17
|
da Silva OS, de Oliveira RL, Souza-Motta CM, Porto ALF, Porto TS. Novel Protease from <i>Aspergillus tamarii</i> URM4634: Production and Characterization Using Inexpensive Agroindustrial Substrates by Solid-State Fermentation. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aer.2016.44012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Aswati Nair R, Geethu C. Purification and characterization of secretory serine protease from necrotrophic oomycete, Pythium myriotylum Dreschler. World J Microbiol Biotechnol 2014; 31:85-94. [DOI: 10.1007/s11274-014-1767-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/28/2014] [Indexed: 01/14/2023]
|
19
|
Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215. Appl Biochem Biotechnol 2014; 175:715-22. [PMID: 25342263 DOI: 10.1007/s12010-014-1315-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
A novel alkaline protease was purified from Pseudomonas aeruginosa HY1215 using ammonium sulfate, DEAE-Sepharose and Sephacryl S-200 gel filtration chromatographic techniques. The protease had a relative molecular weight of 32.8 KDa by SDS-PAGE, and the optimal temperature and pH for excellent stability and activity were determined as 25 °C and 10.0, respectively. Within the pH range of 7.0-11.0, the protease had a good stability, which could retain more than 80 % of its original activity; in the temperature range of 15-35 °C, the protease had a higher activity, and its activity at 20 °C could amount to 85 % of the maximum activity at 25 °C. Besides, the enzyme activity showed a valuable stability towards several commercially available surfactants (Tween-80, Tween-40, and Triton X-100) and bleaches (H2O2) even when their concentrations ranged up to 2.0 and 1.6 %.
Collapse
|
20
|
Biophysicochemical Characterization of an Alkaline Protease from Beauveria sp. MTCC 5184 with Multiple Applications. Appl Biochem Biotechnol 2014; 175:589-602. [DOI: 10.1007/s12010-014-1314-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
|
21
|
Xiao YZ, Wu DK, Zhao SY, Lin WM, Gao XY. Statistical Optimization of Alkaline Protease Production fromPenicillium citrinumYL-1 Under Solid-State Fermentation. Prep Biochem Biotechnol 2014; 45:447-62. [DOI: 10.1080/10826068.2014.923450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|