1
|
Suseela MNL, Viswanadh MK, Mehata AK, Priya V, Setia A, Malik AK, Gokul P, Selvin J, Muthu MS. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J Chromatogr A 2023; 1695:463937. [PMID: 37019063 DOI: 10.1016/j.chroma.2023.463937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.
Collapse
Affiliation(s)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522302, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
2
|
González Rojas NA, Pacheco Moisés FP, Cruz-Ramos JA, Bezerra FS, Carbajal Arízaga GG. Understanding the synergistic antioxidant mechanism of a layered double hydroxide–lycopene composite by spectroscopic techniques. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
3
|
Layered Double Hydroxides as a Drug Delivery Vehicle for S-Allyl-Mercapto-Cysteine (SAMC). Processes (Basel) 2021. [DOI: 10.3390/pr9101819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The intercalations of anionic molecules and drugs in layered double hydroxides (LDHs) have been intensively investigated in recent years. Due to their properties, such as versatility in chemical composition, good biocompatibility, high density and protection of loaded drugs, LDHs seem very promising nanosized systems for drug delivery. In this work, we report the intercalation of S-allyl-mercapto-cysteine (SAMC), which is a component of garlic that is well-known for its anti-tumor properties, inside ZnAl-LDH (hereafter LDH) nanostructured crystals. In order to investigate the efficacy of the intercalation and drug delivery of SAMC, the intercalated compounds were characterized using X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The increase in the interlayer distance of LDH from 8.9 Å, typical of the nitrate phase, to 13.9 Å indicated the intercalation of SAMC, which was also confirmed using FT-IR spectra. Indeed, compared to that of the pristine LDH precursor, the spectrum of LDH-SAMC was richly structured in the fingerprint region below 1300 cm−1, whose peaks corresponded to those of the functional groups in the SAMC molecular anion. The LDH-SAMC empirical formula, obtained from UV-Vis spectrophotometry and thermogravimetric analysis, was [Zn0.67Al0.33(OH)2]SAMC0.15(NO3)0.18·0.6H2O. The morphology of the sample was investigated using SEM: LDH-SAMC exhibited a more irregular size and shape of the flake-like crystals in comparison with the pristine LDH, with a reduction in the average crystallite size from 3 µm to about 2 µm. In vitro drug release studies were performed in a phosphate buffer solution at pH 7.2 and 37 °C and were analyzed using UV-Vis spectrophotometry. The SAMC release from LDH-SAMC was initially characterized by a burst effect in the first four hours, during which, 32% of the SAMC is released. Subsequently, the release percentage increased at a slower rate until 42% after 48 h; then it stabilized at 43% and remained constant for the remaining period of the investigation. The LDH-SAMC complex that was developed in this study showed the improved efficacy of the action of SAMC in reducing the invasive capacity of a human hepatoma cell line.
Collapse
|
4
|
Antibacterial activity and physicochemical characterization of calcium-aluminium-ciprofloxacin-layered double hydroxide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Maşlakcı NN. Development and Characterization of Drug‐Loaded PVP/PAN/Gr Electrospun Fibers for Drug Delivery Systems. ChemistrySelect 2021. [DOI: 10.1002/slct.202004176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Neslihan Nohut Maşlakcı
- Department of Pharmacy Services Gelendost Vocational School Isparta University of Applied Sciences 32900 Isparta Turkey
| |
Collapse
|
6
|
Jeong WY, Kang MS, Lee H, Lee JH, Kim J, Han DW, Kim KS. Recent Trends in Photoacoustic Imaging Techniques for 2D Nanomaterial-Based Phototherapy. Biomedicines 2021; 9:80. [PMID: 33467616 PMCID: PMC7830416 DOI: 10.3390/biomedicines9010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
A variety of 2D materials have been developed for therapeutic biomedical studies. Because of their excellent physicochemical properties, 2D materials can be used as carriers for delivering therapeutic agents into a lesion, leading to phototherapy. Various optical imaging techniques have been used for the monitoring of the treatment process. Among these, photoacoustic imaging has unique advantages including relatively deep imaging depth and large field of view with high spatial resolution. In this review article, we summarize the types of photoacoustic imaging systems used for phototherapy monitoring, then we explore contrast-enhanced photoacoustic images using 2D materials. Finally, photoacoustic image-guided phototherapies are discussed. We conclude that 2D material-based phototherapy can be efficiently monitored by photoacoustic imaging techniques.
Collapse
Affiliation(s)
- Woo Yeup Jeong
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
7
|
A Comprehensive Study of a New 1.75 Hydrate of Ciprofloxacin Salicylate: SCXRD Structure Determination, Solid Characterization, Water Stability, Solubility, and Dissolution Study. CRYSTALS 2020. [DOI: 10.3390/cryst10050349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One problem that often arises during the formulation of a dosage form is the solubility and dissolution of the active ingredients. This problem arises in ciprofloxacin, which is a BCS class IV fluoroquinolone antibiotic. A pseudopolymorph is a kind of polymorph in which the number of hydrates is different. In this study, a new pseudopolymorph comprised of ciprofloxacin and salicylic acid was found, namely the salt ciprofloxacin salicylate 1.75 hydrate form. This new solid phase was analyzed by Fourier-transform infrared spectroscope (FTIR), Raman spectroscopy, and thermal analysis and proven by Powder X-ray Diffractometry (PXRD) analysis. The crystal structure was successfully determined by Single Crystal X-ray Diffractometry (SCXRD) analysis. It was found that the piperazinyl group of ciprofloxacin is protonated by H+ from the carboxylic group of salicylic acid. In the unit cell, two ciprofloxacin and two salicylic acid molecules were independent with four water molecules, in which one water molecule had 0.5 occupancy due to inversion symmetry. Interestingly, this hydrate crystal dehydrated by grinding for 105 minutes forms an anhydrous crystalline phase, which was analyzed with FTIR, Raman spectroscopy, thermal analysis, and PXRD. The solubility and dissolution tests were carried out using UV-Visible spectrophotometry and a multiple linear regression method. This new hydrate solid phase has a better profile than the original ciprofloxacin crystal, according to the solubility and dissolution tests.
Collapse
|
8
|
Nabipour H. Design and Evaluation of Non-steroidal Anti-inflammatory Drug Intercalated into Layered Zinc Hydroxide as a Drug Delivery System. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01143-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Nabipour H, Jafari SH, Naderikalali E, Mozafari M. Mefenamic Acid-Layered Zinc Hydroxide Nanohybrids: A New Platform to Elaborate Drug Delivery Systems. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0998-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022]
|
10
|
Saha S, Ray S, Acharya R, Chatterjee TK, Chakraborty J. Magnesium, zinc and calcium aluminium layered double hydroxide-drug nanohybrids: A comprehensive study. APPLIED CLAY SCIENCE 2017; 135:493-509. [DOI: 10.1016/j.clay.2016.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Nabipour H, Hossaini Sadr M, Soltani B. Synthesis, identification and in vitro drug release of layered zinc hydroxide-gemifloxacin nanohybrids. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0625-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Chimene D, Alge DL, Gaharwar AK. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7261-84. [PMID: 26459239 DOI: 10.1002/adma.201502422] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/16/2015] [Indexed: 05/18/2023]
Abstract
Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.
Collapse
Affiliation(s)
- David Chimene
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Daniel L Alge
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
13
|
Khan SB, Asiri AM, Akhtar K, Rub MA. Development of electrochemical sensor based on layered double hydroxide as a marker of environmental toxin. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|