1
|
Pir Dad F, Khan WUD, Ijaz U, Sun H, Rafi MN, Alamri S, Tanveer M. Potential of amino acids-modified biochar in mitigating the soil Cu and Ni stresses - Targeting the tomato growth, physiology and fruit quality. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108711. [PMID: 38733941 DOI: 10.1016/j.plaphy.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Trace heavy metals (HMs) such as copper (Cu) and nickel (Ni) are toxic to plants, especially tomato at high levels. In this study, biochar (BC) was treated with amino acids (AA) to enhance amino functional groups, which effectively alleviated the adverse effects of heavy metals (HMs) on tomato growth. Hence, this study aimed to evaluate the effect of glycine and alanine modified BC (GBC/ABC) on various tomato growth parameters, its physiology, fruit yield and Cu/Ni uptake under Cu and Ni stresses. In a pot experiment, there was 21 treatments with three replications having two rates of simple BC and glycine/alanine enriched BC (0.5% and 1% (w/w). Cu and Ni stresses were added at 150 mg kg-1 respectively. Plants were harvested after 120 days of sowing and subjected to various analysis. Under Cu and Ni stresses, tomato roots accumulated more Cu and Ni than shoots and fruits, while GBC and ABC application significantly enhanced the root and shoot dry weight irrelevant to the stress conditions. Both rates of GBC decreased the malondialdehyde and hydrogen peroxide levels in plants. The addition of 0.5% GBC with Cu enhanced the tomato fruit dry weight by 1.3 folds in comparison to the control treatment; while tomato fruit juice content also increased (50%) in the presence of 0.5% GBC with Ni as compared to control. In summary, these results demonstrated that lower rate of GBC∼0.5% proved to be the best in mitigating the Cu and Ni stress on tomato plant growth by enhancing the fruit production.
Collapse
Affiliation(s)
- Fiza Pir Dad
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Waqas Ud Din Khan
- Department of Agriculture, Government College University, Lahore 54000, Pakistan; Tasmanian Institute of Agriculture, Mount Pleasant Laboratories, University of Tasmania, Launceston, Australia; School of Biological Sciences, University of Western Australia, Perth, Australia.
| | - Usman Ijaz
- Tasmanian Institute of Agriculture, Mount Pleasant Laboratories, University of Tasmania, Launceston, Australia
| | - Hongju Sun
- School of Biological Sciences, University of Western Australia, Perth, Australia; School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China.
| | - Muhammad Nauman Rafi
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, Mount Pleasant Laboratories, University of Tasmania, Launceston, Australia; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi PR China
| |
Collapse
|
2
|
Shih IT, Yi YC, Ng IS. Plasmid-Free System and Modular Design for Efficient 5-Aminolevulinic Acid Production by Engineered Escherichia coli. Appl Biochem Biotechnol 2021; 193:2858-2871. [PMID: 33860878 DOI: 10.1007/s12010-021-03571-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022]
Abstract
5-Aminolevulinic acid (ALA) is an essential intermediate for many organisms and has been considered for the applications of medical especially in photodynamic therapy of cancer recently. However, ALA production via chemical approach is complicated; hence, microbial manufacturing has received more attentions. In this study, a modular design to simultaneously express ALA synthase from Rhodobacter sphaeroides (RshemA), a non-specific ALA exporter (RhtA), and chaperones was first developed and discussed. The ALA production was significantly increased by coexpressing RhtA and RshemA. Besides, ALA was enhanced by the cofactor pyridoxal phosphate (PLP) which was supplied by expressing genes of pdxK and pdxY or direct addition. However, inclusion bodies of RshemA served as an obstacle; thus, chaperones DnaK and GroELS were introduced to reform the conformation of proteins and successfully improved ALA production. Finally, a plasmid-free strain RrGI, as the robust chassis, was established and a 6.23-fold enhancement on ALA biosynthesis and led to 7.47 g/L titer and 0.588 g/L/h productivity under the optimal cultural condition.
Collapse
Affiliation(s)
- I-Tai Shih
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
3
|
Lan YJ, Tan SI, Cheng SY, Ting WW, Xue C, Lin TH, Cai MZ, Chen PT, Ng IS. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Effendi SSW, Tan SI, Ting WW, Ng IS. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. Int J Biol Macromol 2020; 167:326-334. [PMID: 33275972 DOI: 10.1016/j.ijbiomac.2020.11.189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Mesorhizobium loti carbonic anhydrase (MlCA), an intrinsically high catalytic enzyme, has been employed for carbon dioxide capture and sequestration. However, recombinant expression of MlCA in Escherichia coli often forms inclusion bodies. Hence, protein partners such as fusion-tags and molecular chaperones are involved in regarding reduce the harshness of protein folding. TrxA-tag and GroELS have been chosen to co-express with MlCA in E. coli under an inducible T7 promoter or a constitutive J23100 promoter to compare productivity and activity. The results possessed that coupling protein partners effectively increased soluble MlCA up to 2.9-folds under T7 promoter, thus enhancing the CA activity by 120% and achieving a 5.2-folds turnover rate. Besides, it has also shifted the optimum temperature from 40 °C to 50 °C, promoted stability in the broad pH range (4.5 to 9.5) and the presence of various metal ions. Based on the in vitro assay and isothermal titration calorimetry (ITC) analysis, GroELS enhancing CA activity was due to change the intrinsic thermodynamic properties of the enzyme from endothermic to exothermic reaction (i.e., ∆H = 89.8 to -121.8 kJ/mol). Therefore, the collaboration of TrxA-MlCA with GroELS successfully augmented CO2 biomineralization.
