1
|
Zhao K, Chen P, Wang Z, Varghese P J G, Liu J, Hu J. A multi-modal embolic gel system for long-term fluorescence imaging and photothermal therapy. BIOMATERIALS ADVANCES 2025; 174:214298. [PMID: 40203749 DOI: 10.1016/j.bioadv.2025.214298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Gel embolic agents are increasingly recognized for their versatility in minimally invasive vascular interventions. However, their application in real-time imaging, post-operative monitoring, and thermal treatment remains underexplored. In this study, we present a novel transcatheter injectable nanoclay-alginate (NCA) gel embolic agent integrated with indocyanine green (ICG) for dual fluorescence imaging and thermal ablation. The NCA/ICG embolic gel exhibits excellent shear-thinning properties, transcatheter injectability, and mechanical stability. Furthermore, the mechanism to enhance fluorescence for real-time imaging enhancement and extended post-operative monitoring was discussed. A 28-day fluorescence persistence shows the NCA/ICG gel's long-lasting fluorescent signal, which was significantly stronger and longer compared to current clinically used ICG aqueous solution. Furthermore, the gel can effectively convert near-infrared (NIR) laser energy into heat for potential photothermal therapy. The biocompatibility and enhanced antibacterial properties further highlight the potential clinical benefits of this embolic agent as a multifunctional agent for vascular embolization.
Collapse
Affiliation(s)
- Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Ziqi Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
2
|
Cambronel M, Wongkamhaeng K, Blavignac C, Forestier C, Nedelec JM, Denry I. Novel Honeycomb Nanoclay Frameworks With Hemostatic and Antibacterial Properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35477. [PMID: 39213159 DOI: 10.1002/jbm.b.35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Our laboratory recently developed a new class of high surface area, honeycomb Nanoclay Microsphere Framework absorbents (NMFs) that prompt rapid hemostasis. In the present work, we propose a novel approach to develop antibacterial Topical Hemostatic Agents (THAs) by anchoring silver nanoparticles (AgNPs) onto NMFs. This combination was obtained by a chemical co-reduction approach, followed by freeze-processing, and was shown to ensure stability and on-site delivery of AgNPs, without altering the hemostatic properties of NMFs. Silver-loaded NMFs showed no change in their unique architecture and led to a 55% increase in clot strength, compared to standard control plasma or commercially available THA, and a significant decrease in mean fibrin fiber diameter. Silver nanoparticles were successfully released when solubilized and prevented the growth of both Pseudomonas aeruginosa and Staphylococcus aureus at concentrations of 22 and 30 ppm of silver released, respectively. Overall, cell mortality was between 9.1 ± 5.1% and 6.3 ± 3.2%, depending on AgNP concentration, confirming a low cytotoxicity. Silver-loaded nanoclay microsphere frameworks appear to constitute promising candidates as topical hemostatic agents for secondary management of hemostasis when infection control is needed.
Collapse
Affiliation(s)
- Mélyssa Cambronel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
| | - Kan Wongkamhaeng
- Division of Prosthodontics, Faculty of Dentistry, Thammasat University, Khlong Luang, Thailand
| | - Christelle Blavignac
- Centre Imagerie Cellulaire Santé, UCA PARTNER, UFR de Médecine, Clermont-Ferrand, France
| | | | - Jean-Marie Nedelec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
| | - Isabelle Denry
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Clermont-Ferrand, France
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Farjaminejad S, Farjaminejad R, Garcia-Godoy F. Nanoparticles in Bone Regeneration: A Narrative Review of Current Advances and Future Directions in Tissue Engineering. J Funct Biomater 2024; 15:241. [PMID: 39330217 PMCID: PMC11432802 DOI: 10.3390/jfb15090241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The rising demand for effective bone regeneration has underscored the limitations of traditional methods like autografts and allografts, including donor site morbidity and insufficient biological signaling. This review examines nanoparticles (NPs) in tissue engineering (TE) to address these challenges, evaluating polymers, metals, ceramics, and composites for their potential to enhance osteogenesis and angiogenesis by mimicking the extracellular matrix (ECM) nanostructure. The methods involved synthesizing and characterizing nanoparticle-based scaffoldsand integrating hydroxyapatite (HAp) with polymers to enhance mechanical properties and osteogenic potential. The results showed that these NPs significantly promote cell growth, differentiation, and bone formation, with carbon-based NPs like graphene and carbon nanotubes showing promise. NPs offer versatile, biocompatible, and customizable scaffolds that enhance drug delivery and support bone repair. Despite promising results, challenges with cytotoxicity, biodistribution, and immune responses remain. Addressing these issues through surface modifications and biocompatible molecules can improve the biocompatibility and efficacy of nanomaterials. Future research should focus on long-term in vivo studies to assess the safety and efficacy of NP-based scaffolds and explore synergistic effects with other bioactive molecules or growth factors. This review underscores the transformative potential of NPs in advancing BTE and calls for further research to optimize these technologies for clinical applications.
