1
|
Hayal TB, Kırbaş OK, Bozkurt BT, Taşlı PN, Bülbül B, Beyaz S, Şahin F. Lead Borate Nanoparticles Induce Apoptotic Gene Activity in P53 Mutant Cancer Cells. Biol Trace Elem Res 2022; 200:574-581. [PMID: 33834390 DOI: 10.1007/s12011-021-02696-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/28/2021] [Indexed: 12/21/2022]
Abstract
Cancer is a complex and multistage disease that causes suffering worldwide. Several mutations in tumor suppressor proteins are mostly responsible for tumorigenic development. Thus, determination of the mutations and developing a mutation targeted therapy are crucial in order to cure cancer. Moreover, since healthy cells do not have mutations in their tumor suppressor genes, mutation-specific treatment is responsible for selective treatment without harming a healthy tissue in the body. In this current study, lead borate nanoparticles (LB-Np) have been synthesized, and their effects on P53 mutant cancer cells were investigated. The synthesis method includes steps of mixing a borate buffer solution with the lead nitrate solution, washing the resulting precipitate with distilled water and eventually preparing stable LB-Np solutions. Cell viability analysis was conducted to identify the toxicity of LB-Np in HaCaT, A549, MCF7, and T47D cell lines. The changes in morphologies of breast cancer cell lines were demonstrated by using microscopical analysis. Additionally, alterations in gene expressions were determined in breast cancer cell lines after LB-Np treatment. This multidisciplinary study also identified the selective effect of LB-Np in cancer cell lines, in vitro. MTS and quantitative polymerase chain reaction assays demonstrated the effect of LB-Np were specific for p53 mutation cell line, T47D. Breast cancer cell line T47D has 580 C/T mutation which affects the activation of p53 tumor suppressor protein. However, LB-Np treatment effectively killed T47D cell lines and did not affect any other cell lines that have no p53 mutations such as MCF7, A549, and healthy HaCaT. Overall, synthesized LB-Np were found to be effective in p53-mutated cell lines and showed a remarkable selective anti-cancer activity.
Collapse
Affiliation(s)
- Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Oğuz Kaan Kırbaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Batuhan Turhan Bozkurt
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey
| | - Berna Bülbül
- Department of Chemistry, Faculty of Science and Letters, Balikesir University, Cagis Campus, TR-10145, Balıkesir, Turkey
| | - Seda Beyaz
- Department of Chemistry, Faculty of Science and Letters, Balikesir University, Cagis Campus, TR-10145, Balıkesir, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey.
| |
Collapse
|
2
|
Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021; 167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Lactoferrin (Lf) possesses various biological properties and therapeutic potentials being a perspective anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, and immunomodulatory agent. A significant body of literature has also demonstrated that Lf modulates regenerative processes in different anatomical structures, such as bone, cartilage, skin, mucosa, cornea, tendon, vasculature, and adipose tissue. Hence, this review collected and analyzed the data on the regenerative effects of Lf, as well as paid specific attention to their molecular basis. Furthermore, tissue and condition-specific activities of different Lf types as well as problems of their delivery to the targeted organs were discussed. The authors strongly hope that this review will stimulate researchers to focus on the highlighted topics thus accelerating the progress of Lf's wider clinical application.
Collapse
|
3
|
Urinary Metabolic Profiling via LC-MS/MS Reveals Impact of Bovine Lactoferrin on Bone Formation in Growing SD Rats. Nutrients 2020; 12:nu12041116. [PMID: 32316396 PMCID: PMC7230685 DOI: 10.3390/nu12041116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Lactoferrin (LF) exerts a promoting bone health function. The effects of LF on bone formation at the metabolic level have been less explored. Urinary metabolic profiling of growing Sprague-Dawley (SD) rats LF-supplemented (1000 mg/kg bw) for four weeks were explored by Liquid chromatography–tandem mass spectrometry (LC-MS/MS). The serum markers of bone formation and bone resorption, the bone mass, and the osteogenesis markers of femur were measured by an enzyme-linked immunosorbent assay, micro-computerized tomography, and immunohistochemistry, respectively. Compared with the control, LF supplementation improved bone formation (p < 0.05), reduced bone resorption (p < 0.05), enhanced femoral bone mineral density and microarchitecture (p < 0.05), and upregulated osteocalcin, osterix, and Runx-2 expression (p < 0.05) of femur. LF upregulated 69 urinary metabolites. KEGG and pathway enrichment analyses of those urinary metabolites, and the Person’s correlation analyses among those urinary metabolites and bone status revealed that LF impacted on bone formation via regulatory comprehensive pathways including taurine and hypotaurine metabolism, arginine and proline metabolism, cyanoamino acid metabolism, nitrogen metabolism, nicotinate and nicotinamide metabolism, and fatty acid biosynthesis. The present study indicated the metabolomics is a useful and practical tool to elucidate the mechanisms by which LF augments bone mass formation in growing animals.