Collapse
Affiliation(s)
- Sefli Sri Wahyu Effendi
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Wan-Wen Ting
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
5
|
Ng IS, Guo Y, Zhou Y, Wu JW, Tan SI, Yi YC. Turn on the Mtr pathway genes under pLacI promoter in Shewanella oneidensis MR-1. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Ng IS, Hsueh CC, Chen BY. Electron transport phenomena of electroactive bacteria in microbial fuel cells: a review of Proteus hauseri. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0183-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
7
|
Su C, Chen Z, Ng IS. Impact of pH regulation on multicopper oxidase production and swarming motility in the bacterium Proteus hauseri ZMd44. Biotechnol Appl Biochem 2017; 65:212-219. [PMID: 28150465 DOI: 10.1002/bab.1556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
Proteus hauseri ZMd44, a biodecolorizing bacterium, has been known to produce electricity and multicopper oxidase (Mco-laccase) under copper induction. However, optimization and regulation of production have not been explored. This study is the first attempt to evaluate several parameters on biomass and Mco-laccase production of P. hauseri ZMd44. Through orthogonal experiments with Taguchi's L9, it was found that P. hauseri ZMd44 was sensitive to pH value. The cells grew relatively quickly at pH 7, thus the biomass and Mco-laccase production reached 1.66 g/L and 1043.6 U/L, respectively. Higher pH values also influenced the swarming motility, which is an important characteristic of P. hauseri ZMd44 that affects urinary tract infection. The swarming circle and the diameter of the swarm, represented by the motility velocity, were found to be more controlled after 24 h of growth at pH 6. The swarming ability of P. hauseri was completely inhibited by the addition of 3 mM copper or zinc ions. Therefore, the Mco-laccase and swarming motility could be controlled by regulating pH and ion content.
Collapse
Affiliation(s)
- Chang Su
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Zhiyang Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Drzewiecka D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. MICROBIAL ECOLOGY 2016; 72:741-758. [PMID: 26748500 PMCID: PMC5080321 DOI: 10.1007/s00248-015-0720-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/13/2015] [Indexed: 05/04/2023]
Abstract
Proteus spp. bacteria were first described in 1885 by Gustav Hauser, who had revealed their feature of intensive swarming growth. Currently, the genus is divided into Proteus mirabilis, Proteus vulgaris, Proteus penneri, Proteus hauseri, and three unnamed genomospecies 4, 5, and 6 and consists of 80 O-antigenic serogroups. The bacteria are known to be human opportunistic pathogens, isolated from urine, wounds, and other clinical sources. It is postulated that intestines are a reservoir of these proteolytic organisms. Many wild and domestic animals may be hosts of Proteus spp. bacteria, which are commonly known to play a role of parasites or commensals. However, interesting examples of their symbiotic relationships with higher organisms have also been described. Proteus spp. bacteria present in soil or water habitats are often regarded as indicators of fecal pollution, posing a threat of poisoning when the contaminated water or seafood is consumed. The health risk may also be connected with drug-resistant strains sourcing from intestines. Positive aspects of the bacteria presence in water and soil are connected with exceptional features displayed by autochthonic Proteus spp. strains detected in these environments. These rods acquire various metabolic abilities allowing their adaptation to different environmental conditions, such as high concentrations of heavy metals or toxic substances, which may be exploited as sources of energy and nutrition by the bacteria. The Proteus spp. abilities to tolerate or utilize polluting compounds as well as promote plant growth provide a possibility of employing these microorganisms in bioremediation and environmental protection.
Collapse
Affiliation(s)
- Dominika Drzewiecka
- Department of General Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Łódź, 90-237, Łódź, Poland.
| |
Collapse
|
9
|
Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Appl Biochem Biotechnol 2016; 181:464-482. [PMID: 27687587 DOI: 10.1007/s12010-016-2224-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023]
Abstract
The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.
Collapse
|
10
|
Insights into copper effect on Proteus hauseri through proteomic and metabolic analyses. J Biosci Bioeng 2015; 121:178-85. [PMID: 26194304 DOI: 10.1016/j.jbiosc.2015.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/04/2015] [Accepted: 06/18/2015] [Indexed: 11/23/2022]
Abstract
This is the first-attempt to use liquid chromatography coupled with tandem mass (LC-MS-MS) in deciphering the effects of copper ion on Proteus hauseri. Total 941 proteins in copper-addition (+Cu) group and 898 proteins in non-copper-addition (-Cu) group were found, which containing 221 and 178 differential proteins in +Cu and -Cu group, respectively. Differential proteins in both groups were defined into 14 groups by their functional classification which transport/membrane function proteins were the major different part between the two groups, which took 19.5% and 7.7%, respectively. The result of BioCyc and KEGG analyses on metabolic pathway indicated that copper could interrupted the pathway of chemotaxis CheY and inhibited the swarming of P. hauseri, which provided a potential in controlling the pathogenicity of this strain.
Collapse
|