Collapse
Affiliation(s)
- Samira Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Rosana Farjaminejad
- School of Health and Psychological Sciences, Department of Health Services Research and Management, City University of London, London WC1E 7HU, UK
| | - Franklin Garcia-Godoy
- Department of Bioscience Research, Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, 875 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
4
|
Zhang YD, Ma AB, Sun L, Chen JD, Hong G, Wu HK. Nanoclay-Modified Hyaluronic Acid Microspheres for Bone Induction by Sustained rhBMP-2 Delivery. Macromol Biosci 2024; 24:e2300245. [PMID: 37572308 DOI: 10.1002/mabi.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Microspheres (MSs) are ideal candidates as biological scaffolds loading with growth factors or cells for bone tissue engineering to repair irregular alveolar bone defects by minimally invasive injection. However, the high initial burst release of growth factor and low cell attachment limit the application of microspheres. The modification of microspheres often needs expensive experiments facility or complex chemical reactions, which is difficult to achieve and may bring other problems. In this study, a sol-grade nanoclay, laponite XLS is used to modify the surface of MSs to enhance its affinity to either positively or negatively charged proteins and cells without changing the interior structure of the MSs. Recombinant human bone morphogenetic protein-2 (rhBMP-2) is used as a representation of growth factor to check the osteoinduction ability of laponite XLS-modified MSs. By modification, the protein sustained release, cell loading, and osteoinduction ability of MSs are improved. Modified by 1% laponite XLS, the MSs can not only promote osteogenic differentiation of MC3T3-E1 cells by themselves, but also enhance the effect of the rhBMP-2 below the effective dose. Collectively, the study provides an easy and viable method to modify the biological behavior of microspheres for bone tissue regeneration.
Collapse
Affiliation(s)
- Yi-Ding Zhang
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Ao-Bo Ma
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Lu Sun
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Jun-Duo Chen
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, 980-8575, Japan
- Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, 60115, Indonesia
| | - Hong-Kun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, South Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
5
|
Madanayake NH, Adassooriya NM. Healing Clays Structure and Functions. MEDICAL GEOLOGY 2023:253-260. [DOI: 10.1002/9781119867371.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Liu J, Yang S, Zhao L, Jiang F, Sun J, Peng S, Zhao R, Huang Y, Fu X, Luo R, Jiang Y, Li Z, Wang N, Fang T, Zhang Z. ROS generation and p-38 activation contribute to montmorillonite-induced corneal toxicity in vitro and in vivo. Part Fibre Toxicol 2023; 20:8. [PMID: 36899356 PMCID: PMC9999669 DOI: 10.1186/s12989-023-00519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Montmorillonite (Mt) and its derivatives are now widely used in industrial and biomedical fields. Therefore, safety assessments of these materials are critical to protect human health after exposure; however, studies on the ocular toxicity of Mt are lacking. In particular, varying physicochemical characteristics of Mt may greatly alter their toxicological potential. To explore the effects of such characteristics on the eyes, five types of Mt were investigated in vitro and in vivo for the first time, and their underlying mechanisms studied. RESULTS The different types of Mt caused cytotoxicity in human HCEC-B4G12 corneal cells based on analyses of ATP content, lactate dehydrogenase (LDH) leakage, cell morphology, and the distribution of Mt in cells. Among the five Mt types, Na-Mt exhibited the highest cytotoxicity. Notably, Na-Mt and chitosan-modified acidic Na-Mt (C-H-Na-Mt) induced ocular toxicity in vivo, as demonstrated by increases corneal injury area and the number of apoptotic cells. Na-Mt and C-H-Na-Mt also induced reactive oxygen species (ROS) generation in vitro and in vivo, as indicated by 2',7'-dichlorofluorescin diacetate and dihydroethidium staining. In addition, Na-Mt activated the mitogen-activated protein kinase signaling pathway. The pretreatment of HCEC-B4G12 cells with N-acetylcysteine, an ROS scavenger, attenuated the Na-Mt-induced cytotoxicity and suppressed p38 activation, while inhibiting p38 activation with a p38-specific inhibitor decreased Na-Mt-induced cytotoxicity. CONCLUSIONS The results indicate that Mt induces corneal toxicity in vitro and in vivo. The physicochemical properties of Mt greatly affect its toxicological potential. Furthermore, ROS generation and p38 activation contribute at least in part to Na-Mt-induced toxicity.