Collapse
|
5
|
Wei L, Zhang X, Wang J, Ye Q, Zheng X, Peng Q, Zheng Y, Liu P, Zhang X, Li Z, Liu C, Yan Q, Li G, Ma J. Lactoferrin deficiency induces a pro-metastatic tumor microenvironment through recruiting myeloid-derived suppressor cells in mice. Oncogene 2019; 39:122-135. [PMID: 31462711 DOI: 10.1038/s41388-019-0970-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Lactoferrin, an innate immunity molecule, is involved in anti-inflammatory, anti-microbial, and anti-tumor activities. We previously reported that lactoferrin is downregulated in specimens of nasopharyngeal carcinoma and negatively associated with tumor progression and metastasis of patients with nasopharyngeal carcinoma. However, the relationship between lactoferrin and the pro-metastatic microenvironment has not been reported yet. Here, by using the lactoferrin knockout mouse, we found that lactoferrin deficiency facilitated melanoma cells metastasizing to lungs, through recruiting myeloid-derived suppressor cells (MDSCs) in the lungs. Mechanistic studies showed that in the lung microenvironment of the lactoferrin knockout mice, the TLR9 signaling was the most repressed signaling. Lactoferrin can induce MDSCs differentiation and apoptosis, as well as upregulate TLR9 expression. TLR9 agonist or lactoferrin treatment can rescue this phenotype in the tumor metastasis mouse model. Our results suggest a protective role of lactoferrin in cancer metastasis, along with a deficiency in certain components of the innate immune system, may lead to a pro-metastatic tumor microenvironment.
Collapse
Affiliation(s)
- Lingyu Wei
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuemei Zhang
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jia Wang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiurong Ye
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiang Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Ying Zheng
- Center for Medical Research, Second Xiangya Hospital, Central South University, Changsha, China
| | - Peishan Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| | - Jian Ma
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Third Xiangya Hospital, Central South University, Changsha, China. .,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China. .,Key Laboratory of Carcinogenesis of Ministry of Health, Changsha, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China. .,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
11
|
Somuncu ÖS, Taşlı PN, Şişli HB, Somuncu S, Şahin F. Characterization and Differentiation of Stem Cells Isolated from Human Newborn Foreskin Tissue. Appl Biochem Biotechnol 2015; 177:1040-54. [PMID: 26304127 DOI: 10.1007/s12010-015-1795-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/02/2015] [Indexed: 11/30/2022]
Abstract
Circumcision is described as a cultural, medical, and religious process which states surgical removal of the foreskin either partly or fully. Cells isolated from the circumcised tissues are referred as foreskin cells. They have been thought as feeder cell lines for embryonic stem cells. Their fibroblastic properties were also utilized for several experiments. The waste tissues that remain after the circumcision thought to have stem cell properties. Therefore, there have been very few attempts to expose their stem cell properties without turning them into induced pluripotent stem cells. Although stem cell isolation from prepuce and their mesenchymal multilineage differentiation potential have been presented many times in the literature, the current study explored hematopoietical phenotype of newborn foreskin stem cells for the first time. According to the results, human newborn foreskin stem cells (hnFSSCs) were identified by their capability to turn into all three germ layer cell types under in vitro conditions. In addition, these cells have exhibited a stable phenotype and have remained as a monolayer in vitro. hnFSSCs suggested to carry different treatment potentials for bone damages, cartilage problems, nerve damages, lesion formations, and other diseases that are derive from mesodermal, endodermal, and ectodermal origins. Owing to the location of the tissue in the body and differentiation capabilities of hnFSSCs, these cells can be considered as easily obtainable and utilizable even better than the other stem cell sources. In addition, hnFSSCs offers a great potential for tissue engineering approaches due to exhibiting embryonic stem cell-like characteristics, not having any ethical issues, and teratoma induction as in embryonic stem cell applications.
Collapse
Affiliation(s)
- Özge Sezin Somuncu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad., Kayisdagi, 34755, Istanbul, Turkey
| | - Salih Somuncu
- Department of Pediatric Surgery, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi Cad., Kayisdagi, 34755, Istanbul, Turkey.
| |
Collapse
|