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shubin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Feng Jiang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Jianchao Sun
- School of Environment and Material Engineering, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yu Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Nan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Tengzheng Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
7
|
Assessment of the genotoxic potential of three novel composite nanomaterials using human lymphocytes and the fruit fly Drosophila melanogaster as model systems. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
8
|
Samoylenko O, Korotych O, Manilo M, Samchenko Y, Shlyakhovenko V, Lebovka N. Biomedical Applications of Laponite®-Based Nanomaterials and Formulations. SPRINGER PROCEEDINGS IN PHYSICS 2022:385-452. [DOI: 10.1007/978-3-030-80924-9_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
10
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
11
|
Peixoto D, Pereira I, Pereira-Silva M, Veiga F, Hamblin MR, Lvov Y, Liu M, Paiva-Santos AC. Emerging role of nanoclays in cancer research, diagnosis, and therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213956] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Abstract
The numerous biological applications of nanoparticles in general and nano-clays in particular are rooted in understanding and harnessing their dynamic nano-bio interface. Among clays, the intrinsically-mesoporous halloysite nanotubes (HNTs) have emerged in recent years as promising nanomaterials. The diverse interactions of these nanotubes with living cells, encompassing electrostatic, van der Waals, and ion exchange, along with cellular response, are crucial in determining the behaviour of HNTs in biological systems. Thus, rational engineering of the nanotube properties allows for vast applications ranging from bacteria encapsulation for bioremediation, through algae flocculation for aquaculture, to intracellular drug delivery. This review summarizes the many aspects of the nano-bio interface of HNTs with different cell types (bacteria, algae and fungi, and mammalian cells), highlighting biocompatibility/bio-adverse properties, interaction mechanisms, and the latest cutting-edge technologies.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | | |
Collapse
|
13
|
Altun I, Hu J, Albadawi H, Zhang Z, Salomao MA, Mayer JL, Jamal L, Oklu R. Blood-Derived Biomaterial for Catheter-Directed Arterial Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005603. [PMID: 33174305 PMCID: PMC7769968 DOI: 10.1002/adma.202005603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Vascular embolization is a life-saving minimally invasive catheter-based procedure performed to treat bleeding vessels. Through these catheters, numerous metallic coils are often pushed into the bleeding artery to stop the blood flow. While there are numerous drawbacks to coil embolization, physician expertise, availability of these coils, and their costs further limit their use. Here, a novel blood-derived embolic material (BEM) with regenerative properties, that can achieve instant and durable intra-arterial hemostasis regardless of coagulopathy, is developed. In a large animal model of vascular embolization, it is shown that the BEM can be prepared at the point-of-care within 26 min using fresh blood, it can be easily delivered using clinical catheters to embolize renal and iliac arteries, and it can achieve rapid hemostasis in acutely injured vessels. In swine arteries, the BEM increases cellular proliferation, angiogenesis, and connective tissue deposition, suggesting vessel healing and durable vessel occlusion. The BEM has significant advantages over embolic materials used today, making it a promising new tool for embolization.
Collapse
Affiliation(s)
- Izzet Altun
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Zefu Zhang
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Marcela A. Salomao
- Division of Anatomic Pathology & Laboratory Medicine, Department of Pathology, Mayo Clinic, 5777 East Mayo Blvd., Phoenix, Arizona 85054, USA
| | - Joseph L. Mayer
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Leila Jamal
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| |
Collapse
|
14
|
Hu J, Altun I, Zhang Z, Albadawi H, Salomao MA, Mayer JL, Hemachandra LMP, Rehman S, Oklu R. Bioactive-Tissue-Derived Nanocomposite Hydrogel for Permanent Arterial Embolization and Enhanced Vascular Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002611. [PMID: 32578337 PMCID: PMC7491606 DOI: 10.1002/adma.202002611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/10/2020] [Indexed: 05/20/2023]
Abstract
Transcatheter embolization is a minimally invasive procedure that uses embolic agents to intentionally block diseased or injured blood vessels for therapeutic purposes. Embolic agents in clinical practice are limited by recanalization, risk of non-target embolization, failure in coagulopathic patients, high cost, and toxicity. Here, a decellularized cardiac extracellular matrix (ECM)-based nanocomposite hydrogel is developed to provide superior mechanical stability, catheter injectability, retrievability, antibacterial properties, and biological activity to prevent recanalization. The embolic efficacy of the shear-thinning ECM-based hydrogel is shown in a porcine survival model of embolization in the iliac artery and the renal artery. The ECM-based hydrogel promotes arterial vessel wall remodeling and a fibroinflammatory response while undergoing significant biodegradation such that only 25% of the embolic material remains at 14 days. With its unprecedented proregenerative, antibacterial properties coupled with favorable mechanical properties, and its superior performance in anticoagulated blood, the ECM-based hydrogel has the potential to be a next-generation biofunctional embolic agent that can successfully treat a wide range of vascular diseases.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Izzet Altun
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Zefu Zhang
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Marcela A. Salomao
- Division of Anatomic Pathology & Laboratory Medicine, Department of Pathology, Mayo Clinic, 5777 East Mayo Blvd., Phoenix, Arizona 85054, USA
| | - Joseph L. Mayer
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - L.P. Madhubhani P. Hemachandra
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Suliman Rehman
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| |
Collapse
|
15
|
Chen Q, Guan G, Deng F, Yang D, Wu P, Kang S, Sun R, Wang X, Zhou D, Dai W, Wang X, Zhang H, He B, Chen D, Zhang Q. Anisotropic active ligandations in siRNA-Loaded hybrid nanodiscs lead to distinct carcinostatic outcomes by regulating nano-bio interactions. Biomaterials 2020; 251:120008. [PMID: 32388031 DOI: 10.1016/j.biomaterials.2020.120008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Active targeting modification is one of the foremost nanomedicine strategies for the efficacy improvement. Compared to the homogeneous ligandation on spherical nanocarriers, non-spherical nanomedicines usually make the ligand modification more complicated. The modified ligands always exhibit anisotropy and heterogeneity. However, there is very little systematic study on these diversified anisotropic modifications. The efficacy difference and underlying mechanism were still unclear. Here, we separately fabricated hybrid nanodiscs (NDs) conjugated with cRGD on the edge and plane surfaces to engineer two anisotropic targeting nanocarriers (E-cRGD-NDs and P-cRGD-NDs, respectively) for gene delivery. The ligand anisotropy endowed NDs with diversified cellular interactions, and caused different efficacies between E-cRGD-NDs and P-cRGD-NDs. Of note, E-cRGD-NDs showed significant superiority in siRNA loading, cellular uptake, silence efficiency, protein expression and even in vivo efficacy. The mechanism investigation revealed the functional anisotropy specifically for E-cRGD-NDs. The edge modification of cRGD efficiently separated the targeting and siRNA loading domains, maximizing their respective functions. These findings reflected the unique effect of ligand anisotropy, also provided a new strategy for the targeting screening of extensive nanomedicines.
Collapse
Affiliation(s)
- Qing Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Guannan Guan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feiyang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Dan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Peiyao Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Shuangming Kang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; HONSAN Health Indutry Group, ShenZhen, 518000, China
| | - Ruimeng Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xiaoyou Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Demin Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Qiang Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China; Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| |
Collapse
|
16
|
Delivery of Conjugated Silicon Dioxide Nanoparticles Show Strong Anti-Proliferative Activities. Appl Biochem Biotechnol 2019; 189:760-773. [PMID: 31119527 DOI: 10.1007/s12010-019-03030-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022]
Abstract
Conjugation of different molecules is a promising approach to enhance the drug delivery and treatment. In the present study, here, we have synthesized silica oxide (SiO2) nanoparticles conjugated with (3-Glycidyloxypropyl) trimethoxysilane (3GPS) and further reacted with 1,2,4-triazole (Tri), 3-aminotriazole (ATri), 5-aminetetrazole (Atet), imidazole (Imi). The structure, size, and morphology of nanocomposite materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) methods. These nanocomposite materials were tested on human colorectal carcinoma cells (HCT-116) to examine their anti-cancer capabilities by using MTT assay and morphometric analysis. Our results revealed that nanocomposite materials decreased cancer cell viability and cell proliferation and caused cell death in a concentration-dependent manner. Our findings demonstrate that SiO2-conjugated nanocomposite materials possess strong anti-cancer capabilities and hold a great potential for the colon cancer treatments.
Collapse
|
17
|
Chen T, Yuan Y, Zhao Y, Rao F, Song S. Preparation of Montmorillonite Nanosheets through Freezing/Thawing and Ultrasonic Exfoliation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2368-2374. [PMID: 30645941 DOI: 10.1021/acs.langmuir.8b04171] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exfoliation of layered montmorillonite (MMT) into mono- or few-layer sheets is of significance for both fundamental studies and potential applications. In this report, exfoliated MMT nanosheets with different aspect ratios have been prepared via a new freezing/thawing-ultrasonic exfoliation method. Freezing/thawing processing can exfoliate MMT tactoids with low efficiency while virtually retaining the original lateral size. The ultrasonic method has better exfoliation efficiency but tends to damage the nanosheets. By combining them and reasonably controlling the cycle index of freezing/thawing and ultrasonic power, the MMT nanosheets with different aspect ratios have been prepared efficiently. Such a unique exfoliation method has broad applicability for layered materials to produce monolayer nanosheets on a large scale.
Collapse
Affiliation(s)
| | | | | | - Feng Rao
- Instituto de Investigacion en Metalurgia y Materiales , Universidad Michoacana de San Nicolas de Hidalgo , Ciudad Universitaria, Morelia , Michoacan 58030 , Mexico
| | | |
Collapse
|
18
|
Bernardos A, Bozik M, Alvarez S, Saskova M, Perez‐Esteve E, Kloucek P, Lhotka M, Frankova A, Martinez‐Manez R. The efficacy of essential oil components loaded into montmorillonite against
Aspergillus niger
and
Staphylococcus aureus. FLAVOUR FRAG J 2019. [DOI: 10.1002/ffj.3488] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andrea Bernardos
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de València Camino de Vera s/n E‐46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 28029 MadridSpain
| | - Matej Bozik
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
| | - Silvia Alvarez
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
| | - Martina Saskova
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
| | - Edgar Perez‐Esteve
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de València Camino de Vera s/n E‐46022 Valencia Spain
- Grupo de Investigación e Innovación Alimentaria (CUINA)Departamento de Tecnología de los AlimentosUniversitat Politècnica de València Camino de Vera s/n E‐46022 Valencia Spain
| | - Pavel Kloucek
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
| | - Miloslav Lhotka
- Department of Inorganic TechnologyFaculty of Chemical TechnologyInstitute of Chemical Technology Prague Technická 1905/5 Praha 6‐Dejvice 166 28 Czech Republic
| | - Adela Frankova
- Department of Quality of Agricultural Products, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences Prague Kamýcká 129 Prague 6‐Suchdol 165 21 Czech Republic
| | - Ramon Martinez‐Manez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)Universitat Politècnica de ValènciaUniversitat de València Camino de Vera s/n E‐46022 Valencia Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0 28029 MadridSpain
| |
Collapse
|
19
|
Mousa M, Evans ND, Oreffo RO, Dawson JI. Clay nanoparticles for regenerative medicine and biomaterial design: A review of clay bioactivity. Biomaterials 2018; 159:204-214. [DOI: 10.1016/j.biomaterials.2017.12.024] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 11/17/2022]
|
20
|
Jang TS, Jung HD, Pan HM, Han WT, Chen S, Song J. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint 2018; 4:126. [PMID: 33102909 PMCID: PMC7582009 DOI: 10.18063/ijb.v4i1.126] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/22/2017] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.
Collapse
Affiliation(s)
- Tae-Sik Jang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Hyun-Do Jung
- Liquid Processing & Casting Technology R&D Group, Korea Institute of Industrial Technology, Incheon, Republic of Korea
| | - Houwen Matthew Pan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Win Tun Han
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Shengyang Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Juha Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
21
|
Unterman S, Charles LF, Strecker SE, Kramarenko D, Pivovarchik D, Edelman ER, Artzi N. Hydrogel Nanocomposites with Independently Tunable Rheology and Mechanics. ACS NANO 2017; 11:2598-2610. [PMID: 28221760 PMCID: PMC5641218 DOI: 10.1021/acsnano.6b06730] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels are an attractive class of biomaterials for minimally invasive local drug delivery given their injectability, tunability, high water content, and biocompatibility. Broad applicability though is challenged: relatively modest mechanical properties restrict use to soft tissues, while flow properties necessary for injectability limit implantation to dried, enclosed tissues to minimize material migration during gelation. To address these dual concerns, we designed an injectable nanocomposite hydrogel based on dextran aldehyde and a poly(amido amine) dendrimer doped with phyllosilicate nanoplatelet fillers. Balance of components allows for exfoliation of nanoplatelets, significantly changing macromer solution flow, facilitating injection and manipulation in a wide variety of implantation contexts while enhancing compressive modulus of hydrogels at low loading. Importantly, rheological and mechanical effects were dependent on aspect ratio, with high aspect ratio nanoplatelets having much stronger effects on mechanics and low aspect ratio nanoplatelets having stronger effects on rheology, enabling nearly independent control of rheological and mechanical properties. Nanoplatelets enhanced hydrogel properties at a filler loading substantially lower than that of comparably sized nanoparticles. We present a model to explain the role that aspect ratio plays in control of rheology and mechanics in nanoplatelet-containing hydrogels, with lessons for further nanocomposite hydrogel development. This low-cost biocompatible material may be useful as a drug delivery platform in challenging implantation environments.
Collapse
Affiliation(s)
- Shimon Unterman
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
| | - Lyndon F. Charles
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
| | - Sara E. Strecker
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
| | - Denis Kramarenko
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
- Ort Braude College, Carmiel, Israel
| | - Dmitry Pivovarchik
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
- Ort Braude College, Carmiel, Israel
| | - Elazer R. Edelman
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Natalie Artzi
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, 45 Carleton Street, E25-438, Cambridge, MA 02139
- Department of Medicine, Division of Biomedical Engineering, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
22
|
Das K, Rawat K, Bohidar HB. Surface patch binding induced interaction of anisotropic nanoclays with globular plasma proteins. RSC Adv 2016. [DOI: 10.1039/c6ra11669h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Morphology dependent interaction of model anisotropic nanoparticles with globular plasma proteins.
Collapse
Affiliation(s)
- Kishan Das
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Kamla Rawat
- Special Center for Nanosciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Inter University Accelerator Centre (IUAC)
| | - H. B. Bohidar
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Special Center for Nanosciences
| |
Collapse
|
23
|
Aguzzi C, Sandri G, Cerezo P, Carazo E, Viseras C. Health and Medical Applications of Tubular Clay Minerals. DEVELOPMENTS IN CLAY SCIENCE 2016. [DOI: 10.1016/b978-0-08-100293-3.00026-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Joshi N, Rawat K, Solanki PR, Bohidar H. Enzyme-free and biocompatible nanocomposite based cholesterol sensor. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Joshi N, Rawat K, Solanki PR, Bohidar H. Biocompatible laponite ionogels based non-enzymatic oxalic acid sensor. SENSING AND BIO-SENSING RESEARCH 2015. [DOI: 10.1016/j.sbsr.2015.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Park EJ, Lee GH, Shim JH, Cho MH, Lee BS, Kim YB, Kim JH, Kim Y, Kim DW. Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicol 2014; 89:1771-82. [PMID: 25155191 DOI: 10.1007/s00204-014-1332-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
Abstract
Aluminum oxide nanoparticles are listed among 14 high-priority nanomaterials published by the Organization for Economic Co-operation and Development, but limited information is available on their potential hazards. In this study, we compared the toxicity of two different aluminum oxide nanorods (AlNRs) commercially available in vivo and in vitro. Considering aspect ratio, one was 6.2 ± 0.6 (long-AlNRs) and the other was 2.1 ± 0.4 (short-AlNRs). In mice, long-AlNRs induced longer and stronger inflammatory responses than short-AlNRs, and the degree reached the maximum on day 7 for both types and decreased with time. In addition, in vitro tests were performed on six cell lines derived from potential target organs for AlNPs, HEK-293 (kidney), HACAT (skin), Chang (liver), BEAS-2B (lung), T98G (brain), and H9C2 (heart), using MTT assay, ATP assay, LDH release, and xCELLigence system. Long-AlNRs generally produced stronger toxicity than short-AlNRs, and HEK-293 cells were the most sensitive for both AlNRs, followed by BEAS-2B cells, although results from 4 kinds of toxicity tests conflicted among the cell lines. Based on these results, we suggest that toxicity of AlNRs may be related to aspect ratio (and resultant surface area). Furthermore, novel in vitro toxicity testing methods are needed to resolve questionable results caused by the unique properties of nanoparticles.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea.
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 136-713, Korea
| | - Jae-Hun Shim
- Department of Chemical Engineering, Kwangwoon University, Seoul, 139-701, Korea
| | - Myung-Haing Cho
- College of Veterinary Medicine, Seoul National University, Seoul, 151-742, Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Korea
| | - Yong-Bum Kim
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, 139-701, Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|